1
|
Dogra S, Conn PJ. Metabotropic Glutamate Receptors As Emerging Targets for the Treatment of Schizophrenia. Mol Pharmacol 2022; 101:275-285. [PMID: 35246479 PMCID: PMC9092465 DOI: 10.1124/molpharm.121.000460] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Accumulating evidence of glutamatergic abnormalities in the brains of schizophrenia patients has led to efforts to target various components of glutamatergic signaling as potential new approaches for schizophrenia. Exciting research suggests that metabotropic glutamate (mGlu) receptors could provide a fundamentally new approach for better symptomatic relief in patients with schizophrenia. In preclinical studies, the mGlu5 receptor positive allosteric modulators (PAMs) show efficacy in animal models relevant for all symptom domains in schizophrenia. Interestingly, biased pure mGlu5 receptor PAMs that do not potentiate coupling of mGlu5 receptors to N-methyl-D-aspartate (NMDA) receptors lack neurotoxic effects associated with mGlu5 PAMs that enhance coupling to NMDA receptors or have allosteric agonist activity. This provides a better therapeutic profile for treating schizophrenia-like symptoms. Additionally, the mGlu1 receptor PAMs modulate dopamine release in the striatum, which may contribute to their antipsychotic-like effects. Besides group I mGlu (mGlu1 and mGlu5) receptors, agonists of mGlu2/3 receptors also induce robust antipsychotic-like and procognitive effects in rodents and may be effective in treating symptoms of schizophrenia in a selective group of patients. Additionally, mGlu2/4 receptor heterodimers modulate glutamatergic neurotransmission in the prefrontal cortex at selective synapses activated in schizophrenia and therefore hold potential as novel antipsychotics. Excitingly, the mGlu3 receptor activation can enhance cognition in rodents, suggesting that mGlu3 receptor agonist/PAM could provide a novel approach for the treatment of cognitive deficits in schizophrenia. Collectively, the development of mGlu receptor-specific ligands may provide an alternative approach to meet the clinical need for safer and more efficacious therapeutics for schizophrenia. SIGNIFICANCE STATEMENT: The currently available antipsychotic medications do not show significant efficacy for treating negative symptoms and cognitive deficits in schizophrenia. Emerging preclinical and clinical literature suggests that pharmacological targeting of metabotropic glutamate receptors could potentially provide an alternative approach for designing safer and more efficacious therapeutics for treating schizophrenia.
Collapse
Affiliation(s)
- Shalini Dogra
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - P Jeffrey Conn
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
2
|
Bishop JR, Miller DD, Ellingrod VL, Holman T. Association between type-three metabotropic glutamate receptor gene (GRM3) variants and symptom presentation in treatment refractory schizophrenia. Hum Psychopharmacol 2011; 26:28-34. [PMID: 21344500 PMCID: PMC3199025 DOI: 10.1002/hup.1163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Positive associations between polymorphisms in the type-three metabotropic glutamate receptor gene (GRM3) and the pathogenesis of schizophrenia as well as response to antipsychotic treatment have been reported. The objective of this study was to determine whether refractory psychiatric symptoms in antipsychotic non-responders are related to polymorphisms in GRM3. METHODS Ninety-five treatment refractory schizophrenia participants were enrolled. Prior to a medication switch, global psychopathology and negative symptoms were rated. These participants were genotyped for seven markers in GRM3. Genotype associations with symptoms were assessed. RESULTS Two markers in GRM3 (rs1989796 and rs1476455), were associated with the presence of refractory global symptoms as measured by the Brief Psychiatric Rating Scale (BPRS) Total scores. Participants with an rs1476455_CC genotype had significantly higher BPRS scores than A-carriers (55.1±10.4 vs. 48.3±9.2; F=7.6, p=0.0071). Additionally, participants with the rs1989796_CC genotype had significantly higher BPRS scores than T-carriers (50.1±5.7 vs. 55.8±10.5, F=7.1, p=0.0091). No evidence for significant associations with negative symptoms was observed. CONCLUSIONS Polymorphisms in the GRM3 gene may be associated with refractory global psychosis symptoms but not negative symptoms in persons with schizophrenia.
