1
|
Nilforoushzadeh MA, Khodaverdi Darian E, Afzali H, Amirkhani MA, Razzaghi M, Naser R, Amiri AB, Alimohammadi A, Nikkhah N, Zare S. Role of Cultured Skin Fibroblasts in Regenerative Dermatology. Aesthetic Plast Surg 2022; 46:1463-1471. [PMID: 35676559 DOI: 10.1007/s00266-022-02940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
Abstract
The skin, as the largest organ, covers the entire outer part of the body, and since this organ is directly exposed to microbial, thermal, mechanical and chemical damage, it may be destroyed by factors such as acute trauma, chronic wounds or even surgical interventions. Cell therapy is one of the most important procedures to treat skin lesions. Fibroblasts are cells that are responsible for the synthesis of collagen, elastin, and the organization of extracellular matrix (ECM) components and have many vital functions in wound healing processes. Today, cultured autologous fibroblasts are used to treat wrinkles, scars, wounds and subcutaneous atrophy. The results of many studies have shown that fibroblasts can be effective and beneficial in the treatment of skin lesions. On the other hand, skin substitutes are used as a regenerative model to improve and regenerate the skin. The use of these alternatives, restorative medicine and therapeutic cells such as fibroblasts has tremendous potential in the treatment of skin diseases and can be a new window for the treatment of diseases with no definitive treatment. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description ofthese Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| | - Ebrahim Khodaverdi Darian
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamideh Afzali
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Naser
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Behtash Amiri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alimohammad Alimohammadi
- Forensic Medicine Specialist, Research Center of Legal Medicine Organization of Iran, Tehran, Iran
| | - Nahid Nikkhah
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Otsuka T, Kan HM, Laurencin CT. Regenerative Engineering Approaches to Scar-Free Skin Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00229-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
The Benefit of Microskin in Combination With Autologous Keratinocyte Suspension to Treat Full Skin Loss In Vivo. J Burn Care Res 2018; 38:348-353. [PMID: 28346302 DOI: 10.1097/bcr.0000000000000552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Patients with extensive deep burns often lack enough autologous skin to cover the wounds. This study explores a new method using microskin in combination with autologous keratinocytes in the treatment of extensive deep burn. Wounds in the combination group were treated with automicroskin at an area expansion ratio of 20:1 (wound area to automicroskin area) and autologous keratinocyte suspension, which were compared with the following treatments: no autotransplant, only allografts (control group); autologous keratinocyte suspension only (keratinocyte only group); automicroskin at an area expansion ratio of 20:1 (20:1 group); and automicroskin at an area expansion ratio of 10:1 (10:1 group, positive control). The authors used epithelialization rate (epithelialized area on day 21 divided by original wound area), hematoxylin and eosin staining, laminin, and type IV collagen immunohistochemistry to assess wound healing. The epithelialization rate of combination group (74.2% ± 8.0%) was similar to that of 10: 1 group (84.3% ± 11.9%, P = .085) and significantly (P < .05) higher than that of 20:1 group (59.2% ± 10.8%), keratinocyte only group (53.8% ± 11.5%), and control group (22.7% ± 5.5%). The hematoxylin and eosin staining and immunohistochemistry showed the epithelialization in the combination group was better than that in the keratinocyte only group and control group. Microskin in combination with autologous keratinocyte suspension can promote the reepithelialization of full-thickness wounds and reduce the requirements for automircoskin, and it is a useful option in the treatment of extensive deep burns.
Collapse
|
4
|
Lee MC, Seonwoo H, Garg P, Jang KJ, Pandey S, Park SB, Kim HB, Lim J, Choung YH, Chung JH. Chitosan/PEI patch releasing EGF and the EGFR gene for the regeneration of the tympanic membrane after perforation. Biomater Sci 2018; 6:364-371. [DOI: 10.1039/c7bm01061c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
EGF and EGFR gene-releasing PEI/chitosan patch (EErP-CPs) was developed to increase the regeneration of tympanic membrane perforations.
Collapse
Affiliation(s)
- Myung Chul Lee
- Department of Biosystems & Biomaterials Science and Engineering
- Seoul National University
- Seoul 151-742
- Republic of Korea
| | - Hoon Seonwoo
- Department of Industrial Machinery Engineering
- Sunchon National university
- 315 Maegok-dong Sunchon
- Republic of Korea
| | - Pankaj Garg
- Research Institute for Agriculture and Life Sciences
- Seoul National University
- Seoul
- Republic of Korea
| | - Kyoung Je Jang
- Department of Biosystems & Biomaterials Science and Engineering
- Seoul National University
- Seoul 151-742
- Republic of Korea
| | - Shambhavi Pandey
- Research Institute for Agriculture and Life Sciences
- Seoul National University
- Seoul
- Republic of Korea
| | - Sang Bae Park
- Department of Biosystems & Biomaterials Science and Engineering
- Seoul National University
- Seoul 151-742
- Republic of Korea
| | - Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering
- Seoul National University
- Seoul 151-742
- Republic of Korea
| | - Jaewoon Lim
- Department of Biosystems & Biomaterials Science and Engineering
- Seoul National University
- Seoul 151-742
- Republic of Korea
| | - Yun Hoon Choung
- Department of Otalaryngology
- Ajou University School of Medicine
- Suwon 443-749
- Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering
- Seoul National University
- Seoul 151-742
- Republic of Korea
- Research Institute for Agriculture and Life Sciences
| |
Collapse
|
5
|
|
6
|
Li M, Zhao Y, Hao H, Han W, Fu X. Theoretical and practical aspects of using fetal fibroblasts for skin regeneration. Ageing Res Rev 2017; 36:32-41. [PMID: 28238941 DOI: 10.1016/j.arr.2017.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
Cutaneous wounding in late-gestational fetal or postnatal humans results in scar formation without any skin appendages. Early or mid- gestational skin healing in humans is characterized by the absence of scaring in a process resembling regeneration. Tremendous cellular and molecular mechanisms contribute to this distinction, and fibroblasts play critical roles in scar or scarless wound healing. This review discussed the different repair mechanisms involved in wound healing of fibroblasts at different developmental stages and further confirmed that fetal fibroblast transplantation resulted in reduced scar healing in vivo. We also discussed the possible problem in fetal fibroblast transplantation for wound repair. We proposed the use of small molecules to improve the regenerative potential of repairing cells in the wound given that remodeling of the wound microenvironment into a regenerative microenvironment in adults might improve skin regeneration.
