1
|
Mathew D, Barillas-Cerritos J, Nedeljkovic-Kurepa A, Abraham M, Taylor MD, Deutschman CS. Phosphorylation of insulin receptor substrates (IRS-1 and IRS-2) is attenuated following cecal ligation and puncture in mice. Mol Med 2023; 29:106. [PMID: 37550630 PMCID: PMC10408057 DOI: 10.1186/s10020-023-00703-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Sepsis is characterized as an insulin resistant state. However, the effects of sepsis on insulin's signal transduction pathway are unknown. The molecular activity driving insulin signaling is controlled by tyrosine phosphorylation of the insulin receptor β-subunit (IRβ) and of insulin receptor substrate molecules (IRS) -1 and IRS-2. HYPOTHESIS Cecal ligation and puncture (CLP) attenuates IRβ, IRS-1 and IRS-2 phosphorylation. METHODS IACUC-approved studies conformed to ARRIVE guidelines. CLP was performed on C57BL/6 mice; separate cohorts received intraperitoneal insulin at baseline (T0) or at 23 or 47 h. post-CLP, 1 h before mice were euthanized. We measured levels of (1) glucose and insulin in serum, (2) IRβ, IRS-1 and IRS-2 in skeletal muscle and liver homogenate and (3) phospho-Irβ (pIRβ) in liver and skeletal muscle, phospho-IRS-1 (pIRS-1) in skeletal muscle and pIRS-2 in liver. Statistical significance was determined using ANOVA with Sidak's post-hoc correction. RESULTS CLP did not affect the concentrations of IRβ, IRS-1or IRS-2 in muscle or liver homogenate or of IRS-1 in liver. Muscle IRS-1 concentration at 48 h. post-CLP was higher than at T0. Post-CLP pIRS-1 levels in muscle and pIRβ and pIRS-2 levels in liver were indistinguishable from T0 levels. At 48 h. post-CLP pIRβ levels in muscle were higher than at T0. Following insulin administration, the relative abundance of pIRβ in muscle and liver at T0 and at both post-CLP time points was significantly higher than abundance in untreated controls. In T0 controls, the relative abundance of pIRS-1 in muscle and of pIRS-2 in liver following insulin administration was higher than in untreated mice. However, at both post-CLP time points, the relative abundance of pIRS-1 in muscle and of pIRS-2 in liver following insulin administration was not distinguishable from the abundance in untreated mice at the same time point. Serum glucose concentration was significantly lower than T0 at 24 h., but not 48 h., post-CLP. Glucose concentration was lower following insulin administration to T0 mice but not in post-CLP animals. Serum insulin levels were significantly higher than baseline at both post-CLP time points. CONCLUSIONS CLP impaired insulin-induced tyrosine phosphorylation of both IRS-1 in muscle and IRS-2 in liver. These findings suggest that the molecular mechanism underlying CLP-induced insulin resistance involves impaired IRS-1/IRS-2 phosphorylation.
Collapse
Affiliation(s)
- Deepa Mathew
- Department of Pediatrics, Cohen Children's Medical Center, Lake Success, NY, USA
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Room 3140, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Julia Barillas-Cerritos
- Department of Pediatrics, Cohen Children's Medical Center, Lake Success, NY, USA
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Room 3140, 350 Community Dr, Manhasset, NY, 11030, USA
- Pediatric Endocrinology, Metabolism and Diabetes, Winthrop Pediatrics Associates, Mineola, NY, USA
| | - Ana Nedeljkovic-Kurepa
- Department of Pediatrics, Cohen Children's Medical Center, Lake Success, NY, USA
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Room 3140, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Mabel Abraham
- Department of Pediatrics, Cohen Children's Medical Center, Lake Success, NY, USA
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Room 3140, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Matthew D Taylor
- Department of Pediatrics, Cohen Children's Medical Center, Lake Success, NY, USA
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Room 3140, 350 Community Dr, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical Center, Lake Success, NY, USA.
