1
|
Xie H, Cao C, Shu D, Liu T, Zhang T. The important role of ferroptosis in inflammatory bowel disease. Front Med (Lausanne) 2024; 11:1449037. [PMID: 39434776 PMCID: PMC11491328 DOI: 10.3389/fmed.2024.1449037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Ferroptosis is a type of regulated cell death that occurs due to the iron-dependent accumulation of lethal reactive oxygen species (ROS) from lipids. Ferroptosis is characterized by distinct morphological, biochemical, and genetic features that differentiate it from other regulated cell death (RCD) types, which include apoptosis, various necrosis types, and autophagy. Recent reports show that ferritin formation is correlated to many disorders, such as acute injury, infarction, inflammation, and cancer. Iron uptake disorders have also been associated with intestinal epithelial dysfunction, particularly inflammatory bowel disease (IBD). Studies of iron uptake disorders may provide new insights into the pathogenesis of IBD, thereby improving the efficacy of medical interventions. This review presents an overview of ferroptosis, elucidating its fundamental mechanisms and highlighting its significant involvement in IBD.
Collapse
Affiliation(s)
- Hanhan Xie
- The Second Affiliated Hospital of Chengdu Medical College, China Nation Nuclear Corporation 416 Hospital, Chengdu, China
| | - Chun Cao
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Dan Shu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Tong Liu
- The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Tao Zhang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Nguyen TPM, Woods SL, Secombe KR, Tang S, Elz AS, Ayton S, Finnie J, Nagpal A, Pouliot N, Bowen JM. Ferroptosis - a potential feature underlying neratinib-induced colonic epithelial injury. Cancer Chemother Pharmacol 2024; 94:493-505. [PMID: 39002022 PMCID: PMC11438713 DOI: 10.1007/s00280-024-04699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE Neratinib, a small-molecule tyrosine kinase inhibitor (TKI) that irreversibly binds to human epidermal growth factor receptors 1, 2 and 4 (HER1/2/4), is an approved extended adjuvant therapy for patients with HER2-amplified or -overexpressed (HER2-positive) breast cancers. Patients receiving neratinib may experience mild-to-severe symptoms of gut toxicity including abdominal pain and diarrhoea. Despite being a highly prevalent complication in gut health, the biological processes underlying neratinib-induced gut injury, especially in the colon, remains unclear. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) and histology were integrated to study the effect of, and type of cell death induced by neratinib on colonic tissues collected from female Albino Wistar rats dosed with neratinib (50 mg/kg) daily for 28 days. Additionally, previously published bulk RNA-sequencing and CRISPR-screening datasets on human glioblastoma SF268 cell line and glioblastoma T895 xenograft, and mouse TBCP1 breast cancer cell line were leveraged to elucidate potential mechanisms of neratinib-induced cell death. RESULTS The severity of colonic epithelial injury, especially degeneration of surface lining colonocytes and infiltration of immune cells, was more pronounced in the distal colon than the proximal colon. Sequencing showed that apoptotic gene signature was enriched in neratinib-treated SF268 cells while ferroptotic gene signature was enriched in neratinib-treated TBCP1 cells and T895 xenograft. However, we found that ferroptosis, but less likely apoptosis, was a potential histopathological feature underlying colonic injury in rats treated with neratinib. CONCLUSION Ferroptosis is a potential feature of neratinib-induced colonic injury and that targeting molecular machinery governing neratinib-induced ferroptosis may represent an attractive therapeutic approach to ameliorate symptoms of gut toxicity.
