1
|
Remote ischemic preconditioning mitigates myocardial and neurological dysfunction via K(ATP) channel activation in a rat model of hemorrhagic shock. Shock 2015; 42:228-33. [PMID: 25122082 DOI: 10.1097/shk.0000000000000197] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Severe hemorrhagic shock and resuscitation is a state of global body ischemia and reperfusion that causes myocardial and cerebral dysfunction. We investigated whether remote ischemic preconditioning (RIPC) would reduce myocardial and cerebral ischemia and reperfusion injuries after hemorrhagic shock as the result of the K(ATP) channel activation. Twenty-one male rats were randomized into three groups: RIPC, RIPC with K(ATP) channel blocker, and control. Remote ischemic preconditioning was induced by four cycles of 5 min of limb ischemia followed by reperfusion for 5 min. Hemorrhagic shock was induced by removing 50% of the estimated total blood volume during an interval of 1 h. Thirty minutes after the completion of bleeding, the animals were reinfused with shed blood during the ensuing 30 min. The animals were monitored for 2 h and observed for an additional 72 h. Myocardial function was measured by echocardiography, and sublingual microcirculation was measured by a sidestream dark-field imaging device at baseline, 1 h after bleeding, 30 min after the completion of bleeding, 30 min after reinfusion, and hourly intervals thereafter. The survival and neurological function were evaluated at 12, 24, 48, and 72 h after reinfusion. At 2 h after reinfusion, ejection fraction and myocardial performance index were significantly better in the RIPC group than in the control group (P < 0.01). The sublingual microvascular flow index and perfused vessel density were significantly greater after reinfusion in the RIPC group than that in the control group (P < 0.01). The duration of survival was significantly longer, and neurological deficit score was significantly better in the RIPC group than the control animals (P < 0.01). Pretreatment with the K(ATP) channel blocker (glibenclamide) completely abolished the myocardial and cerebral protective effects of RIPC. We demonstrate, for the first time, that after severe hemorrhagic shock and resuscitation, RIPC mitigated myocardial and neurological dysfunction with improved survival by activation of the K(ATP) channel.
Collapse
|
2
|
Collin S, Sennoun N, Dron AG, de la Bourdonnaye M, Montemont C, Asfar P, Lacolley P, Meziani F, Levy B. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock. Intensive Care Med 2011; 37:861-9. [DOI: 10.1007/s00134-011-2169-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
|
3
|
Variable effects of inhibiting iNOS and closing the vascular ATP-sensitive potassium channel (via its pore-forming and sulfonylurea receptor subunits) in endotoxic shock. Shock 2009; 31:535-41. [PMID: 18838946 DOI: 10.1097/shk.0b013e31818b99c2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Excess production of NO and activation of vascular ATP-sensitive potassium (K(ATP)) channels are implicated in the hypotension and vascular hyporeactivity associated with endotoxic shock. Using a fluid-resuscitated endotoxic rat model, we compared the cardiovascular effects of an iNOS inhibitor and two distinct inhibitors of the K(ATP) channel. Endotoxin (LPS) was administered to anesthetized, spontaneously breathing, fluid-resuscitated adult male Wistar rats, in which MAP, aortic and renal blood flow, and hepatic microvascular oxygenation were monitored continuously. At 120 min, the iNOS inhibitor, GW273629, and the K(ATP)-channel inhibitors, PNU-37883A and glyburide, were administered separately, and their effects on hemodynamics and oxygenation were examined. We found that GW273629 increased MAP over and above the pressor effect achieved in sham animals. Inhibiting K(ATP) channels via the pore-forming subunit (PNU-37883A and high-dose glyburide) produced significant pressor effects, whereas inhibiting the sulfonylurea receptor with low-dose glyburide was ineffective. No agent reversed the fall in aortic or renal blood flow, the fall in hepatic microvascular oxygenation, or the metabolic acidosis that occurred in LPS-treated animals. We conclude that inhibition of the K(ATP) channel via the pore-forming, but not the sulfonylurea receptor subunit, increases blood pressure in a short-term endotoxic model. However, this was not accompanied by any improvement in macrocirculatory or microcirculatory organ blood flow nor reversal of metabolic acidosis. It therefore remains uncertain whether the iNOS pathway or the K(ATP) channel represents a potential target for drug development in the treatment of endotoxic shock.