Collapse
Affiliation(s)
- Jeffrey R. Bishop
- University of Illinois at Chicago Colleges of Pharmacy and Medicine, Department of Pharmacy Practice and Department of Psychiatry, Center for Cognitive Medicine
| | - Del D. Miller
- University of Iowa Carver College of Medicine Department of Psychiatry
| | - Vicki L. Ellingrod
- University of Michigan College of Pharmacy and College of Medicine, Department of Psychiatry
| | - Timothy Holman
- University of Iowa Carver College of Medicine Department of Psychiatry
| |
Collapse
|
3
|
Lind PA, Macgregor S, Vink JM, Pergadia ML, Hansell NK, de Moor MHM, Smit AB, Hottenga JJ, Richter MM, Heath AC, Martin NG, Willemsen G, de Geus EJC, Vogelzangs N, Penninx BW, Whitfield JB, Montgomery GW, Boomsma DI, Madden PAF. A genomewide association study of nicotine and alcohol dependence in Australian and Dutch populations. Twin Res Hum Genet 2010; 13:10-29. [PMID: 20158304 DOI: 10.1375/twin.13.1.10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Persistent tobacco use and excessive alcohol consumption are major public health concerns worldwide. Both alcohol and nicotine dependence (AD, ND) are genetically influenced complex disorders that exhibit a high degree of comorbidity. To identify gene variants contributing to one or both of these addictions, we first conducted a pooling-based genomewide association study (GWAS) in an Australian population, using Illumina Infinium 1M arrays. Allele frequency differences were compared between pooled DNA from case and control groups for: (1) AD, 1224 cases and 1162 controls; (2) ND, 1273 cases and 1113 controls; and (3) comorbid AD and ND, 599 cases and 488 controls. Secondly, we carried out a GWAS in independent samples from the Netherlands for AD and for ND. Thirdly, we performed a meta-analysis of the 10,000 most significant AD- and ND-related SNPs from the Australian and Dutch samples. In the Australian GWAS, one SNP achieved genomewide significance (p < 5 x 10(-8)) for ND (rs964170 in ARHGAP10 on chromosome 4, p = 4.43 x 10(-8)) and three others for comorbid AD/ND (rs7530302 near MARK1 on chromosome 1 (p = 1.90 x 10(-9)), rs1784300 near DDX6 on chromosome 11 (p = 2.60 x 10(-9)) and rs12882384 in KIAA1409 on chromosome 14 (p = 4.86 x 10(-8))). None of the SNPs achieved genomewide significance in the Australian/Dutch meta-analysis, but a gene network diagram based on the top-results revealed overrepresentation of genes coding for ion-channels and cell adhesion molecules. Further studies will be required before the detailed causes of comorbidity between AD and ND are understood.
Collapse
Affiliation(s)
- Penelope A Lind
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Goto H, Watanabe K, Araragi N, Kageyama R, Tanaka K, Kuroki Y, Toyoda A, Hattori M, Sakaki Y, Fujiyama A, Fukumaki Y, Shibata H. The identification and functional implications of human-specific "fixed" amino acid substitutions in the glutamate receptor family. BMC Evol Biol 2009; 9:224. [PMID: 19737383 PMCID: PMC2753569 DOI: 10.1186/1471-2148-9-224] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 09/08/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The glutamate receptors (GluRs) play a vital role in the mediation of excitatory synaptic transmission in the central nervous system. To clarify the evolutionary dynamics and mechanisms of the GluR genes in the lineage leading to humans, we determined the complete sequences of the coding regions and splice sites of 26 chimpanzee GluR genes. RESULTS We found that all of the reading frames and splice sites of these genes reported in humans were completely conserved in chimpanzees, suggesting that there were no gross structural changes in humans after their divergence from the human-chimpanzee common ancestor. We observed low KA/KS ratios in both humans and chimpanzees, and we found no evidence of accelerated evolution. We identified 30 human-specific "fixed" amino acid substitutions in the GluR genes by analyzing 80 human samples of seven different populations worldwide. Grantham's distance analysis showed that GRIN2C and GRIN3A are the most and the second most diverged GluR genes between humans and chimpanzees. However, most of the substitutions are non-radical and are not clustered in any particular region. Protein motif analysis assigned 11 out of these 30 substitutions to functional regions. Two out of these 11 substitutions, D71G in GRIN3A and R727H in GRIN3B, caused differences in the functional assignments of these genes between humans and other apes. CONCLUSION We conclude that the GluR genes did not undergo drastic changes such as accelerated evolution in the human lineage after the divergence of chimpanzees. However, there remains a possibility that two human-specific "fixed" amino acid substitutions, D71G in GRIN3A and R727H in GRIN3B, are related to human-specific brain function.