Collapse
Affiliation(s)
- Triet P M Nguyen
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Susan L Woods
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Kate R Secombe
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Simon Tang
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Aurelia S Elz
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - John Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Aadya Nagpal
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Normand Pouliot
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Joanne M Bowen
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
3
|
Bao H, Wang Y, Xiong H, Xia Y, Cui Z, Liu L. Mechanism of Iron Ion Homeostasis in Intestinal Immunity and Gut Microbiota Remodeling. Int J Mol Sci 2024; 25:727. [PMID: 38255801 PMCID: PMC10815743 DOI: 10.3390/ijms25020727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Iron is a vital trace element that plays an important role in humans and other organisms. It plays an active role in the growth, development, and reproduction of bacteria, such as Bifidobacteria. Iron deficiency or excess can negatively affect bacterial hosts. Studies have reported a major role of iron in the human intestine, which is necessary for maintaining body homeostasis and intestinal barrier function. Organisms can maintain their normal activities and regulate some cancer cells in the body by regulating iron excretion and iron-dependent ferroptosis. In addition, iron can modify the interaction between hosts and microorganisms by altering their growth and virulence or by affecting the immune system of the host. Lactic acid bacteria such as Lactobacillus acidophilus (L. acidophilus), Lactobacillus rhamnosus (L. rhamnosus), and Lactobacillus casei (L. casei) were reported to increase trace elements, protect the host intestinal barrier, mitigate intestinal inflammation, and regulate immune function. This review article focuses on the two aspects of the iron and gut and generally summarizes the mechanistic role of iron ions in intestinal immunity and the remodeling of gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (H.X.); (Y.X.)
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (H.X.); (Y.X.)
| |
Collapse
|
4
|
Usman D, Abubakar MB, Ibrahim KG, Imam MU. Iron chelation and supplementation: A comparison in the management of inflammatory bowel disease using drosophila. Life Sci 2024; 336:122328. [PMID: 38061132 DOI: 10.1016/j.lfs.2023.122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
AIMS Inflammatory Bowel Disease (IBD) is associated with systemic iron deficiency and has been managed with iron supplements which cause adverse side effects. Conversely, some reports highlight iron depletion to ameliorate IBD. The underlying intestinal response and comparative benefit of iron depletion and supplementation in IBD is unknown. The aims of this work were to characterize and compare the effects of iron supplementation and iron depletion in IBD. MAIN METHODS IBD was induced in Drosophila melanogaster using 3 % dextran sodium sulfate (DSS) in diet for 7 days. Using this model, we investigated the impacts of acute iron depletion (using bathophenanthroline disulfonate, BPS) and supplementation (using ferrous sulphate, FS), before and after IBD induction, on gut iron homeostasis, cell death, gut permeability, inflammation, antioxidant defence, antimicrobial response and several fly phenotypes. KEY FINDINGS DSS decreased fly mass (p < 0.001), increased gut permeability (p < 0.001) and shortened lifespan (p = 0.035) compared to control. The DSS-fed flies also showed significantly elevated lipid peroxidation (p < 0.001), and the upregulated expression of apoptotic marker- drice (p < 0.001), tight junction protein - bbg (p < 0.001), antimicrobial peptide - dpta (p = 0.002) and proinflammatory cytokine - upd2 (p < 0.001). BPS significantly (p < 0.05) increased fly mass and lifespan, decreased gut permeability, decreased lipid peroxidation and decreased levels of drice, bbg, dpta and upd2 in IBD flies. This iron chelation (using BPS) showed better protection from DSS-induced IBD than iron supplementation (using FS). Preventive and curative interventions, by BPS or FS, also differed in outcomes. SIGNIFICANCE This may inform precise management strategies aimed at tackling IBD and its recurrence.