Collapse
|
4
|
Abstract
Sepsis and septic shock are major causes of morbidity and mortality in critically ill patients. Sepsis and septic shock induce a profound fall in the peripheral vascular tone. NO has been implicated as a key player in vascular changes of sepsis and septic shock. In this brief review, two points are focused in greater detail: first, the involvement of guanylate cyclase and potassium channels in NO vascular effects in sepsis; second, the role played by NO and its two effectors in the long-lasting modifications of vascular reactivity in sepsis. Some recent developments in the area are reviewed.
Collapse
|
5
|
CRITICAL ROLE FOR SMALL AND LARGE CONDUCTANCE CALCIUM-DEPENDENT POTASSIUM CHANNELS IN ENDOTOXEMIA AND TNF TOXICITY. Shock 2008; 29:577-82. [DOI: 10.1097/shk.0b013e31815071e9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Lange M, Morelli A, Ertmer C, Bröking K, Rehberg S, Van Aken H, Traber DL, Westphal M. Role of adenosine triphosphate-sensitive potassium channel inhibition in shock states: physiology and clinical implications. Shock 2008; 28:394-400. [PMID: 17577137 DOI: 10.1097/shk.0b013e318050c836] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Shock states are associated with an impaired tissue oxygen supply-demand relationship and perturbations within the microcirculation, leading to global tissue hypoxia, finally resulting in multiple-organ failure or even death. Two of the most frequent causes of shock are acute hemorrhage and sepsis. Although the origin and the pathophysiology of hemorrhagic and septic shock are basically different, the involvement of adenosine triphosphate-sensitive potassium (KATP) channels, as an important regulator of vascular smooth muscles tone, plays a pivotal role under both conditions. Because the excessive activation of vascular KATP channels is a major cause of arterial hypotension and vascular hyporesponsiveness to catecholamines, the pharmacological inhibition of KATP channels may represent a goal-directed therapeutic option to stabilize the hemodynamic situation in shock states. Despite promising results of preclinical studies, the efficacy of this innovative therapeutic approach remains to be confirmed in the clinical setting. The differences in the species, the comorbidity, and the difficulty in determining the exact onset of shock in clinical practice and, thus, any duration-related alterations in vascular responses and KATP channel activation may explain the discrepancy between the results obtained from experimental and clinical studies. Currently, two of the most relevant problems related to effective KATP blockade in shock states are represented by (1) the dose itself (benefit-risk ratio) and (2) the route of administration (oral vs. i.v.). This review article critically elucidates the published in vivo studies on the role of KATP channel inhibition in both described shock forms and discusses the advantages and the potential pitfalls related to the treatment of human shock states.
