1
|
Dogan MF, Yildiz O, Arslan SO, Ulusoy KG. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 2019; 33:504-523. [PMID: 30851197 DOI: 10.1111/fcp.12461] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022]
Abstract
Potassium (K+ ) ion channel activity is an important determinant of vascular tone by regulating cell membrane potential (MP). Activation of K+ channels leads to membrane hyperpolarization and subsequently vasodilatation, while inhibition of the channels causes membrane depolarization and then vasoconstriction. So far five distinct types of K+ channels have been identified in vascular smooth muscle cells (VSMCs): Ca+2 -activated K+ channels (BKC a ), voltage-dependent K+ channels (KV ), ATP-sensitive K+ channels (KATP ), inward rectifier K+ channels (Kir ), and tandem two-pore K+ channels (K2 P). The activity and expression of vascular K+ channels are changed during major vascular diseases such as hypertension, pulmonary hypertension, hypercholesterolemia, atherosclerosis, and diabetes mellitus. The defective function of K+ channels is commonly associated with impaired vascular responses and is likely to become as a result of changes in K+ channels during vascular diseases. Increased K+ channel function and expression may also help to compensate for increased abnormal vascular tone. There are many pharmacological and genotypic studies which were carried out on the subtypes of K+ channels expressed in variable amounts in different vascular beds. Modulation of K+ channel activity by molecular approaches and selective drug development may be a novel treatment modality for vascular dysfunction in the future. This review presents the basic properties, physiological functions, pathophysiological, and pharmacological roles of the five major classes of K+ channels that have been determined in VSMCs.
Collapse
Affiliation(s)
- Muhammed Fatih Dogan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Oguzhan Yildiz
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| | - Seyfullah Oktay Arslan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Kemal Gokhan Ulusoy
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| |
Collapse
|
2
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Davies LM, Purves GI, Barrett-Jolley R, Dart C. Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity. J Physiol 2010; 588:3255-66. [PMID: 20624795 DOI: 10.1113/jphysiol.2010.194779] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ATP-sensitive potassium channels (K(ATP) channels) of arterial smooth muscle are important regulators of arterial tone, and hence blood flow, in response to vasoactive transmitters. Recent biochemical and electron microscopic evidence suggests that these channels localise to small vesicular invaginations of the plasma membrane, known as caveolae, and interact with the caveolae-associated protein, caveolin. Here we report that interaction with caveolin functionally regulates the activity of the vascular subtype of K(ATP) channel, Kir6.1/SUR2B. Pinacidil-evoked recombinant whole-cell Kir6.1/SUR2B currents recorded in HEK293 cells stably expressing caveolin-1 (69.6 +/- 8.3 pA pF(1), n = 8) were found to be significantly smaller than currents recorded in caveolin-null cells (179.7 +/- 35.9 pA pF(1), n = 6; P < 0.05) indicating that interaction with caveolin may inhibit channel activity. Inclusion in the pipette-filling solution of a peptide corresponding to the scaffolding domain of caveolin-1 had a similar inhibitory effect on whole-cell Kir6.1/SUR2B currents as co-expression with full-length caveolin-1, while a scrambled version of the same peptide had no effect. Interestingly, intracellular dialysis of vascular smooth muscle cells with the caveolin-1 scaffolding domain peptide (SDP) also caused inhibition of pinacidil-evoked native whole-cell K(ATP) currents, indicating that a significant proportion of vascular K(ATP) channels are susceptible to block by exogenously applied SDP. In cell-attached recordings of Kir6.1/SUR2B single channel activity, the presence of caveolin-1 significantly reduced channel open probability (from 0.05 +/- 0.01 to 0.005 +/- 0.001; P < 0.05) and the amount of time spent in a relatively long-lived open state. These changes in kinetic behaviour can be explained by a caveolin-induced shift in the channel's sensitivity to its physiological regulator MgADP. Our findings thus suggest that interaction with caveolin-1 suppresses vascular-type K(ATP) channel activity. Since caveolin expression is regulated by cellular free cholesterol and plasma levels of low-density lipoprotein (LDL), this interaction may have implications in both the physiological and pathophysiological control of vascular function.