Collapse
Affiliation(s)
- Dawoud Usman
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Physiology, College of Medicine and Health Sciences, Baze University, Abuja, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P. O. Box 2000, Zarqa 13110, Jordan; School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria.
| |
Collapse
|
5
|
Tang J, Bu W, Hu W, Zhao Z, Liu L, Luo C, Wang R, Fan S, Yu S, Wu Q, Wang X, Zhao X. Ferroptosis Is Involved in Sex-Specific Small Intestinal Toxicity in the Offspring of Adult Mice Exposed to Polystyrene Nanoplastics during Pregnancy. ACS NANO 2023; 17:2440-2449. [PMID: 36728677 DOI: 10.1021/acsnano.2c09729] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanoplastics are common contaminants in the living environment. Thus far, no investigations have focused on small intestinal injury in the offspring of adult mice that were exposed to nanoplastics through the respiratory system during pregnancy. Here, we evaluated potential intestinal injury in the offspring of adult mice that were subjected to maternal 80 nm polystyrene nanoparticle (PS-NP) exposure during gestation. PS-NP exposure significantly reduced the birth weight of female mice compared with male mice. However, the adult body weights of the female and male offspring were substantially greater in the PS-NP-exposed groups. Additionally, we found that exposure to PS-NPs during pregnancy caused histological changes in the small intestines of both female and male offspring. Mechanistic analysis revealed upregulation of reactive oxygen species in the small intestines, as indicated by changes in the levels of superoxide dismutase (SOD) and malondialdehyde (MDA). Furthermore, exposure to PS-NPs led to downregulation of GPx4, FTH1, and FTL protein levels, indicating initiation of ferroptosis. Notably, the changes in mRNA expression levels of GPx4, FTH1, and FTL differed between female and male offspring. Although all phenotypes failed to demonstrate classic dose-dependent effects, the data imply that small intestinal toxicity is greater in female offspring than in male offspring. Our results suggest that PS-NP exposure during pregnancy causes sex-specific small intestinal toxicity, which might contribute to reactive oxygen species activation and subsequent ferroptosis. Overall, this study showed toxic effects in offspring after PS-NP exposure during pregnancy.
Collapse
Affiliation(s)
- Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Wenxuan Hu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zixuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chao Luo
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Susu Fan
- Nantong University Analysis & Testing Center, Nantong 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Qiyun Wu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
6
|
Gao W, Zhang T, Wu H. Emerging Pathological Engagement of Ferroptosis in Gut Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4246255. [PMID: 34733403 PMCID: PMC8560274 DOI: 10.1155/2021/4246255] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is mainly characterized by chronic and progressive inflammation that damages the gastrointestinal mucosa. Increasing studies have enlightened that dysregulated cell death occurs in the inflamed sites, leading to the disruption of the intestinal barrier and aggravating inflammatory response. Ferroptosis, a newly characterized form of regulated cell death, is driven by the lethal accumulation of lipid peroxides catalyzed by cellular free iron. It has been widely documented that the fundamental features of ferroptosis, including iron deposition, GSH exhaustion, GPX4 inactivation, and lipid peroxidation, are manifested in the injured gastrointestinal tract in IBD patients. Furthermore, manipulation of the critical ferroptotic genes could alter the progression, severity, or even morbidity of the experimental colitis. Herein, we critically summarize the recent advances in the field of ferroptosis, focusing on interpreting the potential engagement of ferroptosis in the pathogenesis of IBD. Moreover, we are attempting to shed light on a perspective insight into the possibility of targeting ferroptosis as novel therapeutic designs for the clinical intervention of these gastrointestinal diseases.