Collapse
Affiliation(s)
- Hiroki Goto
- Division of Human Moelcular Genetics, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nunokawa A, Watanabe Y, Kitamura H, Kaneko N, Arinami T, Ujike H, Inada T, Iwata N, Kunugi H, Itokawa M, Ozaki N, Someya T. Large-scale case-control study of a functional polymorphism in the glutamate receptor, metabotropic 3 gene in patients with schizophrenia. Psychiatry Clin Neurosci 2008; 62:239-40. [PMID: 18412850 DOI: 10.1111/j.1440-1819.2008.01762.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Translational and developmental perspective on N-methyl-D-aspartate synaptic deficits in schizophrenia. Dev Psychopathol 2006. [DOI: 10.1017/s0954579406060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Sartorius LJ, Nagappan G, Lipska BK, Lu B, Sei Y, Ren-Patterson R, Li Z, Weinberger DR, Harrison PJ. Alternative splicing of human metabotropic glutamate receptor 3. J Neurochem 2006; 96:1139-48. [PMID: 16417579 DOI: 10.1111/j.1471-4159.2005.03609.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metabotropic glutamate receptor 3 (GRM3, mGluR3) is important in regulating synaptic glutamate. Here, we report the existence of three splice variants of GRM3 in human brain arising from exon skipping events. The transcripts are expressed in prefrontal cortex, hippocampus and cerebellum, and in B lymphoblasts. We found no evidence for alternative splicing of GRM2. The most abundant GRM3 variant lacks exon 4 (GRM3Delta4). In silico translation analysis of GRM3Delta4 predicts a truncated protein with a conserved extracellular ligand binding domain, absence of a seven-transmembrane domain, and a unique 96-amino acid C-terminus. When expressed in rat hippocampal neurons, GRM3Delta4 is translated into a 60 kDa protein. Immunostaining and cell fractionation data indicate that the truncated protein is primarily membrane-associated. An antibody developed against the GRM3Delta4 C-terminus detects a protein of approximately 60 kDa in human brain lysates and in B lymphoblasts, suggesting translation of GRM3Delta4 in vivo. The existence of the GRM3Delta4 isoform is relevant in the light of the reported association of non-coding single nucleotide polymorphisms (SNPs) in GRM3 with schizophrenia, and with the potential of GRM3 as a therapeutic target for several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Leah J Sartorius
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
No evidence for association between polymorphisms in GRM3 and schizophrenia. BMC Psychiatry 2005; 5:23. [PMID: 15892884 PMCID: PMC1142331 DOI: 10.1186/1471-244x-5-23] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 05/13/2005] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Three studies have previously reported data that were interpreted by the authors as supportive of association between schizophrenia and polymorphisms in the gene encoding the metabotropic glutamate receptor GRM3. METHODS In a bid to examine this hypothesis, we examined seven SNPs spanning GRM3 in a UK case-control sample (schizophrenic cases n = 674, controls n = 716). These included all SNPs previously reported to be associated, alone or in haplotypes, with schizophrenia in European or European American samples. RESULTS Our data showed no evidence for association with single markers, or 2, 3, 4 and 5 marker haplotypes, nor did any specific haplotypes show evidence for association according to previously observed patterns. CONCLUSION Examination of our own data and those of other groups leads us to conclude that at present, GRM3 should not be viewed as a gene for which there is replicated evidence for association with schizophrenia.