Collapse
Affiliation(s)
- Matthias Lange
- Department of Anesthesiology and Intensive Care, University of Muenster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Morelli A, Lange M, Ertmer C, Broeking K, Van Aken H, Orecchioni A, Rocco M, Bachetoni A, Traber DL, Landoni G, Pietropaoli P, Westphal M. Glibenclamide dose response in patients with septic shock: effects on norepinephrine requirements, cardiopulmonary performance, and global oxygen transport. Shock 2007; 28:530-5. [PMID: 17589379 DOI: 10.1097/shk.0b013e3180556a3c] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adenosine triphosphate-sensitive potassium channels are important regulators of arterial vascular smooth muscle tone and are implicated in the pathophysiology of catecholamine tachyphylaxis in septic shock. The present study was designed as a prospective, randomized, double-blinded, clinical pilot study to determine whether different doses of glibenclamide have any effects on norepinephrine requirements, cardiopulmonary hemodynamics, and global oxygen transport in patients with septic shock. We enrolled 30 patients with septic shock requiring invasive hemodynamic monitoring and norepinephrine infusion of 0.5 microg.kg-1.min-1 or greater to maintain MAP between 65 and 75 mmHg. In addition to standard therapy, patients were randomized to receive either 10, 20, or 30 mg of enteral glibenclamide. Systemic hemodynamics, global oxygen transport including arterial lactate concentrations, gas exchange, plasma glucose concentrations, and electrolytes were determined at baseline and after 3, 6, and 12 h after administration of the study drug. Glibenclamide decreased plasma glucose concentrations in a dose-dependent manner but failed to reduce norepinephrine requirements. None of the doses had any effects on cardiopulmonary hemodynamics, global oxygen transport, gas exchange, or electrolytes. These data suggest that oral glibenclamide in doses from 10 to 30 mg fails to counteract arterial hypotension and thus to reduce norepinephrine requirements in catecholamine-dependent human septic shock.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Aged
- Biological Transport/drug effects
- Blood Glucose/analysis
- Catecholamines/metabolism
- Dose-Response Relationship, Drug
- Double-Blind Method
- Female
- Glyburide/administration & dosage
- Hemodynamics/drug effects
- Humans
- Hypoglycemic Agents/administration & dosage
- Hypotension
- Lactic Acid/blood
- Lung/metabolism
- Lung/physiopathology
- Male
- Middle Aged
- Monitoring, Physiologic
- Muscle Tonus/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Norepinephrine/administration & dosage
- Oxygen/metabolism
- Pilot Projects
- Potassium Channels/metabolism
- Pulmonary Gas Exchange/drug effects
- Shock, Septic/blood
- Shock, Septic/drug therapy
- Shock, Septic/pathology
- Shock, Septic/physiopathology
- Vasoconstrictor Agents/administration & dosage
- Water-Electrolyte Balance/drug effects
Collapse
Affiliation(s)
- Andrea Morelli
- Department of Anesthesiology and Intensive Care, University of Rome, La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Matsuda N, Hattori Y. Vascular biology in sepsis: pathophysiological and therapeutic significance of vascular dysfunction. J Smooth Muscle Res 2007; 43:117-37. [PMID: 17928746 DOI: 10.1540/jsmr.43.117] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sepsis is the leading cause of mortality in critically ill patients. In this pathological syndrome, septic shock and sequential multiple organ failure correlate with poor outcome. The pathophysiology of sepsis with acute organ dysfunction involves a highly complex, integrated response that includes activation of number of cell types, inflammatory mediators, and the hemostatic system. Central to this process may be alterations in vascular functions. This review article provides a growing body of evidence for the potential impact of vascular dysfunction on sepsis pathophysiology with a major emphasis on the endothelium. Furthermore, the role of apoptotic signaling molecules in the mechanisms underlying endothelial cell injury and death during sepsis and its potential value as a target for sepsis therapy will be discussed, which may help in the assessment of ongoing therapeutic strategies.
Collapse
Affiliation(s)
- Naoyuki Matsuda
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyoma, Japan
| | | |
Collapse
|
9
|
Kjelgaard-Hansen M, Wiinberg B, Aalbaek B, Olsen L, Harris D, Romaschin A, Kristensen AT, Jensen AL. Endotoxin activity in whole blood measured by neutrophil chemiluminescence is applicable to canine whole blood. Comp Immunol Microbiol Infect Dis 2007; 31:477-85. [PMID: 17915322 DOI: 10.1016/j.cimid.2007.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2007] [Indexed: 11/30/2022]
Abstract
The dog is widely used as a translational experimental model studying the host response and new treatments for human endotoxemia. The present study evaluated the applicability of a novel patient-near neutrophil chemiluminescence assay for the measurement of endotoxin activity in human blood when applied to canine blood samples. The assay was observed to be analytically sensitive and specific to endotoxin when tested in vitro, spiked with purified Escherichia coli lipopolysaccharide and live E. coli. The diagnostic sensitivity was sustained during Gram-positive contamination. Finally, it also demonstrated diagnostic potential when able to discriminate dogs with spontaneously occurring endotoxemia from both healthy dogs and diseased dogs without endotoxemia. The rapid patient-near assessment of endotoxin activity in canine blood should facilitate future studies on endotoxemia in both spontaneous disease and in experimental settings.
