1
|
Mussen F, Broeckhoven JV, Hellings N, Schepers M, Vanmierlo T. Unleashing Spinal Cord Repair: The Role of cAMP-Specific PDE Inhibition in Attenuating Neuroinflammation and Boosting Regeneration after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24098135. [PMID: 37175842 PMCID: PMC10179671 DOI: 10.3390/ijms24098135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is characterized by severe neuroinflammation and hampered neuroregeneration, which often leads to permanent neurological deficits. Current therapies include decompression surgery, rehabilitation, and in some instances, the use of corticosteroids. However, the golden standard of corticosteroids still achieves minimal improvements in functional outcomes. Therefore, new strategies tackling the initial inflammatory reactions and stimulating endogenous repair in later stages are crucial to achieving functional repair in SCI patients. Cyclic adenosine monophosphate (cAMP) is an important second messenger in the central nervous system (CNS) that modulates these processes. A sustained drop in cAMP levels is observed during SCI, and elevating cAMP is associated with improved functional outcomes in experimental models. cAMP is regulated in a spatiotemporal manner by its hydrolyzing enzyme phosphodiesterase (PDE). Growing evidence suggests that inhibition of cAMP-specific PDEs (PDE4, PDE7, and PDE8) is an important strategy to orchestrate neuroinflammation and regeneration in the CNS. Therefore, this review focuses on the current evidence related to the immunomodulatory and neuroregenerative role of cAMP-specific PDE inhibition in the SCI pathophysiology.
Collapse
Affiliation(s)
- Femke Mussen
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
| | - Jana Van Broeckhoven
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
| | - Niels Hellings
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|
2
|
Kim SW, Lim JY, Rhee CK, Kim JH, Park CK, Kim TJ, Cho CS, Min CK, Yoon HK. Effect of roflumilast, novel phosphodiesterase-4 inhibitor, on lung chronic graft-versus-host disease in mice. Exp Hematol 2016; 44:332-341.e4. [PMID: 26898707 DOI: 10.1016/j.exphem.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 01/08/2023]
Abstract
Chronic graft-versus-host disease (CGVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation. Roflumilast has anti-inflammatory effects and has been used in the treatment of inflammatory airway diseases. It is at present unclear whether roflumilast may have a therapeutic role in CGVHD. To test this, we used the B10.D2 → BALB/c model of CGVHD to address the therapeutic effect of roflumilast on the development of CGVHD. Lungs of animals treated with roflumilast exhibited less chronic inflammatory cell infiltration and fibrosis in the peribronchial and perivascular area versus allogeneic controls. To define the mechanism, we examined the expression of pro-inflammatory and profibrotic cytokines in the lung. Messenger RNA expression of interleukin-6 and interleukin-1β in the lungs was significantly reduced in recipients treated with roflumilast. Similar changes were observed in profibrotic cytokines and chemokines. In addition, the percentage of Foxp3(+) regulatory T cells (Tregs), which have the potential to attenuate GVHD, increased significantly within the CD4(+) T cells with roflumilast in the lungs. In conclusion, roflumilast treatment attenuated murine lung CGVHD by blocking T-cell activation mediated by Tregs and downregulating pro-inflammatory and profibrotic cytokines, resulting in the reduction of lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Sei Won Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Young Lim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hye Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Soo Cho
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Ki Min
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyoung Kyu Yoon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
3
|
A relevant experimental model for human bronchiolitis obliterans syndrome. J Heart Lung Transplant 2013; 32:1131-9. [PMID: 24050896 DOI: 10.1016/j.healun.2013.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/18/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The long-term success of human lung transplantation is limited by the development of bronchiolitis obliterans syndrome. Acute rejection episodes and infections are important risk factors and seem to play major pathogenic roles. We established a relevant experimental model that mimics important aspects of human bronchiolitis obliterans syndrome. METHODS The Fischer 344-to-Lewis rat strain combination was used for orthotopic left lung transplantation. Isogeneic transplantations were performed in the Lewis rat. Recipients were treated with ciclosporin for 10 days. Lipopolysaccharide or vehicle was instilled into the airways 28 days after transplantation. Grafts were monitored by computed tomography, and recipients were euthanized on Days 28-90. The messenger RNA expression of selected chemokines and their receptors was measured on Days 28, 29, 33, 40 after transplantation. Graft histopathology on Day 90 was compared with lungs from patients who underwent re-transplantation due to end-stage allograft dysfunction. RESULTS Lung allografts treated with ciclosporin and vehicle only sporadically displayed tissue remodeling. In contrast, lipopolysaccharide treatment induced severe inflammation. In the long-term, severe vascular remodeling, lung fibrosis, and fibroproliferative remodeling of airways were found that closely resemble the histopathologic changes in grafts from human patients with bronchiolitis obliterans syndrome. Chronic damage was virtually absent from pulmonary isografts and native right lungs. Chemokine (C-C motif) ligand 5 and chemokine (C-X-C motif) ligand 9-11, and their receptors, were over-expressed in allografts. CONCLUSIONS Our experimental model mirrors key aspects of human bronchiolitis obliterans syndrome. It will be useful to elucidate its pathogenesis and to develop therapeutic approaches improving the long-term outcome of human lung transplantation.