Collapse
Affiliation(s)
- Weihua Gao
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ting Zhang
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Wu
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Yi R, Wang FB, Tan F, Long X, Pan Y, Zhao X. Intervention effects of lotus leaf flavonoids on gastric mucosal lesions in mice infected with Helicobacter pylori. RSC Adv 2020; 10:23510-23521. [PMID: 35517367 PMCID: PMC9055112 DOI: 10.1039/d0ra03311a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the main factors that cause gastric lesions. The lotus leaf is an edible plant used in traditional Eastern medicine. This study evaluates the intervention effects of lotus leaf flavonoids (LLF) on gastric mucosal lesions in mice infected with H. pylori and explores their mechanism of action. High-performance liquid chromatography analysis reveals that LLF contain kaempferitrin (kaempferol-3,7-dirhamnoside), hypericin, astragalin (kaempferol-3-glucoside), phlorizin, and quercetin. LLF can reduce the number of gastric mucosal lesions and tissue lesions in mice with H. pylori-induced gastric lesions. LLF can increase the levels of somatostatin and vasoactive intestinal peptide in the serum of mice with gastric lesions and decrease the levels of substance P and endothelin-1 to inhibit gastric lesions. LLF can also reduce the levels of interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α, and interferon-gamma cytokines in the serum of mice with gastric lesions. Using a quantitative polymerase chain reaction assay it can be seen that LLF can downregulate mRNA expressions of TNF-α, IL-1β, myeloperoxidase, keratin (KRT) 16, KRT6b, and transglutaminase 3 epidermal in the gastric tissues of mice with gastric lesions. Western blot analysis indicates that LLF can downregulate the protein expressions of caspase-1, Nod-like receptor protein 3, IL-1β, TNF-α, and Toll-like receptor 4 in the gastric tissues of mice with gastric lesions. LLF have beneficial effects on gastric lesions induced by H. pylori. Meanwhile LLF is more active in competition with ranitidine. LLF represent an active substance that can inhibit H. pylori-induced gastric lesions. The flavones of LLF may enhance the inhibition of gastric mucosal lesions by promoting the interaction between the compounds.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 P. R. China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 P. R. China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 P. R. China
| | - Feng-Bo Wang
- Department of Rehabilitation, First Affiliated Hospital of Chengdu Medical College Chengdu 610500 P. R. China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University Valenzuela 838 Philippines
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 P. R. China +86-23-6265-3650
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 P. R. China +86-23-6265-3650
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 P. R. China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 P. R. China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 P. R. China
| |
Collapse
|
8
|
Ma C, Ju H, Zhao Y, Zhang S, Lin S. Effect of self-assembling peptides on its antioxidant activity and the mechanism exploration. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Scheers NM, Pereira DI, Faria N, Powell JJ. Ferric citrate and ferric EDTA but not ferrous sulfate drive amphiregulin-mediated activation of the MAP kinase ERK in gut epithelial cancer cells. Oncotarget 2018; 9:17066-17077. [PMID: 29682205 PMCID: PMC5908306 DOI: 10.18632/oncotarget.24899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/09/2018] [Indexed: 01/02/2023] Open
Abstract
Ferric chelates may be used as oral iron supplements or phosphate binders but both ferric citrate and ferric EDTA have been shown to promote tumor burden in murine models of colon cancer. Here we studied their effects on cancer cell growth, at typical supplemental iron levels encountered in the gastrointestinal tract (0.01-0.2 mM). Caco-2 and/or Hutu-80 cells were exposed to these forms of chelated iron or to ferrous sulfate and outcomes were assessed using cell proliferation assays, proteome profiler arrays, western blot, and ELISA. Ferric EDTA and ferric citrate increased cellular levels of the onco-protein amphiregulin and its receptor (EGFr) which in turn stimulated the activation of the MAP kinase ERK. Simultaneously, the expression of the negative Wnt regulator, DKK-1, increased suggesting that cell proliferation through the Wnt pathway may be less pronounced in the presence of ferric EDTA and ferric citrate, unlike for ferrous sulfate. Moreover, ferrous sulfate did not increase levels of cellular amphiregulin or EGFr. We conclude that specific iron compounds affect cell signaling differently and some may increase the risk of colon cancer advancement in an amphiregulin-dependent fashion. Further scrutiny of safe oral iron use is merited.