Collapse
Affiliation(s)
- Mads Kjelgaard-Hansen
- Department of Small Animal Sciences, Faculty of Life Sciences, University of Copenhagen, 3 Gronnegaardsvej, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Warrillow S, Egi M, Bellomo R. Randomized, double-blind, placebo-controlled crossover pilot study of a potassium channel blocker in patients with septic shock. Crit Care Med 2006; 34:980-5. [PMID: 16484892 DOI: 10.1097/01.ccm.0000206114.19707.7c] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Marked potassium efflux prevents calcium entry into vascular smooth muscle cells and may be responsible for the "vasoplegia" of septic shock. Blockade of adenosine triphosphate (ATP)-sensitive potassium channels restores vascular tone in animal studies of septic shock. The effect of such potassium channel blockade has not been previously studied in humans. OBJECTIVE To test whether the administration of an ATP-sensitive potassium (K(ATP)) channel blocker restores norepinephrine responsiveness in patients with septic shock. DESIGN Randomized, double-blind, placebo-controlled crossover pilot study. SETTING Intensive care unit of a university hospital. PATIENTS Ten patients with septic shock requiring invasive hemodynamic monitoring and infusion of norepinephrine to maintain adequate mean arterial pressure. INTERVENTION In addition to standard therapy, patients were randomized to initially receive either the K(ATP) channel blocker glibenclamide (20 mg) or placebo. Then, after 24 hrs, each patient crossed over to receive the alternative therapy. MEASUREMENTS AND MAIN RESULTS After the administration of the K(ATP) channel blocker glibenclamide, median norepinephrine requirements decreased from 13 to 4 microg/min compared with a change from 19 to 7 microg/min after placebo. The two changes represented a decrease of 78.9% and 71.1% in dose, respectively (p = .57, not significant). There were also no significant changes in heart rate, mean arterial blood pressure, and lactate concentration when comparing the study drug with placebo. Glibenclamide, however, induced a significant decrease in median blood glucose concentration (5.4 [inter-quartile range, 4.5-7.0] vs. 7.0 mmol/L [5.2-9.3], p < .0001) compared with placebo and increased the need for parenteral glucose administration. CONCLUSIONS The K(ATP) channel blocker glibenclamide failed to achieve a greater reduction in norepinephrine dose than placebo in septic shock patients, although it caused a reduced glucose concentration. Our observations suggest that, in such patients, blockade of K(ATP) channels does not have a potent effect on vasomotor tone.
Collapse
|
11
|
Asfar P, Hauser B, Radermacher P, Matejovic M. Catecholamines and vasopressin during critical illness. Crit Care Clin 2006; 22:131-49, vii-viii. [PMID: 16399024 DOI: 10.1016/j.ccc.2005.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In critical care medicine, catecholamines are most widely used to reverse circulatory dysfunction and thus to restore tissue perfusion. However, catecholamines not only influence systemic and regional hemodynamics, but also exert a variety of significant metabolic, endocrine, and immunologic effects. Arginine vasopressin is a vasomodulatory hormone with potency to restore vascular tone in vasodilatory hypotension. Although the evidence supporting the use of low doses of vasopressin or its analogs in vasodilatory shock is increasing, lack of data regarding mortality and morbidity prevent their implementation in critical care protocols.