Collapse
|
7
|
Matousek S, Deva A, Mani R. Outcome Measurements in Wound Healing Are Not Inclusive: A Way Forward. INT J LOW EXTR WOUND 2016; 6:284-90. [DOI: 10.1177/1534734607308315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Standardized outcome measurement in wound healing has been an elusive goal. Whilst research into wound healing science and technology continues to progress rapidly, the lack of a uniform outcome assessment is making comparative analysis of results difficult. This paper seeks to outline the reported clinical, physiological, and histological outcomes that have been utilized in the literature. A minimal data set base for wound outcome evaluation is also established to be validated by future multivariate analysis of patient data.
Collapse
Affiliation(s)
- S. Matousek
- Department of Plastic and Maxillofacial Surgery, Liverpool
Hospital and South Western Clinical School University of New South Wales,
Sydney, Australia
| | - A.K. Deva
- Department of Plastic and Maxillofacial Surgery, Liverpool
Hospital and South Western Clinical School University of New South Wales,
Sydney, Australia,
| | - Raj Mani
- Division of Diagnostics and Therapeutics, Southampton
University Hospitals NHS Trust, Southampton, UK
| |
Collapse
|
8
|
Talebpour Amiri F, Fadaei Fathabadi F, Mahmoudi Rad M, Piryae A, Ghasemi A, Khalilian A, Yeganeh F, Mosaffa N. The effects of insulin-like growth factor-1 gene therapy and cell transplantation on rat acute wound model. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e16323. [PMID: 25558384 PMCID: PMC4270678 DOI: 10.5812/ircmj.16323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/08/2014] [Accepted: 03/11/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Wound healing is a complex process. Different types of skin cells, extracellular matrix and variety of growth factors are involved in wound healing. The use of recombinant growth factors in researches and production of skin substitutes are still a challenge. OBJECTIVES Much research has been done on the effects of gene therapy and cell therapy on wound healing. In this experimental study, the effect of insulin-like growth factor (IGF-1) gene transfer in fibroblast cells was assessed on acute dermal wound healing. MATERIALS AND METHODS Fibroblasts were cultured and transfected with IGF-1. Lipofectamine 2000 was used as a reagent of transfection. Transgene expression levels were measured by the enzyme linked immunosorbent assay (ELISA). To study in vivo, rats (weighing 170-200 g) were randomly divided into three groups (five/group) and full-thickness wounds were created on the dorsum region. Suspensions of transfected fibroblast cells were injected into the wound and were compared with wounds treated with native fibroblast cells and normal saline. For the microscopic examination, biopsy was performed on day seven. RESULTS In vitro, the maximum expression of IGF1 (96.95 pg/mL) in transfected fibroblast cells was 24 hours after gene transfer. In vivo, it was clear that IGF-1 gene therapy caused an increase in the number of keratinocyte cells during the wound healing process (mean of group A vs. group B with P value = 0.01, mean of group A vs. group C with P value = 0.000). Granulation of tissue formation in the transfected fibroblast group was more organized when compared with the normal saline group and native fibroblast cells. CONCLUSIONS This study indicated that the optimization of gene transfer increases the expression of IGF-1. High concentrations of IGF-1, in combination with cell therapy, have a significant effect on wound healing.
Collapse
Affiliation(s)
- Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Fatemeh Fadaei Fathabadi
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Mahnaz Mahmoudi Rad
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Mahnaz Mahmoudi Rad, Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel: +98-2122741512, Fax: +98-2122027147, E-mail: ,
| | - Abbas Piryae
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Azar Ghasemi
- Department of Pathology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Alireza Khalilian
- Department of Biostatistics and Social Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Farshid Yeganeh
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Nariman Mosaffa
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
9
|
Allogenous skin fibroblast transplantation enhances excisional wound healing following alloxan diabetes in sheep, a randomized controlled trial. Int J Surg 2014; 12:751-6. [PMID: 24969829 DOI: 10.1016/j.ijsu.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/14/2014] [Accepted: 06/16/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Healing of skin wound is a multi-factorial and complex process. Treatment of diabetic wounds is still a major clinical challenge. Recently, stem cell transplantation to chronic wounds is favored. The objective of this study was to evaluate effects of pre-labeled allogenous skin fibroblasts on healing of ovine diabetic wound model. METHODS Eight 4-month-old Iranian Makoui wethers were used in this study. Alloxan monohydrate was used for induction of diabetes. In each wether two excisional wound were created on dorsum of the animal. Wounds of one side were randomly chosen as treatment group (n = 8), and wounds of the other side were considered as control group (n = 8). Pre-labeled skin fibroblasts with bromodeoxyuridine were used in wounds of one side as treatment. Photographs were taken in distinct times for planimetric evaluation. Wound samples were taken for BrdU detection and histopathologic evaluations on day 21 post-wounding. RESULTS The planimetric study showed closure of fibroblast treated wounds is significantly faster than control group (P < 0.05). Immunohistochemical staining with anti-bromodeoxyuridine antibody indicated presence of transplanted cells in the wounds. Histopathologic evaluations of H&E stained sections disclosed significantly increasing of re-epithelialization, number of fibroblasts, and number of blood vessels in treatment group in comparison to control group (P < 0.05). CONCLUSION [corrected] The results of this study indicated that allogenous skin fibroblast transplantation can positively affect wound healing in diabetic sheep.