Collapse
Affiliation(s)
- Nathalie M. Scheers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Elsie Widdowson Laboratory, Medical Research Council, Cambridge, UK
| | - Dora I.A. Pereira
- Elsie Widdowson Laboratory, Medical Research Council, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| | - Nuno Faria
- Elsie Widdowson Laboratory, Medical Research Council, Cambridge, UK
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan J. Powell
- Elsie Widdowson Laboratory, Medical Research Council, Cambridge, UK
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Effect of mesalamine and prednisolone on TNBS experimental colitis, following various doses of orally administered iron. BIOMED RESEARCH INTERNATIONAL 2014; 2014:648535. [PMID: 24895596 PMCID: PMC4026876 DOI: 10.1155/2014/648535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/02/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Experimental data suggest that oral iron (I.) supplementation can worsen colitis in animals. AIM To investigate the influence of various concentrations of orally administered I. in normal gut mucosa and mucosa of animals with TNBS colitis, as well as the influence of Mesalamine (M.) and Prednisolone (P.) on the severity of TNBS colitis following orally administered I. METHODS AND MATERIALS 156 Wistar rats were allocated into 10 groups. Colitis was induced by TNBS. On the 8th day, all animals were euthanatized. Activity of colitis and extent of tissue damage were assessed histologically. The levels of tissue tumor necrosis factor- α (t-TNF- α ) and tissue malondialdehyde (t-MDA) were estimated in all animal groups. RESULTS Moderate and high I. supplementation induced inflammation in the healthy colon and increased the activity of the experimentally induced TNBS colitis. Administration of M. on TNBS colitis following moderate iron supplementation (0.3 g/Kg diet) resulted in a significant improvement in the overall histological score as well as in two individual histological parameters. M. administration, however, did not significantly reduce the t-TNF- α levels (17.67 ± 4.92 versus 14.58 ± 5.71, P = 0.102), although it significantly reduced the t-MDA levels (5.79 ± 1.55 versus 3.67 ± 1.39, P = 0.000). Administration of M. on TNBS colitis following high iron supplementation (3.0 g/Kg diet) did not improve the overall histological score and the individual histological parameters, neither reduced the levels of t-TNF- α (16.57 ± 5.61 versus 14.65 ± 3.88, P = 0.296). However, M. significantly reduced the t-MDA levels (5.99 ± 1.37 versus 4.04 ± 1.41, P = 0.000). Administration of P. on TNBS colitis after moderate iron supplementation resulted in a significant improvement in the overall histological score as well as in three individual histological parameters. P. also resulted in a significant reduction in the t-TNF- α levels (17.67 ± 4.92 versus 12.64 ± 3.97, P = 0.003) and the t-MDA levels (5.79 ± 1.54 versus 3.47 ± 1.21, P = 0.001). Administration of P on TNBS colitis after high I. supplementation resulted in a significant improvement of the overall histological score and three individual histological parameters and significantly reduced the levels of t-TNF- α (16.6 ± 5.6 versus 11.85 ± 1.3, P = 0.001). CONCLUSION I. can induce colonic inflammation and aggravate TNBS colitis. M. and P. can significantly improve the inflammatory process in the colonic mucosa in TNBS colitis aggravated by orally administered I. P. has a stable anti-TNF- α effect. These findings suggest that the harmful.
Collapse
|
11
|
Swaid F, Sukhotnik I, Matter I, Berkowitz D, Hadjittofi C, Pollak Y, Lavy A. Dietary glutamine supplementation prevents mucosal injury and modulates intestinal epithelial restitution following acetic acid induced intestinal injury in rats. Nutr Metab (Lond) 2013; 10:53. [PMID: 23919638 PMCID: PMC3750704 DOI: 10.1186/1743-7075-10-53] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 07/23/2013] [Indexed: 12/27/2022] Open
Abstract
Beneficial effects of glutamine (GLN) have been described in many gastrointestinal disorders. The aim of the present study was to evaluate the preventative effect of oral GLN supplementation against acetic acid (AA) induced intestinal injury in a rat. Male Sprague-Dawley rats were divided into four experimental groups: control (CONTR) rats underwent laparotomy, control-glutamine (CONTR-GLN) rats were treated with enteral glutamine given in drinking water (2%) 48 hours before and five days following laparotomy, AA rats underwent laparotomy and injection of AA into an isolated jejunal loop, and acetic acid-glutamine (AA-GLN) rats underwent AA-induced injury and were treated with enteral GLN 48 hours before and 5 days following laparotomy. Intestinal mucosal damage (Park's injury score), mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined five days following intestinal injury. Western blotting was used to determine p-ERK and bax protein levels. AA-induced intestinal injury resulted in a significantly increased intestinal injury score with concomitant inhibition of cell turnover (reduced proliferation and enhanced apoptosis). Treatment with dietary GLN supplementation resulted in a decreased intestinal injury score with concomitant stimulation of cell turnover (enhanced proliferation and reduced apoptosis). In conclusion, pre-treatment with oral GLN prevents mucosal injury and improves intestinal recovery following AA-induced intestinal injury in rats.