Collapse
Affiliation(s)
- Lowri M Davies
- Biosciences Building, School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | |
Collapse
|
4
|
Purves GI, Kamishima T, Davies LM, Quayle JM, Dart C. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels. J Physiol 2009; 587:3639-50. [PMID: 19491242 DOI: 10.1113/jphysiol.2009.173534] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2'-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 +/- 4.7% inhibition (mean +/- S.E.M.; n = 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2'-O-Me-cAMP caused a transient 171.0 +/- 18.0 nM (n = 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2'-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow.
Collapse
Affiliation(s)
- Gregor I Purves
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | | | |
Collapse
|
5
|
Vascular control in humans: focus on the coronary microcirculation. Basic Res Cardiol 2009; 104:211-27. [PMID: 19190954 DOI: 10.1007/s00395-009-0775-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/15/2008] [Indexed: 12/27/2022]
Abstract
Myocardial perfusion is regulated by a variety of factors that influence arteriolar vasomotor tone. An understanding of the physiological and pathophysiological factors that modulate coronary blood flow provides the basis for the judicious use of medications for the treatment of patients with coronary artery disease. Vasomotor properties of the coronary circulation vary among species. This review highlights the results of recent studies that examine the mechanisms by which the human coronary microcirculation is regulated in normal and disease states, focusing on diabetes. Multiple pathways responsible for myogenic constriction and flow-mediated dilation in human coronary arterioles are addressed. The important role of endothelium-derived hyperpolarizing factors, their interactions in mediating dilation, as well as speculation regarding the clinical significance are emphasized. Unique properties of coronary arterioles in human vs. other species are discussed.
Collapse
|
6
|
Akata T. Cellular and molecular mechanisms regulating vascular tone. Part 2: regulatory mechanisms modulating Ca2+ mobilization and/or myofilament Ca2+ sensitivity in vascular smooth muscle cells. J Anesth 2007; 21:232-42. [PMID: 17458653 DOI: 10.1007/s00540-006-0488-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 11/21/2006] [Indexed: 11/25/2022]
Abstract
Understanding the physiological mechanisms regulating vascular tone would lead to better circulatory management during general anesthesia. This two-part review provides an overview of current knowledge about the cellular and molecular mechanisms regulating the contractile state of vascular smooth muscle cells (i.e., vascular tone). The first part reviews basic mechanisms controlling the cytosolic Ca2+ concentration in vascular smooth muscle cells, and the Ca2+-dependent regulation of vascular tone. This second part reviews the regulatory mechanisms modulating Ca2+ mobilization and/or myofilament Ca2+ sensitivity in vascular smooth muscle cells-including Rho/Rho kinase, protein kinase C, arachidonic acid, Ca2+/calmodulin-dependent protein kinase II, caldesmon, calponin, mitogen-activated protein kinases, tyrosine kinases, cyclic nucleotides, Cl- channels, and K+ channels.
Collapse
Affiliation(s)
- Takashi Akata
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
O'Brien AJ, Thakur G, Buckley JF, Singer M, Clapp LH. The pore-forming subunit of the K(ATP) channel is an important molecular target for LPS-induced vascular hyporeactivity in vitro. Br J Pharmacol 2005; 144:367-75. [PMID: 15655519 PMCID: PMC1576013 DOI: 10.1038/sj.bjp.0706065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
ATP-sensitive K(+) (K(ATP)) channel activation is implicated in the vascular hyporeactivity occurring in septic shock. However, channel inhibition with the sulphonylurea receptor (SUR) antagonist, glibenclamide (Glib) fails to reverse lipopolysaccharide (LPS)-induced vascular hyporeactivity in vitro. We investigated whether inhibitors that act by binding to the K(ATP) channel pore could be effective. Ring segments of endothelium-intact rat mesenteric artery were incubated with LPS in culture media for either 6 or 20 h before contractile responses to phenylephrine were assessed in the absence or presence of K(ATP) channel inhibitors. The pore-forming subunit inhibitors barium chloride (BaCl(2); 300 microM) and PNU-37883A (1 microM) significantly reversed hyporeactivity at both time points, although less so at 20 h. In contrast, the SUR inhibitors, Glib (10 microM), tolbutamide (Tolb) (1 mM) and PNU-99963 (1 microM) were ineffective. In LPS-incubated tissues, Glib and Tolb antagonised contractions to the thromboxane A2 mimetic, U46619 (9,11-dideoxy-9alpha, 11alpha-methanoepoxy prostaglandin F(2alpha)) (10(-7) M), whereas the pinacidil-derived inhibitor, PNU-99963, did not. Contractions to 60 mM KCl were unaffected by LPS at 6 h, but were significantly depressed by LPS at 20 h, suggesting that K(+)-channel-independent pathways contribute to hyporeactivity at the later time point. The inducible nitric oxide synthase (iNOS) inhibitor, 1400 W (10 microM) and Tolb inhibited the production of nitrite induced by LPS, whereas BaCl(2) and PNU-37883A had no effect. In conclusion, K(ATP) channels contribute to LPS-induced vascular hyporeactivity via the iNOS pathway in rat mesenteric artery. The effectiveness of pore inhibitors over SUR inhibitors of the K(ATP) channel suggests altered SUR function following LPS administration, which cannot be explained by thromboxane receptor inhibition.