Collapse
|
10
|
Thangapazham RL, Darling TN, Meyerle J. Alteration of skin properties with autologous dermal fibroblasts. Int J Mol Sci 2014; 15:8407-27. [PMID: 24828202 PMCID: PMC4057739 DOI: 10.3390/ijms15058407] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/19/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022] Open
Abstract
Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA) while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices.
Collapse
Affiliation(s)
- Rajesh L Thangapazham
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD 20851, USA.
| | - Thomas N Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD 20851, USA.
| | - Jon Meyerle
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD 20851, USA.
| |
Collapse
|
11
|
Lee Y, Bae JW, Lee JW, Suh W, Park KD. Enzyme-catalyzed in situ forming gelatin hydrogels as bioactive wound dressings: effects of fibroblast delivery on wound healing efficacy. J Mater Chem B 2014; 2:7712-7718. [DOI: 10.1039/c4tb01111b] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wound treatment using injectable or sprayable fibroblast-encapsulated GH-hydrogels.
Collapse
Affiliation(s)
- Yunki Lee
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749, Republic of Korea
| | - Jin Woo Bae
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749, Republic of Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery
- Yonsei University College of Medicine
- Seoul 120-752, Republic of Korea
| | - Wonhee Suh
- College of Pharmacy
- School of Medicine
- Ajou University
- Suwon 443-749, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749, Republic of Korea
| |
Collapse
|
12
|
Kiwanuka E, Hackl F, Caterson EJ, Nowinski D, Junker JPE, Gerdin B, Eriksson E. CCN2 is transiently expressed by keratinocytes during re-epithelialization and regulates keratinocyte migration in vitro by the ras-MEK-ERK signaling pathway. J Surg Res 2013; 185:e109-19. [PMID: 24079812 DOI: 10.1016/j.jss.2013.05.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/08/2013] [Accepted: 05/15/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND CCN2 (previously known as connective tissue growth factor) is a multifunctional matricellular protein that has numerous effects on cell life and cell interactions with the connective tissue. Although the importance of CCN2 for the fibrotic process in wound healing has been well studied, the involvement of CCN2 in keratinocyte function has not yet been explored. Therefore, the aim of the present study was to investigate the role of CCN2 in the epidermis during wound healing. MATERIALS AND METHODS Immunohistochemistry was done on sections from full-thickness porcine wounds. The effect of CCN2 on the migration of cultured human keratinocytes exposed to scratch wounds, the effect on phosphorylation of extracellular signal-related kinases (ERK), and the effect of adding inhibitors to the ERK/mitogen-activated protein kinase pathway to human keratinocytes were studied. RESULTS The CCN2 protein was transiently expressed in vivo at the leading keratinocyte edge during re-epithelialization of full-thickness porcine wounds. In vitro, exogenous addition of CCN2 to human keratinocyte cultures regulated keratinocyte migration and resulted in phosphorylation of ERK. The addition of inhibitors of ERK/mitogen-activated protein kinase counteracted the effect of CCN2 on migration. CONCLUSIONS CCN2 was transiently expressed at the leading keratinocyte edge in vivo. The biologic importance of this was supported in vitro, because CCN2 regulated human keratinocyte migration through activation of the Ras-mitogen-activated protein kinase kinase-ERK signal transduction pathway.
Collapse
Affiliation(s)
- Elizabeth Kiwanuka
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Surgical Sciences, Plastic Surgery Unit, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Nuutila K, Peura M, Suomela S, Hukkanen M, Siltanen A, Harjula A, Vuola J, Kankuri E. Recombinant human collagen III gel for transplantation of autologous skin cells in porcine full-thickness wounds. J Tissue Eng Regen Med 2013; 9:1386-93. [PMID: 23362205 DOI: 10.1002/term.1691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 10/17/2012] [Accepted: 12/20/2012] [Indexed: 01/12/2023]
Abstract
Complex skin wounds, such as chronic ulcers and deep burns, require lengthy treatments and cause extensive burdens on healthcare and the economy. Use of biomaterials and cell transplantation may improve traditional treatments and promote the healing of difficult-to-treat wounds. In this study, we investigated the use of recombinant human collagen III (rhCol-III) gel as a delivery vehicle for cultured autologous skin cells (keratinocytes only or keratinocyte-fibroblast mixtures). We examined its effect on the healing of full-thickness wounds in a porcine wound-healing model. Two Landrace pigs were used for the study. Fourteen deep dermal wounds were created on the back of each pig with an 8 mm biopsy punch. Syringes containing acellular rhCol-III gel (n = 8) or rhCol-III gel with autologous keratinocytes (n = 8) or rhCol-III gel with autologous keratinocytes and fibroblasts (n = 8) were applied into wounds. Untreated wounds were used as controls for the treatment groups (n = 4). We used rhCol-III gel to manufacture a cell-delivery syringe containing autologous skin cells. In a full-thickness wound-healing model, we observed that rhCol-III gel enhances early granulation tissue formation. Interestingly, we found cell type-dependent differences in the stability of rhCol-III in vivo. Fibroblast-containing gel was effectively removed from the wound, whereas gels without cells or with keratinocytes only remained intact. Our results demonstrate that the properties of rhCol-III gel for skin cell transplantation can be significantly altered in a cell type-dependent manner.