Collapse
Affiliation(s)
- Pierre Asfar
- Département de Réanimation Médicale, Centre Hospitalier Universitaire, 4 rue Larry, 49993 Angers Cedex 9, France
| | | | | | | |
Collapse
|
12
|
Langenberg C, Bellomo R, May CN, Egi M, Wan L, Morgera S. Renal Vascular Resistance in Sepsis. ACTA ACUST UNITED AC 2006; 104:p1-11. [PMID: 16691034 DOI: 10.1159/000093275] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 02/03/2006] [Indexed: 01/19/2023]
Abstract
AIMS To assess changes in renal vascular resistance (RVR) in human and experimental sepsis and to identify determinants of RVR. METHODS We performed a systematic interrogation of two electronic reference libraries using specific search terms. Subjects were animals and patients involved in experimental and human studies of sepsis and septic acute renal failure, in which the RVR was assessed. We obtained all human and experimental articles reporting RVR during sepsis. We assessed the role of various factors that might influence the RVR during sepsis using statistical methods. RESULTS We found no human studies, in which the renal blood flow (and, therefore, the RVR) was measured with suitably accurate direct methods. Of the 137 animal studies identified, 52 reported a decreased RVR, 16 studies reported no change in RVR, and 69 studies reported an increased RVR. Consciousness of animals, duration of measurement, method of induction of sepsis, and fluid administration had no effect on the RVR. On the other hand, on univariate analysis, size of the animals (p < 0.001), technique of measurement (p = 0.017), recovery after surgery (p = 0.004), and cardiac output (p < 0.001) influenced the RVR. Multivariate analysis, however, showed that only cardiac output (p = 0.028) and size of the animals (p = 0.031) remained independent determinants of the RVR. CONCLUSIONS Changes in RVR during sepsis in humans are unknown. In experimental sepsis, several factors not directly related to sepsis per se appear to influence the RVR. A high cardiac output and the use of large animals predict a decreased RVR, while a decreased cardiac output and the use of small animals predict an increased RVR.
Collapse
Affiliation(s)
- Christoph Langenberg
- Departments of Intensive Care and Medicine, Austin Hospital and University of Melbourne, Heidelberg, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Clayton NP, LeDuc BW, Kelly LJ. Effect of Potassium Channel and Cytochrome P450 Inhibition on Transient Hypotension and Survival during Lipopolysaccharide-Induced Endotoxic Shock in the Rat. Pharmacology 2005; 73:113-20. [PMID: 15499226 DOI: 10.1159/000081631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/11/2004] [Indexed: 01/30/2023]
Abstract
The purpose of this study was to determine whether inhibition of potassium channels or cytochrome P450 attenuates the transient phase of hypotension during endotoxic shock in vivo, and to determine whether these interventions improve the rate of survival. Male Sprague-Dawley rats were pretreated with saline (0.2 ml, i.v.), tetraethylammonium chloride (TEA 30 mg/kg; 0.2 ml, i.v.), proadifen (SKF-525 A; 50 mg/kg, i.p.) or ketoconazole (50 mg/kg, i.p.) and challenged with lipopolysaccharide (LPS; 20 mg/kg, i.p.). Changes in heart rate, mean (MAP), systolic (SP) and diastolic (DP) arterial pressures as well as survival rate were then monitored for 45 min. Potassium channel inhibition with TEA had no effect on LPS-induced hypotension at any time point compared with saline (maximal fall in MAP of 79 +/- 18 and 80 +/- 13 mm Hg, respectively). Pretreatment with proadifen or ketoconazole, inhibitors of cytochrome P450, significantly attenuated LPS-induced hypotension compared with saline (maximal fall in MAP of 34, 26 and 63% below baseline, respectively). This effect was evident in all arterial pressures measured, MAP, SP and DP. At 45 min, the survival rate in the saline group was 66%. Pretreatment with TEA significantly reduced survival rate to 50% and pretreatment with proadifen or ketoconazole improved survival to 100% (p < 0.05). These results suggest that an arachidonic acid metabolite produced by a cytochrome P450-catalyzed reaction may contribute to the transient phase of LPS-induced hypotension. However, these effects do not appear to be mediated through potassium channel activation.