Collapse
Affiliation(s)
- Alastair J O'Brien
- BHF Laboratories, Department of Medicine, Rayne Building, University College London, 5 University Street, London WC1E 6JF
- Bloomsbury Institute of Intensive Care Medicine, Department of Medicine and Wolfson Institute of Biomedical Research, University College London, Gower Street, London WC1E 6BT
| | - Gita Thakur
- BHF Laboratories, Department of Medicine, Rayne Building, University College London, 5 University Street, London WC1E 6JF
| | - James F Buckley
- BHF Laboratories, Department of Medicine, Rayne Building, University College London, 5 University Street, London WC1E 6JF
- Bloomsbury Institute of Intensive Care Medicine, Department of Medicine and Wolfson Institute of Biomedical Research, University College London, Gower Street, London WC1E 6BT
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Department of Medicine and Wolfson Institute of Biomedical Research, University College London, Gower Street, London WC1E 6BT
| | - Lucie H Clapp
- BHF Laboratories, Department of Medicine, Rayne Building, University College London, 5 University Street, London WC1E 6JF
- Author for correspondence:
| |
Collapse
|
8
|
Immunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature. BMC PHYSIOLOGY 2005; 5:1. [PMID: 15647111 PMCID: PMC546210 DOI: 10.1186/1472-6793-5-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 01/12/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND Electrophysiological data suggest that cardiac KATP channels consist of Kir6.2 and SUR2A subunits, but the distribution of these (and other KATP channel subunits) is poorly defined. We examined the localization of each of the KATP channel subunits in the mouse and rat heart. RESULTS Immunohistochemistry of cardiac cryosections demonstrate Kir6.1 protein to be expressed in ventricular myocytes, as well as in the smooth muscle and endothelial cells of coronary resistance vessels. Endothelial capillaries also stained positive for Kir6.1 protein. Kir6.2 protein expression was found predominantly in ventricular myocytes and also in endothelial cells, but not in smooth muscle cells. SUR1 subunits are strongly expressed at the sarcolemmal surface of ventricular myocytes (but not in the coronary vasculature), whereas SUR2 protein was found to be localized predominantly in cardiac myocytes and coronary vessels (mostly in smaller vessels). Immunocytochemistry of isolated ventricular myocytes shows co-localization of Kir6.2 and SUR2 proteins in a striated sarcomeric pattern, suggesting t-tubular expression of these proteins. Both Kir6.1 and SUR1 subunits were found to express strongly at the sarcolemma. The role(s) of these subunits in cardiomyocytes remain to be defined and may require a reassessment of the molecular nature of ventricular KATP channels. CONCLUSIONS Collectively, our data demonstrate unique cellular and subcellular KATP channel subunit expression patterns in the heart. These results suggest distinct roles for KATP channel subunits in diverse cardiac structures.