Collapse
Affiliation(s)
- Kristo Nuutila
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland.,3rd Department of Surgery, Helsinki University Central Hospital, Finland
| | - Matti Peura
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland.,3rd Department of Surgery, Helsinki University Central Hospital, Finland
| | - Sari Suomela
- Department of Dermatology, Helsinki University Central Hospital, Finland
| | - Mika Hukkanen
- Institute of Biomedicine, Anatomy, University of Helsinki, Finland
| | - Antti Siltanen
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland.,3rd Department of Surgery, Helsinki University Central Hospital, Finland
| | - Ari Harjula
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland.,3rd Department of Surgery, Helsinki University Central Hospital, Finland
| | - Jyrki Vuola
- Helsinki Burn Centre, Department of Plastic Surgery, Helsinki University Central Hospital, Finland
| | - Esko Kankuri
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland.,3rd Department of Surgery, Helsinki University Central Hospital, Finland
| |
Collapse
|
14
|
Horch RE, Kneser U, Polykandriotis E, Schmidt VJ, Sun J, Arkudas A. Tissue engineering and regenerative medicine -where do we stand? J Cell Mol Med 2012; 16:1157-65. [PMID: 22436120 PMCID: PMC3823070 DOI: 10.1111/j.1582-4934.2012.01564.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tissue Engineering (TE) in the context of Regenerative Medicine (RM) has been hailed for many years as one of the most important topics in medicine in the twenty-first century. While the first clinically relevant TE efforts were mainly concerned with the generation of bioengineered skin substitutes, subsequently TE applications have been continuously extended to a wide variety of tissues and organs. The advent of either embryonic or mesenchymal adult stem-cell technology has fostered many of the efforts to combine this promising tool with TE approaches and has merged the field into the term Regenerative Medicine. As a typical example in translational medicine, the discovery of a new type of cells called Telocytes that have been described in many organs and have been detected by electron microscopy opens another gate to RM. Besides cell-therapy strategies, the application of gene therapy combined with TE has been investigated to generate tissues and organs. The vascularization of constructs plays a crucial role besides the matrix and cell substitutes. Therefore, novel in vivo models of vascularization have evolved allowing axial vascularization with subsequent transplantation of constructs. This article is intended to give an overview over some of the most recent developments and possible applications in RM through the perspective of TE achievements and cellular research. The synthesis of TE with innovative methods of molecular biology and stem-cell technology appears to be very promising.
Collapse
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery And Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Sawada H, Sheng HM, Hakamata Y, Esaki M, Kita A, Yoshida T, Kobayashi E. Contribution of subcutaneous connective tissues to the epithelialization and cyst formation by the skin transplanted subcutaneously. Organogenesis 2012; 1:55-9. [PMID: 19521562 DOI: 10.4161/org.1.2.1339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Accepted: 10/27/2004] [Indexed: 11/19/2022] Open
Abstract
Skins and hollow organs have been shown to form epithelialized cysts when transplanted into subcutaneous tissue of a recipient animal, expanding their surface areas. This system seems to offer a good potential for regenerating organs. We investigated the functional and structural contribution of epithelia and connective tissue compartments in this regeneration system with two experimental systems.
Collapse
Affiliation(s)
- Hajime Sawada
- Department of Anatomy and Department of Plastic Surgery; Yokohama City University School of Medicine; Fukuura 3-9, Kanazawa-ku, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Ananta M, Brown RA, Mudera V. A rapid fabricated living dermal equivalent for skin tissue engineering: an in vivo evaluation in an acute wound model. Tissue Eng Part A 2011; 18:353-61. [PMID: 21913837 DOI: 10.1089/ten.tea.2011.0208] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The encapsulation of both cells and a surgical mesh in a polymerizing collagen hydrogel followed by mechanical compression, after polymerization, results in the rapid formation of a living dermal equivalent (LDE) with physical properties suitable for in vivo application. It was found in the current study that the LDE supported the attachment, growth, and differentiation of keratinocytes, allowing for the formation of living skin equivalents (LSEs) with a monolayer epidermis (LSE-M) and a stratified epidermis (LSE-S). The utility of the LDE for the fabrication of living wound dressings was further evaluated by testing the safety and efficacy of the LSE-M and LSE-S in a lapine model of an acute full-thickness skin defect. It was found that the LSE-S significantly stimulated blood vessel formation and accelerated epidermal wound closure compared with controls. The LSE-M showed similar trends but these were not significant. These findings indicate the clinical usefulness of the LDE in the treatment of acute and possibly chronic wounds, such as venous and diabetic ulcerations. The 1-h fabrication time of the LDE is a significant reduction compared with that of dermal components of current FDA-approved dressings, such as Dermagraft, Apligraf, and OrCel, which require days to weeks of in vitro culture. It is therefore proposed that the presented method could reduce the high cost associated with the production of living, tissue-engineered dressings.