Collapse
|
9
|
Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinman JE, Weinberger DR. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci U S A 2004; 101:12604-9. [PMID: 15310849 PMCID: PMC515104 DOI: 10.1073/pnas.0405077101] [Citation(s) in RCA: 304] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
GRM3, a metabotropic glutamate receptor-modulating synaptic glutamate, is a promising schizophrenia candidate gene. In a family-based association study, a common GRM3 haplotype was strongly associated with schizophrenia (P = 0.0001). Within this haplotype, the A allele of single-nucleotide polymorphism (SNP) 4 (hCV11245618) in intron 2 was slightly overtransmitted to probands (P = 0.02). We studied the effects of this SNP on neurobiological traits related to risk for schizophrenia and glutamate neurotransmission. The SNP4 A allele was associated with poorer performance on several cognitive tests of prefrontal and hippocampal function. The physiological basis of this effect was assessed with functional MRI, which showed relatively deleterious activation patterns in both cortical regions in control subjects homozygous for the SNP4 A allele. We next looked at SNP4's effects on two indirect measures of prefrontal glutamate neurotransmission. Prefrontal N-acetylaspartate, an in vivo MRI measure related to synaptic activity and closely correlated with tissue glutamate, was lower in SNP4 AA homozygotes. In postmortem human prefrontal cortex, AA homozygotes had lower mRNA levels of the glial glutamate transporter EAAT2, a protein regulated by GRM3 that critically modulates synaptic glutamate. Effects of SNP4 on prefrontal GRM3 mRNA and protein levels were marginal. Resequencing revealed no missense or splice-site SNPs, suggesting that the intronic SNP4 or related haplotypes may exert subtle regulatory effects on GRM3 transcription. These convergent data point to a specific molecular pathway by which GRM3 genotype alters glutamate neurotransmission, prefrontal and hippocampal physiology and cognition, and thereby increased risk for schizophrenia.
Collapse
Affiliation(s)
- Michael F Egan
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health/NIH/DHHS, Building 10, Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Deng X, Shibata H, Ninomiya H, Tashiro N, Iwata N, Ozaki N, Fukumaki Y. Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia. BMC Psychiatry 2004; 4:21. [PMID: 15296513 PMCID: PMC514708 DOI: 10.1186/1471-244x-4-21] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 08/06/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The glutamatergic dysfunction hypothesis of schizophrenia suggests that genes involved in glutametergic transmission are candidates for schizophrenic susceptibility genes. We have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. In this study we report an association study of the excitatory amino acid transporter 2 gene, SLC1A2 with schizophrenia. METHODS We genotyped 100 Japanese schizophrenics and 100 controls recruited from the Kyushu area for 11 single nucleotide polymorphism (SNP) markers distributed in the SLC1A2 region using the direct sequencing and pyrosequencing methods, and examined allele, genotype and haplotype association with schizophrenia. The positive finding observed in the Kyushu samples was re-examined using 100 Japanese schizophrenics and 100 controls recruited from the Aichi area. RESULTS We found significant differences in genotype and allele frequencies of SNP2 between cases and controls (P = 0.013 and 0.008, respectively). After Bonferroni corrections, the two significant differences disappeared. We tested haplotype associations for all possible combinations of SNP pairs. SNP2 showed significant haplotype associations with the disease (P = 9.4 x 10-5, P = 0.0052 with Bonferroni correction, at the lowest) in 8 combinations. Moreover, the significant haplotype association of SNP2-SNP7 was replicated in the cumulative analysis of our two sample sets. CONCLUSION We concluded that at least one susceptibility locus for schizophrenia is probably located within or nearby SLC1A2 in the Japanese population.
Collapse
Affiliation(s)
- Xiangdong Deng
- Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroki Shibata
- Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideaki Ninomiya
- Fukuoka Prefectural Dazaifu Hospital Psychiatric Center, Dazaifu, Fukuoka, Japan
| | - Nobutada Tashiro
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yasuyuki Fukumaki
- Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|