Collapse
|
9
|
Cross AR, Segal AW. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. BIOCHIMICA ET BIOPHYSICA ACTA 2004; 1657:1-22. [PMID: 15238208 PMCID: PMC2636547 DOI: 10.1016/j.bbabio.2004.03.008] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 03/16/2004] [Accepted: 03/16/2004] [Indexed: 02/06/2023]
Abstract
The NADPH oxidase is an electron transport chain in "professional" phagocytic cells that transfers electrons from NADPH in the cytoplasm, across the wall of the phagocytic vacuole, to form superoxide. The electron transporting flavocytochrome b is activated by the integrated function of four cytoplasmic proteins. The antimicrobial function of this system involves pumping K+ into the vacuole through BKCa channels, the effect of which is to elevate the vacuolar pH and activate neutral proteases. A number of homologous systems have been discovered in plants and lower animals as well as in man. Their function remains to be established.
Collapse
Affiliation(s)
- Andrew R. Cross
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anthony W. Segal
- Centre for Molecular Medicine, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|
10
|
Ahluwalia J, Tinker A, Clapp LH, Duchen MR, Abramov AY, Pope S, Nobles M, Segal AW. The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature 2004; 427:853-8. [PMID: 14985765 PMCID: PMC2099462 DOI: 10.1038/nature02356] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 01/20/2004] [Indexed: 12/21/2022]
Abstract
Neutrophil leukocytes have a pivotal function in innate immunity. Dogma dictates that the lethal blow is delivered to microbes by reactive oxygen species (ROS) and halogens, products of the NADPH oxidase, whose impairment causes immunodeficiency. However, recent evidence indicates that the microbes might be killed by proteases, activated by the oxidase through the generation of a hypertonic, K+-rich and alkaline environment in the phagocytic vacuole. Here we show that K+ crosses the membrane through large-conductance Ca2+-activated K+ (BK(Ca)) channels. Specific inhibitors of these channels, iberiotoxin and paxilline, blocked oxidase-induced 86Rb+ fluxes and alkalinization of the phagocytic vacuole, whereas NS1619, a BK(Ca) channel opener, enhanced both. Characteristic outwardly rectifying K+ currents, reversibly inhibited by iberiotoxin, were demonstrated in neutrophils and eosinophils and the expression of the alpha-subunit of the BK channel was confirmed by western blotting. The channels were opened by the combination of membrane depolarization and elevated Ca2+ concentration, both consequences of oxidase activity. Remarkably, microbial killing and digestion were abolished when the BK(Ca) channel was blocked, revealing an essential and unexpected function for this K+ channel in the microbicidal process.
Collapse
Affiliation(s)
- Jatinder Ahluwalia
- Department of Medicine University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Thorneloe KS, Maruyama Y, Malcolm AT, Light PE, Walsh MP, Cole WC. Protein kinase C modulation of recombinant ATP-sensitive K(+) channels composed of Kir6.1 and/or Kir6.2 expressed with SUR2B. J Physiol 2002; 541:65-80. [PMID: 12015420 PMCID: PMC2290299 DOI: 10.1113/jphysiol.2002.018101] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The molecular identity of smooth muscle ATP-sensitive K(+) channels (K(ATP)) is not established with certainty. Patch clamp methods were employed to determine if recombinant K(ATP) channels composed of Kir6.1 and SUR2B subunits expressed by human embryonic kidney (HEK293) cells share an identical modulation by protein kinase C (PKC) with the vascular K(NDP) subtype of K(ATP) channel. The open probability of Kir6.1/SUR2B channels was determined before and after sequential exposure to pinacidil (50 microM) and the combination of pinacidil and phorbol 12,13-dibutyrate (PdBu; 50 nM). Treatment with PdBu caused a decline in channel activity, but this was not seen with an inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate (PdDe; 50 nM). Angiotensin II (0.1 microM) induced a similar inhibition of Kir6.1/SUR2B channels in cells expressing angiotensin AT(1) receptors. The effects of PdBu and angiotensin II were blocked by the PKC inhibitor, chelerythrine (3 microM). Purified PKC inhibited Kir6.1/SUR2B activity (in 0.5 mM ATP/ 0.5 mM ADP), and the inhibition was blocked by a specific peptide inhibitor of PKC, PKC(19-31). In contrast, PdBu increased the activity of recombinant K(ATP) channels composed of Kir6.2 and SUR2B, or the combination of Kir6.1, Kir6.2 and SUR2B subunits. The results indicate that the modulation by PKC of Kir6.1/SUR2B, but not Kir6.2/SUR2B or Kir6.1-Kir6.2/SUR2B channel gating mimics that of native vascular K(NDP) channels. Physiological inhibition of vascular K(ATP) current by vasoconstrictors which utilize intracellular signalling cascades involving PKC is concluded to involve the modulation of K(NDP) channel complexes composed of four Kir6.1 and their associated SUR2B subunits.