Collapse
Affiliation(s)
- Michael Ananta
- Institute of Orthopaedics, University College London, Stanmore, Middlesex, United Kingdom
| | | | | |
Collapse
|
17
|
Gómez C, Galán JM, Torrero V, Ferreiro I, Pérez D, Palao R, Martínez E, Llames S, Meana A, Holguín P. Use of an autologous bioengineered composite skin in extensive burns: Clinical and functional outcomes. A multicentric study. Burns 2011; 37:580-9. [PMID: 21255936 DOI: 10.1016/j.burns.2010.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 08/22/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE We report clinical and functional outcomes obtained after application of an autologous bioengineered composite skin (ABCS) produced in a single Spanish tissue-engineering unit. MATERIALS/METHODS Twenty-five burned patients treated with ABCS from 1999 to 2007 in five burn centres were included in the study. Mean age was 29 years (SD 11), with mean total body surface area (TBSA) burned being 74% (SD 17) and mean full-thickness injury of 61% (SD 19) of TBSA. RESULTS The mean area initially engrafted with ABCS was 24% (SD 13) of TBSA, with a final take of 49% (SD 30, range 0-100%). ABCS achieved permanent coverage of a mean of 11% (SD 8) of TBSA. In subset analyses, lack of pre- and post-application wound bed infection and lack of serious acute systemic complications at the time of engraftment were significantly associated with better ABCS take. CONCLUSIONS Final take obtained with ABCS could be improved with the use of non-cytotoxic topical antibiotics following engraftment. The use of plasma to prepare ABCS reduces production costs: cost-effectiveness ratio is not a limitation for its use. In terms of patient satisfaction, cosmetic/functional outcomes (general appearance, texture, flexibility, sensitivity and colour) of ABCS and split-thickness autografts are not different statistically.
Collapse
Affiliation(s)
- C Gómez
- Burn Unit, Department of Burns, Plastic and Reconstructive Surgery, Hospital Universitario de Getafe, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Koyama T, Hackl F, Aflaki P, Bergmann J, Zuhaili B, Waisbren E, Govindarajulu U, Yao F, Eriksson E. A new technique of ex vivo gene delivery of VEGF to wounds using genetically modified skin particles promotes wound angiogenesis. J Am Coll Surg 2011; 212:340-8. [PMID: 21247781 DOI: 10.1016/j.jamcollsurg.2010.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 10/07/2010] [Accepted: 10/12/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Transplantation of genetically modified keratinocytes has been shown to accelerate wound healing. However, this method is labor-intensive and time-consuming. We have developed a new technique of intraoperative gene delivery to wounds that involves transplantation of transfected minced skin particles (MSPs) derived from harvested partial-thickness skin. STUDY DESIGN MSPs measuring 0.8 × 0.8 × 0.35 mm were created from a split-thickness skin graft of a pig. In vitro transfection was carried out with adenoviral LacZ (Ad-LacZ) for qualitative and adenoviral vascular endothelial growth factor (Ad-VEGF) for quantitative analysis. Transfected MSPs were transplanted to each of 2.5 × 2.5 cm full-thickness wounds on the dorsum of the pig. Nontransfected MSPs served as controls. Wound chambers were applied and injected with saline to create a wet environment. RESULTS LacZ expression was detected in migrating cells originating from MSPs both in vitro and in vivo. VEGF expression in the wound fluid of Ad-VEGF-MSP-transplanted wounds on each of days 2 to 4 (mean ± SEM 6.74 ± 1.89 ng/mL, day 2; 9.88 ± 2.27 ng/mL, day 3; 9.87 ± 1.28 ng/mL, day 4) was significantly higher (p < 0.0001) compared with wounds transplanted with either untransfected MSPs, Ad-LacZ-MSPs, or untransplanted controls. In vitro VEGF expression was significantly higher (p < 0.0001) in Ad-VEGF 1 × 10(10) transfected MSPs compared with either Ad-VEGF 1 × 10(9) transfected MSPs or untransfected MSPs. Wounds transplanted with Ad-VEGF-MSPs showed significantly higher (p < 0.0001) numbers of newly formed blood vessels (12.6 ± 0.9 vessels/high power field [HPF]) compared with wounds transplanted with either Ad-LacZ-MSPs (4.4 ± 0.5 vessels/HPF) or untransfected MSPs (5.2 ± 0.7 vessels/HPF). All MSP-transplanted wounds (Ad-VEGF-MSPs, untransfected MSPs, Ad-LacZ-MSPs) showed significantly higher re-epithelialization compared with untransplanted wounds on days 10 and 14 (p < 0.0001). CONCLUSIONS We demonstrated successful transfection of MSPs that can be transplanted to wounds as a source of gene-expressing cells. This technique can be used to deliver growth-modulating genes in wound healing.