Collapse
Affiliation(s)
- Nicholas P Clayton
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | | | | |
Collapse
|
14
|
Pickkers P, Jansen Van Rosendaal AJ, Van Der Hoeven JG, Smits P. ACTIVATION OF THE ATP-DEPENDENT POTASSIUM CHANNEL ATTENUATES NOREPINEPHRINE-INDUCED VASOCONSTRICTION IN THE HUMAN FOREARM. Shock 2004; 22:320-5. [PMID: 15377886 DOI: 10.1097/01.shk.0000142250.85264.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis-induced vasodilation is characterized by an attenuated sensitivity to vasoconstrictor substances such as norepinephrine, possibly mediated by activation of vascular potassium channels. We determined whether vasodilation associated with potassium channel activation resulted in an attenuated vasoconstrictive response to norepinephrine in humans and whether the vasodilation associated with potassium channel activation could be inhibited by pharmacological potassium channel blockers. In 30 volunteers, the brachial artery was cannulated for infusion of drugs. Forearm blood flow (FBF) was measured in both arms using strain-gauge venous occlusion plethysmography. Forearm vascular resistance (FVR, mean arterial pressure/FBF) was calculated. The effects of vasodilation induced by sodium nitroprusside (SNP, nitric oxide donor) or diazoxide (activator of the ATP-dependent potassium channel) on norepinephrine-mediated vasoconstriction were examined. Also, the effects of potassium channel blockers on vasodilation associated with potassium channel activation were determined. Intraarterial SNP infusion (2 microg/min/dL) increased forearm blood flow by 235%, from (mean +/- SEM) 2.8 +/- 0.7 to 9.4 +/- 1.5 mL/min/dL (P < 0.0001). Subsequent norepinephrine infusion (10, 30, 100, 300, 1000 ng/min/dL) increased FVR dose-dependently from 13 +/- 4 AU to 249 +/- 45 AU at the highest norepinephrine infusion. Intraarterial diazoxide infusion (1 mg/min/dL) increased FBF by 209% from 2.2 +/- 0.3 to 6.8 +/- 1.0 mL/min/dL (P < 0.001). Subsequent norepinephrine infusion increased FVR from 18 +/- 5 to 51 +/- 6 AU at the highest norepinephrine infusion rate (n = 10), significantly different from the norepinephrine-induced effects during SNP coinfusion (P < 0.001). Diazoxide-induced fall in FVR in the infused forearm was inhibited by potassium channel blockers tetraethyl ammonium (1 mg/min/dL, n = 10, P = 0.004) and quinine (50 microg/min/dL, n = 10, P = 0.016). Vasodilation induced by vascular potassium channel activation is associated with an impressive reduction in the vasoconstrictor response to norepinephrine in humans. In accordance with animal experiments, this indicates that potassium channel activation could account for the diminished norepinephrine sensitivity in septic patients. Vasodilation associated with potassium channel activation can be inhibited by pharmacological potassium channel blockade. The possible role of potassium channel blockers during sepsis-induced potassium channel activation and vasodilation in humans needs further elucidation.
Collapse
Affiliation(s)
- Peter Pickkers
- Department of Intensive Care Medicine,University Medical Centre St. Radboud, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Maybauer DM, Salsbury JR, Westphal M, Maybauer MO, Salzman AL, Szabó C, Westphal-Varghese BB, Traber LD, Traber DL. THE ATP-SENSITIVE POTASSIUM-CHANNEL INHIBITOR GLIBENCLAMIDE IMPROVES OUTCOME IN AN OVINE MODEL OF HEMORRHAGIC SHOCK. Shock 2004; 22:387-91. [PMID: 15377897 DOI: 10.1097/01.shk.0000140661.78744.f6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was designed as a prospective laboratory experiment to evaluate the effects of the ATP-sensitive potassium-channel inhibitor glibenclamide on hemodynamics and end-organ function in an ovine model of hemorrhagic shock. Twenty-four adult sheep were anesthetized and surgically prepared to measure hemodynamics of the systemic and pulmonary circulation. The anterior surface of the abdominal aorta was exposed at a location 6 cm superior to the iliac bifurcation. After a 60-min period of stabilization, this location was punctured with a 14-G needle. To induce a hemorrhagic hypotension (mean arterial pressure [MAP] less than 50 mmHg) via bleeding, the needle was left in place for 15 s to insure good blood flow. Thereafter, it was removed, and the abdomen closed. The animals were then randomized to receive either glibenclamide (4 mg/kg over 15 min) or an equal volume of the vehicle, started 1 h postinjury. Hemodynamic variables were measured every 30 min. Compared with the control group, MAP and systemic vascular resistance index (SVRI) were significantly higher in the intervention group throughout the entire 6-h study period. Ileal pH and urine output were higher in treated than in control animals (4 h, ileal pH 7.29 +/- 0.31 vs. 7.17 +/- 0.6; 6 h, urine output 36 +/- 9 vs. 7.5 +/- 2 mL; P value less than 0.05 each). Because glibenclamide improved both hemodynamics and organ function, it may be a beneficial component in the acute treatment of hemorrhagic shock.