Collapse
|
4
|
Evans JM, Doki T, Fischer-Lougheed J, Davicioni E, Kearns-Jonker M. Expression changes in tolerant murine cardiac allografts after gene therapy with a lentiviral vector expressing alpha1,3 galactosyltransferase. Transplant Proc 2007; 38:3172-80. [PMID: 17175215 DOI: 10.1016/j.transproceed.2006.10.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Indexed: 01/17/2023]
Abstract
Comparison of intragraft gene expression changes in tolerant cardiac allograft models may provide the basis for identifying pathways involved in graft survival. Our laboratory has previously demonstrated that tolerance to the gal alpha1,3 gal epitope, the major target of rejection of wild-type pig hearts in human cardiac transplantation, can be achieved after transplantation with bone marrow transduced with a lentiviral vector expressing alpha1,3 galactosyltransferase. We now present intracardiac gene expression changes associated with long-term tolerance in this model. Biotin-labeled cRNA was hybridized to Affymetrix GeneChip 430 2.0 Mouse Genome Arrays. Data were subjected to functional annotation analysis to identify genes of known function in which expression was increased or decreased by at least 2-fold (t-test, P < .05) in tolerant gal+/+ wild-type hearts as compared to transplanted syngeneic controls. Tolerant hearts demonstrated increased expression of genes associated with the stress response, modulation of immune function and cell survival (HSPa9a, CD56, and Akt1s1), and decreased expression of several immunoregulatory genes (CD209, CD26, and PDE4b). These data suggest that tolerance may be associated with activation of immunomodulatory and survival pathways.
Collapse
Affiliation(s)
- J M Evans
- Department of Anesthesiology Critical Care Medicine, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA.
| | | | | | | | | |
Collapse
|
5
|
Hirschburger M, Greschus S, Kuchenbuch T, Plötz C, Obert M, Traupe H, Padberg W, Grau V. Lung Transplantation in the Fischer 344→Wistar Kyoto Rat Strain Combination is Not Suitable to Study Bronchiolitis Obliterans. J Heart Lung Transplant 2007; 26:390-8. [PMID: 17403482 DOI: 10.1016/j.healun.2007.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 12/20/2006] [Accepted: 01/08/2007] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND To elucidate the pathogenesis of bronchiolitis obliterans (BO) a reliable animal model is needed. According to the literature, lung transplantation from Fischer 344 (F344) to Wistar Kyoto (WKY) rats is the only model that reliably results in BO without a further stimulus. METHODS We performed orthotopic left lung transplantation in F344 to WKY rats and in both isogeneic rat strain combinations. Suture and cuff techniques for anastomosis were compared. The time course of rejection and the morphology of the bronchial anastomoses were documented by repeated flat-panel volumetric computed tomography (fpVCT) in the living animal. Graft histopathology was analyzed 3 months post-transplant. RESULTS According to the graft outcome, as revealed by fpVCT, grafts were sub-divided into two groups: In Group 1, infiltrates due to acute rejection occurred early after transplantation and resolved thereafter. Graft histopathology showed minor changes but no BO. In Group 2, acute rejection caused total atelectasis that never resolved. After 3 months, grafts were shrunken and exhibited tissue remodeling with some similarities to BO. No correlation between graft outcome and anastomotic technique was apparent. CONCLUSIONS Modeling lung transplantation using the F344-to-WKY combination is without clinical relevance because BO does not develop in grafts with life-sustaining function. Consecutive fpVCT is useful to monitor pathologic changes in rat pulmonary grafts.
Collapse
Affiliation(s)
- M Hirschburger
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fournier M, Marceau A, Dauriat G, Camuset J, Groussard O. [Bronchiolitis with airflow obstruction in adults]. Rev Med Interne 2004; 25:275-86. [PMID: 15050795 DOI: 10.1016/s0248-8663(03)00215-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2002] [Accepted: 05/19/2003] [Indexed: 10/26/2022]
Abstract
PURPOSE The purpose of this paper is twofold: to describe the clinical and anatomical characteristics of bronchiolitis associated with airflow obstruction in adults; to present through a clinical approach, a classification of the main aetiologies or pathological frames associated with that entity. KEY POINTS The constrictive bronchiolitis type is the most frequently encountered. On clinical grounds, cough, crackles, and a progressive dyspnea develop usually within a few weeks. Radiological signs of bronchiolar abnormalities are best visualized on high resolution expiratory CT scan. The decrease in maximal airflows and oxygen tension is of limited amplitude and poorly reversible with bronchodilators. Diagnosis is easily performed when a causative event, or the clinical context, can be delineated: inhalation of toxic fumes, diffuse bronchiectasis, rheumatoid arthritis, lung or bone marrow transplantation. Delayed formation of bronchiectasis in the central airways is common. The treatment is not standardized; corticosteroids are usually prescribed as a first line therapy; the benefit of the addition of, or substitution with immunosuppressive drugs has not been adequately evaluated, but is, on the mean, of limited amplitude. PERSPECTIVES Recent advances in the identification of inhaled agents toxic for the distal airways help in establishing appropriate measures of prevention. When the aetiology of the bronchiolitis cannot be suspected, extensive search of a causative agent should be performed, including microbial and mineral analysis of bronchoalveolar products. Negative results should lead to perform a surgical lung biopsy. The study of chronic rejection processes in animal models of lung transplantation, the identification of inhibitory factors of bronchiolar fibrogenesis, and the efficacy of some anti-cytokines on inflammatory processes could result in new therapeutic approaches.
Collapse
Affiliation(s)
- M Fournier
- Service de pneumologie et réanimation respiratoire, hôpital Beaujon, AP-HP, 100, boulevard du Général-Leclerc, 92110 Clichy, France.
| | | | | | | | | |
Collapse
|