Collapse
Affiliation(s)
- Taro Koyama
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Outcomes in controlled and comparative studies on non-healing wounds: recommendations to improve the quality of evidence in wound management. J Wound Care 2010; 19:237-68. [DOI: 10.12968/jowc.2010.19.6.48471] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Velander P, Theopold C, Bleiziffer O, Bergmann J, Svensson H, Feng Y, Eriksson E. Cell suspensions of autologous keratinocytes or autologous fibroblasts accelerate the healing of full thickness skin wounds in a diabetic porcine wound healing model. J Surg Res 2008; 157:14-20. [PMID: 19589541 DOI: 10.1016/j.jss.2008.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 09/26/2008] [Accepted: 10/01/2008] [Indexed: 11/29/2022]
Abstract
Autologous dermal fibroblasts may be useful in the treatment of diabetic skin wounds. We hypothesized that cultured fibroblasts or cultured keratinocytes would not only survive in a hyperglycemic wound environment but also enhance the rate of re-epithelialization. We previously developed a new porcine model of delayed cutaneous wound healing in the diabetic pig. Full thickness wounds were created on the dorsum and dressed with polyurethane chambers to keep the wounds wet and to allow for wound fluid monitoring. Suspensions of either autologous fibroblasts or autologous keratinocytes were injected into full thickness wounds and compared with wounds treated in a wet environment in normal saline. Serum glucose and wound fluid glucose concentrations were monitored daily. Wound contraction was monitored and biopsies taken on day 12. Transplantation of suspensions of autologous fibroblasts or autologous keratinocytes enhanced re-epithelialization of cutaneous full thickness wounds. Wounds treated with autologous fibroblasts showed a re-epithelialization rate of 86.75% and wounds treated with autologous keratinocytes showed a re-epithelialization rate of 91.3%. This is compared with a re-epithelialization rate of 56.8% seen in the normal saline treated wounds. While previous studies have shown fibroblasts suspension to have little effect in the treatment of full thickness wounds in nondiabetic wounds, this study shows a clear beneficial effect in the use of fibroblast or keratinocyte suspensions for the cutaneous healing of diabetic wounds in pigs.
Collapse
Affiliation(s)
- Patrik Velander
- Harvard Medical School, Brigham and Woman's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Kim SS, Gwak SJ, Choi CY, Kim BS. Skin regeneration using keratinocytes and dermal fibroblasts cultured on biodegradable microspherical polymer scaffolds. J Biomed Mater Res B Appl Biomater 2008; 75:369-77. [PMID: 16025446 DOI: 10.1002/jbm.b.30302] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bioartificial skin sheet grafts have been utilized to treat large burns and chronic ulcers. However, the trypsinization step to harvest cultured skin grafts from culture dishes damages the cells by breaking the anchoring proteins and lowers their uptake ratio after transplantation. In addition, epidermal sheet grafts require a long fabrication period. To overcome these limitations, we utilized biodegradable poly(lactide-co-glycolide) (PLGA) microspheres as both cell culture matrix and transplantation vehicle of skin cells for skin regeneration in this study. This method could avoid the trypsinization step and have a relatively short preparation period. Human keratinocytes and dermal fibroblasts cultured on PLGA microspheres in spinner flasks proliferated by 3.0-fold and 9.4-fold, respectively, after 10 days. When both types of cells cultured on PLGA microspheres were reinoculated onto culture dishes, the cells migrated from the PLGA microspheres to the culture dish surface, grew, and formed a confluent cell layer within 5 days, showing the growth and migration abilities of the cells cultured on PLGA microspheres. Full-thickness skin wounds created on the back of athymic mice were either treated with transplantation of keratinocytes and dermal fibroblasts cultured on microspheres (cell-transplanted group), treated with PLGA microspheres alone (microsphere-implanted group), or covered with dressing materials without treatment (untreated group). Three weeks after the treatments, differentiated epithelium that stained positively for cytokeratin, a marker of epidermis, was observed in the cell-transplanted group, while the microsphere-implanted group and untreated group showed incomplete reepithelialization. Dermal regeneration with positive staining for vimentin, a marker of dermal fibroblast, was observed in the cell-transplanted group. Regenerated dermis with positive staining for vimentin was partly observed in the microsphere-implanted group and untreated group. These results suggest that transplantation of keratinocytes and dermal fibroblasts cultured on PLGA microspheres could be potentially useful as an alternative to bioartificial skin grafts for the treatment of skin wounds.
Collapse
Affiliation(s)
- Sang-Soo Kim
- Department of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
| | | | | | | |
Collapse
|
22
|
Johnen C, Steffen I, Beichelt D, Bräutigam K, Witascheck T, Toman N, Moser V, Ottomann C, Hartmann B, Gerlach JC. Culture of subconfluent human fibroblasts and keratinocytes using biodegradable transfer membranes. Burns 2008; 34:655-63. [PMID: 18226463 DOI: 10.1016/j.burns.2007.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 08/28/2007] [Indexed: 11/24/2022]
Abstract
This study aims to assess the suitability of biodegradable membranes as transfer matrix materials for the culture of subconfluent fibroblasts and keratinocytes. The materials investigated were based on collagen, chitosan and enzyme-digestible cellulose. The proliferation and growth behaviour of human keratinocytes and dermal fibroblasts were analysed and morphology and distribution determined. Cultured fibroblasts exhibited no significant differences in proliferation for the different membrane types, whereas keratinocytes revealed significantly higher proliferation on collagen membranes compared with membranes based on cellulose and chitosan. Co-cultured fibroblasts and keratinocytes from the same donor on collagen membranes showed more homogenous cell distribution, but they segregated in heterologous co-cultures; this effect must be further investigated. Thus, collagen and collagen-coated chitosan membranes are suitable for the subconfluent transfer of human fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- C Johnen
- Charité, Campus Virchow-Clinic, Department of Surgery, Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Aiming for regeneration of severed or lost parts of the body, the combined application of gene therapy and tissue engineering has received much attention by regenerative medicine. Techniques of molecular biology can enhance the regenerative potential of a biomaterial by co-delivery of therapeutic genes, and several different strategies have been used to achieve that goal. Possibilities for application are many-fold and have been investigated to regenerate tissues such as skin, cartilage, bone, nerve, liver, pancreas and blood vessels. This review discusses advantages and problems encountered with the different gene delivery strategies as far as they relate to tissue engineering, analyses the positive aspects of polymeric gene delivery from matrices and discusses advances and future challenges of gene transfer strategies in selected tissues.