Collapse
Affiliation(s)
- Kevin S Thorneloe
- Smooth Muscle Research Group and Canadian Institutes of Health Research Group in Regulation of Vascular Contractility, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
1. Modulation of K+ channel activities by cellular oxidative stress has emerged as a significant determinant of vasomotor function in multiple disease states. 2. Evidence from in vitro and in vivo studies suggest that superoxide (O2-) and hydrogen peroxide (H2O2) enhance BKCa channel activity in rat and cat cerebral arterioles; however, activity is decreased by peroxynitrite (ONOO-) in rat cerebral arteries. The mechanisms of changes in BKCa channel properties are not fully understood and may involve oxidation of cysteine residues that are located in the cell membranes. 3. Studies further suggest that O2- increases KATP channel activity in guinea-pig cardiac myocytes, but decreases opening in cerebral vasculature. Both H2O2 and ONOO- enhance KATP channel activity in the myocardium and in coronary, renal, mesenteric and cerebral vascular beds. Alteration of KATP channels by free radicals may be due to oxidation of SH groups or changes in the cytosolic concentration of ATP. 4. It does appear that O2- produced by either reaction of xanthine and xanthine oxidase or elevated levels of glucose reduces Kv channel activity and the impairments can be partially restored by free radical scavengers, superoxide dismutase and catalase. 5. Thus, redox modulation of potassium channel activity is an important mechanism regulating cell vascular smooth muscle membrane potential.
Collapse
Affiliation(s)
- Yanping Liu
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
13
|
Hayabuchi Y, Dart C, Standen NB. Evidence for involvement of A-kinase anchoring protein in activation of rat arterial K(ATP) channels by protein kinase A. J Physiol 2001; 536:421-7. [PMID: 11600677 PMCID: PMC2278879 DOI: 10.1111/j.1469-7793.2001.0421c.xd] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. We have investigated the possible role of A-kinase anchoring proteins (AKAPs) in protein kinase A (PKA) signalling to ATP-sensitive K+ (K(ATP)) channels of rat isolated mesenteric arterial smooth muscle cells using whole-cell patch clamp and peptides that inhibit PKA-AKAP binding. 2. Intracellular Ht31 peptide (20 microM), which inhibits the PKA-AKAP interaction, blocked K(ATP) current activation by either dibutyryl cAMP or calcitonin gene-related peptide. Ht31-proline (20 microM), which does not inhibit PKA binding to AKAP, did not block K(ATP) current activation. 3. Ht31 reduced K(ATP) current activated by pinacidil and also prevented its inhibition by Rp-cAMPS, effects consistent with Ht31 blocking steady-state K(ATP) channel activation by PKA. However, Ht31 did not prevent K(ATP) current activation by the catalytic subunit of PKA. 4. An antibody to the RII subunit of PKA showed localization of PKA near to the cell membrane. Our results provide evidence that both steady-state and receptor-driven activation of K(ATP) channels by PKA involve the localization of PKA by an AKAP.