Collapse
Affiliation(s)
- Dirk M Maybauer
- Department of Anesthesiology, University of Texas Medical Branch, and Shriners Burns Hospital for Children, Galveston, Texas 77555-0833, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Successful treatment with inotropes and vasopressors depends on an understanding of the interplay of flow, pressure, and resistance in the cardiovascular system and an appreciation of the pathophysiologic mechanisms leading to inadequate tissue perfusion. Any treatment strategy is necessarily a compromise between the requirements of different vascular beds.Furthermore. the underlying hemodynamic derangements can change rapidly. Therefore. inotropes and vasopressors should be titrated to measures of improved hemodynamic status, and the treatments should be frequently reviewed.
Collapse
Affiliation(s)
- Kevin T T Corley
- Neonatal Foal Intensive Care Programme, Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, United Kingdom.
| |
Collapse
|
17
|
Asfar P, Iványi Z, Bracht H, Hauser B, Pittner A, Vassilev D, Nalos M, Leverve XM, Brückner UB, Radermacher P, Fröba G. HMR1402, a potassium ATP channel blocker during hyperdynamic porcine endotoxemia: effects on hepato-splanchnic oxygen exchange and metabolism. Intensive Care Med 2004; 30:957-64. [PMID: 15045166 DOI: 10.1007/s00134-004-2258-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To assess the effects of the potassium ATP (KATP) channel blocker HMR1402 (HMR) on systemic and hepato-splanchnic hemodynamics, oxygen exchange and metabolism during hyperdynamic porcine endotoxemia. DESIGN Prospective, randomized, controlled study with repeated measures. SETTING. Animal laboratory. SUBJECTS Eighteen pigs allocated to receive endotoxin alone (control group, CON, n=10) or endotoxin and HMR (6 mg/kg h(-1), n=8). INTERVENTIONS Anesthetized, mechanically ventilated, and instrumented pigs receiving continuous i.v. endotoxin were resuscitated with hetastarch to maintain mean arterial pressure (MAP) >60 mmHg. Twelve hours after starting the endotoxin infusion, they received HMR or its vehicle for another 12 h. RESULTS HMR transiently increased MAP by about 15 mmHg, but this effect was only present during the first 1 h of infusion. The HMR decreased cardiac output due to a fall in heart rate, and thereby reduced liver blood flow. While liver O(2) delivery and uptake remained unchanged, HMR induced hyperlactatemia [from 1.5 (1.1; 2.0), 1.4 (1.2; 1.8), and 1.2 (0.8; 2.0) to 3.1 (1.4; 3.2), 3.2 (1.6; 6.5), and 3.0 (1.0; 5.5) mmol/l in the arterial, portal and hepatic venous samples, respectively] and further increased arterial [from 8 (3; 13) to 23 (11; 57); p<0.05], portal [from 9 (4; 14) to 23 (14; 39); p<0.05] and hepatic vein [from 7 (0; 15) to 30 (8; 174), p<0.05] lactate/pyruvate ratios indicating impaired cytosolic redox state. CONCLUSION The short-term beneficial hemodynamic effects of KATP channel blockers have to be weighted with the detrimental effect on mitochondrial respiration.
Collapse
Affiliation(s)
- Pierre Asfar
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Parkstrasse 11, 89073 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|