Collapse
Affiliation(s)
- Oliver Bleiziffer
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
- *Correspondence to: Ulrich KNESER, M.D. Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Krankenhausstr. 12, 91054 Erlangen, Germany. Tel.: +49-9131-85-33277; Fax: +49-9131-85-39327 E-mail:
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Feng Yao
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | - Ulrich Kneser
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
- *Correspondence to: Ulrich KNESER, M.D. Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Krankenhausstr. 12, 91054 Erlangen, Germany. Tel.: +49-9131-85-33277; Fax: +49-9131-85-39327 E-mail:
| |
Collapse
|
24
|
Llames S, García E, García V, del Río M, Larcher F, Jorcano JL, López E, Holguín P, Miralles F, Otero J, Meana A. Clinical results of an autologous engineered skin. Cell Tissue Bank 2007; 7:47-53. [PMID: 16511664 DOI: 10.1007/s10561-004-7253-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 11/29/2004] [Indexed: 10/25/2022]
Abstract
INTRODUCTION An artificial complete skin (dermis and epidermis) model has been developed in the Tissue engineering unit of the Centro Comunitario de Sangre y Tejidos del Principado de Asturias (CCST) and CIEMAT. This engineered skin has been employed for the treatment of severe epithelial injuries. In this paper, the clinical results obtained with this engineered skin during the last 18 months were evaluated. PATIENTS, MATERIAL AND METHODS (a) Culture: Cells (fibroblasts and keratinocytes) were obtained from biopsies by a double enzymatic digestion. After an expansion period, fibroblasts were seeded in an artificial dermis based on human plasma. Keratinocytes were seeded over this dermal surface. (b) PATIENTS 20 skin biopsies were processed (13 burned patients, 5 giant nevus, 1 GVHD, 1 neurofibromatosis), which came from different hospitals across the country. About 97,525 cm(2) of engineered skin were cultured. RESULTS The engineered skin took in all patients. The take percentage depended on previous pathology (burned patients 10-90%; non-critical patients 70-90%). The epithelization obtained was permanent in all cases. During the follow-up period, epithelial loss, blistering injuries or skin retractions were not observed. The aesthetic and functional results were acceptable. CONCLUSIONS This artificial skin has demonstrated to be useful for the definitive treatment of patients with severe skin injuries. This work shows that it is possible to produce this prototype in an hospitalarian laboratory and distribute it to different hospitals across the country.
Collapse
|
25
|
Liu JY, Hafner J, Dragieva G, Burg G. High yields of autologous living dermal equivalents using porcine gelatin microbeads as microcarriers for autologous fibroblasts. Cell Transplant 2006; 15:445-51. [PMID: 16970286 DOI: 10.3727/000000006783981855] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Permanent skin replacement requires a dermal component to ensure adequate long-term graft stability and to prevent wound contraction. This study was to construct a bioreactor microcarrier cell culture system (Bio-MCCS) to produce autologous living dermal equivalents on a large scale. Autologous fibroblasts were isolated from split-thickness skin biopsy from a leg ulcer patient, inoculated onto macroporous porcine gelatin microbeads, and incubated in a bioreactor (Cellspin) in serum-free fibroblast growth medium or in DMEM medium containing 10% fetal calf serum (FCS). Fibroblasts rapidly adhered to and actively proliferated on the microbeads in the bioreactor in both serum-free and serum-containing medium. MTT assay showed the number of fibroblasts on the microbeads reached up to 5.3- or 4.0-fold the cells seeded in DMEM medium containing 10% FCS or serum-free medium, respectively. When removed from Bio-MCCS and cultured under static conditions, fibroblasts were able to leave the microbeads and proliferate to confluence on the bottom of tissue culture flasks. When stored at room temperature in DMEM containing 10% FBS, fibroblast cultured on the microbeads retained highest viabilities for at least 3 weeks, up to 82% of originals. This Bio-MCCS using porcine gelatin microbeads as carriers for fibroblasts offers a new option of mass production of autologous living dermal equivalents.
Collapse
Affiliation(s)
- Jin Yu Liu
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
26
|
Chen RN, Wang GM, Chen CH, Ho HO, Sheu MT. Development ofN,O-(Carboxymethyl)chitosan/Collagen Matrixes as a Wound Dressing. Biomacromolecules 2006; 7:1058-64. [PMID: 16602721 DOI: 10.1021/bm050754b] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an attempt to accelerate wound healing by stimulating the recruitment of fibroblasts and improve the mechanical properties of collagen matrixes, N,O-(carboxymethyl)chitosan (NOCC) was incorporated into the backbone of a collagen (COL) matrix without or with chondroitin sulfate (CS) or an acellular dermal matrix (ADM). The result of a cell migration study demonstrated that the migration of fibroblasts was significantly enhanced by NOCC in a concentration-dependent manner. In the analysis with a dynamic mechanical analyzer, NOCC/CS/COL matrixes presented higher tensile strengths than did NOCC/ADM/COL matrixes. Skin fibroblasts cultured on the matrixes containing NOCC showed increased proliferation and secretion of three kinds of cytokines compared with the control. Results of the in vivo wound healing study showed that matrixes incorporating NOCC showed markedly enhanced wound healing compared with the control. Therefore, the above results clearly suggest that NOCC/COL matrixes containing CS or ADM can be potential wound dressings for clinical applications.