Collapse
Affiliation(s)
- Y Hayabuchi
- Department of Cell Physiology and Pharmacology, University of Leicester, PO Box 138, Leicester LE1 9HN, UK
| | | | | |
Collapse
|
14
|
O'Brien AJ, Wilson AJ, Sibbald R, Singer M, Clapp LH. Temporal variation in endotoxin-induced vascular hyporeactivity in a rat mesenteric artery organ culture model. Br J Pharmacol 2001; 133:351-60. [PMID: 11375251 PMCID: PMC1572792 DOI: 10.1038/sj.bjp.0704079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Accepted: 03/13/2001] [Indexed: 11/09/2022] Open
Abstract
Endotoxin-induced vascular hyporeactivity to phenylephrine (PE) is well described in rodent aorta, but has not been investigated in smaller vessels in vitro. Segments of rat superior mesenteric artery were incubated in culture medium with or without foetal bovine serum (10%) for 6, 20 or 46 h in the presence or absence of bacterial lipopolysaccharide (LPS; 1 - 100 microg ml(-1)). Contractions to PE were measured with or without nitric oxide synthase (NOS) inhibitors: L-NAME (300 microM), aminoguanidine (AMG; 400 microM) 1400W (10 microM) and GW273629 (10 microM); the guanylyl cyclase inhibitor, ODQ (3 microM); the COX-2 inhibitor, NS-398 (10 microM). Contractile responses to the thromboxane A2 mimetic, U46619 were also assessed. In the presence of serum, LPS induced hyporeactivity at all time points. In its absence, hyporeactivity only occurred at 6 and 20 h. L-NAME and AMG fully reversed hyporeactivity at 6 h, whereas they were only partially effective at 20 h and not at all at 46 h. In contrast partial reversal of peak contraction was observed with 1400W (62% at 46 h), GW273629 (57% at 46 h) and ODQ (75% at 46 h). COX-2 inhibition produced no reversal. In contrast to PE, contractions to U46619 were substantially less affected by LPS. We describe a well-characterized reproducible model of LPS-induced hyporeactivity, which is largely mediated by the NO-cyclic GMP-dependent pathway. Importantly, long-term (2-day) production of NO via iNOS is demonstrated. Moreover, conventional doses of L-NAME and AMG became increasingly ineffective over time. Thus, the choice of inhibitor merits careful consideration in long-term models.
Collapse
Affiliation(s)
- A J O'Brien
- The Centre for Clinical Pharmacology, Department of Medicine, University College London, Rayne Institute, University Street, London WC1E 6JJ, UK. alastair.o'
| | | | | | | | | |
Collapse
|
15
|
A mechanism for ATP-sensitive potassium channel diversity: Functional coassembly of two pore-forming subunits. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11136227 PMCID: PMC14656 DOI: 10.1073/pnas.011370498] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-sensitive potassium channels are an octomeric complex of four pore-forming subunits of the Kir 6.0 family and four sulfonylurea receptors. The Kir 6.0 family consists of two known members, Kir 6.1 and Kir 6.2, with distinct functional properties. The tetrameric structure of the pore-forming domain leads to the possibility that mixed heteromultimers may form. In this study, we examine this by using biochemical and electrophysiological techniques after heterologous expression of these subunits in HEK293 cells. After the coexpression of Kir 6.1 and Kir 6.2, Kir 6.1 can be coimmunoprecipitated with isoform-specific Kir 6.2 antisera and vice versa. Coexpression of SUR2B and Kir 6.2 with Kir 6.1 dominant negatives at a 1:1 expression ratio and vice versa led to a potent suppression of current. Kir 6.1, and Kir 6.2 dominant negative mutants were without effect on an inwardly rectifying potassium channel from a different family, Kir 2.1. Single-channel analysis, after coexpression of SUR2B, Kir 6.1, and Kir 6.2, revealed the existence of five distinct populations with differing single-channel current amplitudes. All channel populations were inhibited by glibenclamide. A dimeric Kir 6.1-Kir 6.2 construct expressed with SUR2B had a single-channel conductance intermediate between that of either Kir 6.2 or Kir 6.1 expressed with SUR2B. In conclusion, Kir 6.1 and Kir 6.2 readily coassemble to produce functional channels, and such phenomena may contribute to the diversity of nucleotide-regulated potassium currents seen in native tissues.
Collapse
|
16
|
Abstract
Ion channels exist in all cells and are enormously varied in structure, function and regulation. Some progress has been made in understanding the role that ion channels play in the control of blood pressure, but the discipline is still in its infancy. Ion channels provide many different targets for intervention in disorders of blood pressure and exciting advances have been made in this field. It is possible that new drugs, as well as antisense nucleotide technology or gene therapy directed towards ion channels, may form a new class of treatments for high and low blood pressure in the future.
Collapse
Affiliation(s)
- E H Baker
- Department of Pharmacology and Clinical Pharmacology, St George's Hospital Medical School, London, UK.
| |
Collapse
|