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Room 3140, 350 Community Dr, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
2
|
Risøe PK, Wang Y, Stuestøl JF, Aasen AO, Wang JE, Dahle MK. Lipopolysaccharide attenuates mRNA levels of several adenylyl cyclase isoforms in vivo. Biochim Biophys Acta Mol Basis Dis 2006; 1772:32-9. [PMID: 17008068 DOI: 10.1016/j.bbadis.2006.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 08/02/2006] [Accepted: 08/21/2006] [Indexed: 11/30/2022]
Abstract
Signals that elevate intracellular levels of cyclic adenosine monophosphate (cAMP) are among the factors that control lipopolysaccharide (LPS)-mediated inflammatory mediator production by macrophages. cAMP signaling is also involved in maintaining body functions that are commonly impaired in sepsis, including the endothelial cell barrier function and heart function. Several agents successfully used for sepsis intervention target cAMP signaling, and it was recently shown that liver and lung may be protected from inflammation injury by cAMP-elevating phosphodiesterase inhibitors. Here, we show that LPS attenuates adenylyl cyclase (AC) mRNA levels in liver, lung, heart, spleen and kidney in an animal model of endotoxemia, and in macrophages from liver and lung. In particular, AC5, AC6, AC7 and AC9 mRNA were reduced in most tissues examined and in tissue macrophages. In Kupffer cells, prostaglandin E2-mediated cAMP production was inhibited by LPS treatment. The reduction in AC mRNA by LPS would be expected to lead to a lowered potential for cAMP production in most organs, and in particular, changes in AC6 mRNA may affect endothelial cell barrier function and heart function. In contrast, AC4 mRNA was elevated in heart and lung. The present work indicates a possible mechanism for LPS-mediated alteration of cAMP signaling in vivo.
Collapse
Affiliation(s)
- Petter Kirkeby Risøe
- University of Oslo, Faculty Division Rikshospitalet, Institute for Surgical Research, Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
3
|
Wang JE, Dahle MK, McDonald M, Foster SJ, Aasen AO, Thiemermann C. Peptidoglycan and lipoteichoic acid in gram-positive bacterial sepsis: receptors, signal transduction, biological effects, and synergism. Shock 2004; 20:402-14. [PMID: 14560103 DOI: 10.1097/01.shk.0000092268.01859.0d] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In sepsis and multiple organ dysfunction syndrome (MODS) caused by gram-negative bacteria, lipopolysaccharide (LPS) initiates the early signaling events leading to the deleterious inflammatory response. However, it has become clear that LPS can not reproduce all of the clinical features of sepsis, which emphasize the roles of other contributing factors. Gram-positive bacteria, which lack LPS, are today responsible for a substantial part of the incidents of sepsis with MODS. The major wall components of gram-positive bacteria, peptidoglycan and lipoteichoic acid, are thought to contribute to the development of sepsis and MODS. In this review, the literature underlying our current understanding of how peptidoglycan and lipoteichoic acid activate inflammatory responses will be presented, with a focus on recent advances in this field.
Collapse
Affiliation(s)
- Jacob E Wang
- The William Harvey Research Institute, Charterhouse Square, London EC1M 6BC, United Kingdom.
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
In patients with sepsis and SIRS, the liver has two opposing roles: a source of inflammatory mediators and a target organ for the effects of the inflammatory mediators. The liver is pivotal in modulating the systemic response to severe infection, because it contains the largest mass of macrophages (Kupffer cells) in the body; these macrophages can clear the endotoxin and bacteria that initiate the systemic inflammatory response. This article summarizes the functional changes that take place in the liver during sepsis and systemic inflammatory response syndrome and discusses the cellular and molecular mechanisms that underlie clinical outcomes.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, NRB Floor 2, Room 215, Worcester, MA 01605-2324, USA.
| | | | | |
Collapse
|