Collapse
Affiliation(s)
- Ray-Neng Chen
- Graduate Institute of Pharmaceutical Sciences, College of Pharmacy, and Department of Medical Technology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
27
|
Lin Y, Li H, Huang J, Zeng S. Following the fate of murine epidermal stem cells in a syngeneic dermal equivalent in vivo. Burns 2005; 31:1007-12. [PMID: 16288965 DOI: 10.1016/j.burns.2005.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 06/29/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND Stem cells in healthy epidermis have the capacity to produce structures, such as interfollicular epidermis, hair follicle, and sebaceous glands. Embryonic stem (ES) cells can be induced to differentiate into epidermal stem cells in vitro. These ESCs (epidermal or epidermoid stem cells derived from ES cells) have the potential to be an ideal replacement of those stem cells destroyed in severe injury, such as in deep and extensive burn. The aim of this study was to follow the fate of murine ESCs which were seeded in a syngeneic dermal equivalent and implanted into syngeneic recipient mice subcutaneously. METHODS ES cells were induced in vitro to differentiate into ESCs. Stained with a fluorescent dye Hoechst 33342, these ESCs were seeded into a fibroblast-collagen-gelatin sponge complex, functioning as a dermal equivalent model, and then implanted subcutaneously into 129/J mice, which were syngeneic to these stem cells. RESULTS These ESCs were clearly visible in the implant by fluorescent microscopy 3 weeks or longer after implantation. These cells remained viable, differentiating into hair follicle-like structures, glandular structures, and gave rise to additional structures resembling native dermis. A number of markers were expressed in the differentiated structures, including CD29 (integrin beta1 subunit) and cytokeratin 18 (CK18). No apparent rejection or severe side effects were observed at least during the 10 weeks following implantation. CONCLUSIONS Now that ESCs can survive in vivo in this dermal equivalent model and differentiate into hair follicle-like structures as well as glandular structures, it is feasible to use these cells as seed cells in studies to fabricate dermal equivalents that have the potential to develop dermal appendages.
Collapse
Affiliation(s)
- Yi Lin
- Department of Histology and Embryology, Medical College of Zhongshan University, Guangzhou 510080, China.
| | | | | | | |
Collapse
|
28
|
Llames SG, Del Rio M, Larcher F, García E, García M, Escamez MJ, Jorcano JL, Holguín P, Meana A. Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. Transplantation 2004; 77:350-5. [PMID: 14966407 DOI: 10.1097/01.tp.0000112381.80964.85] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Keratinocyte cultures have been used for the treatment of severe burn patients. Here, we describe a new cultured bioengineered skin based on (1) keratinocytes and fibroblasts obtained from a single skin biopsy and (2) a dermal matrix based on human plasma. A high expansion capacity achieved by keratinocytes grown on this plasma-based matrix is reported. In addition, the results of successful preclinical and clinical tests are presented. METHODS Keratinocytes and fibroblasts were obtained by a double enzymatic digestion (trypsin and collagenase, respectively). In this setting, human fibroblasts are embedded in a clotted plasma-based matrix that serves as a three-dimensional scaffold. Human keratinocytes are seeded on the plasma-based scaffold to form the epidermal component of the skin construct. Regeneration performance of the plasma-based bioengineered skin was tested on immunodeficient mice as a preclinical approach. Finally, this skin equivalent was grafted on two severely burned patients. RESULTS Keratinocytes seeded on the plasma-based scaffold grew to confluence, allowing a 1,000-fold cultured-area expansion after 24 to 26 days of culture. Experimental transplantation of human keratinocytes expanded on the engineered plasma scaffold yielded optimum epidermal architecture and phenotype, including the expression of structural intracellular proteins and basement-membrane components. In addition, we report here the successful engraftment and stable skin regeneration in two severely burned patients at 1 and 2 years follow-up. CONCLUSIONS Our data demonstrate that this new dermal equivalent allows for (1) generation of large bioengineered skin surfaces, (2) restoration of both the epidermal and dermal skin compartments, and (3) functional epidermal stem-cell preservation.
Collapse
Affiliation(s)
- Sara G Llames
- Centro Comunitario de Sangre y Tejidos del Principado de Asturias, Emilio Rodriguez Vigil s/n, Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Svensjö T, Pomahac B, Yao F, Slama J, Wasif N, Eriksson E. Autologous skin transplantation: comparison of minced skin to other techniques. J Surg Res 2002; 103:19-29. [PMID: 11855913 DOI: 10.1006/jsre.2001.6331] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Skin grafting may be necessary to close nonhealing skin wounds. This report describes a fast and minimally invasive method to produce minced skin suitable for transplantation to skin wounds. The technique was evaluated in an established porcine skin wound healing model and was compared to split-thickness skin grafts and suspensions of cultured and noncultured keratinocytes. MATERIALS AND METHODS The study included 90 wounds on 3 pigs. Fluid-treated full-thickness skin wounds were grafted with minced skin, split-thickness skin grafts, noncultured keratinocytes, or cultured keratinocytes. Controls received either fluid or dry treatment. The wound healing process was analyzed in histologies collected at Days 8 to 43 postwounding. Wound contraction was quantified by photoplanimetry. RESULTS Wounds transplanted with minced skin and keratinocyte suspension contained several colonies of keratinocytes in the newly formed granulation tissue. During the healing phase, the colonies progressed upward and reepithelialization was accelerated. Minced skin and split-thickness skin grafts reduced contraction as compared to keratinocyte suspensions and saline controls. Granulation tissue formation was also reduced in split-thickness skin-grafted wounds. CONCLUSIONS Minced skin grafting accelerates reepithelialization of fluid-treated skin wounds. The technique is faster and less expensive than split-thickness skin grafting and keratinocyte suspension transplantation. Minced skin grafting may have implications for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Tor Svensjö
- Laboratory of Tissue Repair and Gene Transfer, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|