Collapse
Affiliation(s)
- Forat Swaid
- Department of Surgery, Bnai Zion Medical Center, Haifa, Israel
| | - Igor Sukhotnik
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department Pediatric Surgery, Bnai Zion Medical Center, 47 Golomb St., POB 4940, Haifa 31048, Israel
| | - Ibrahim Matter
- Department of Surgery, Bnai Zion Medical Center, Haifa, Israel
| | - Drora Berkowitz
- Department of Gastroenterology, Bnai Zion Medical Center, Haifa, Israel
| | - Christopher Hadjittofi
- Elderly Care Department, Queen Elizabeth II Hospital, Welwyn Garden City, United Kingdom
| | - Yulia Pollak
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alexandra Lavy
- Department of Gastroenterology, Bnai Zion Medical Center, Haifa, Israel
| |
Collapse
|
12
|
Hofseth LJ. Nitric oxide as a target of complementary and alternative medicines to prevent and treat inflammation and cancer. Cancer Lett 2008; 268:10-30. [PMID: 18440130 PMCID: PMC2680023 DOI: 10.1016/j.canlet.2008.03.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/14/2008] [Accepted: 03/19/2008] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) and associated reactive nitrogen species (RNS) are involved in many physiological functions. There has been an ongoing debate to whether RNS can inhibit or perpetuate chronic inflammation and associated carcinogenesis. Although the final outcome depends on the genetic make-up of its target, the surrounding microenvironment, the activity and localization of nitric oxide synthase (NOS) isoforms, and overall levels of NO/RNS, evidence is accumulating that in general, RNS drive inflammation and cancers associated with inflammation. To this end, many complementary and alternative medicines (CAMs) that work in chemoprevention associated with chronic inflammation, are inhibitors of excessive NO observed in inflammatory conditions. Here, we review recent literature outlining a role of NO/RNS in chronic inflammation and cancer, and point toward NO as one of several targets for the success of CAMs in treating chronic inflammation and cancer associated with this inflammation.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 770 Sumter Street, Coker Life Sciences, Room 513C, Columbia, SC 29208, USA.
| |
Collapse
|
13
|
Seril DN, Liao J, West AB, Yang GY. High-iron diet: foe or feat in ulcerative colitis and ulcerative colitis-associated carcinogenesis. J Clin Gastroenterol 2006; 40:391-7. [PMID: 16721219 DOI: 10.1097/00004836-200605000-00006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anemia associated with long-standing chronic inflammation and iron deficiency, and the increased risk for the development of dysplasia and carcinoma, are two of the most common complications in patients with ulcerative colitis (UC). Because of iron and nutrition deficiency, UC patients are encouraged to consume a high-protein and high-iron diet. The crucial clinical question is the effect of a high-iron diet on inflammation activity and inflammation-driven carcinogenesis. Is a high-iron diet a foe or a feat in UC and UC-associated carcinogenesis? This review updates the progress and information on (1) iron nutrition and iron-deficiency anemia in patients with UC, (2) experimental evidence of the exacerbating effect of a high-iron diet on UC and its associated carcinogenesis and the difference between a high-iron diet and parental iron supplementation, (3) the clinical efficacy of, and concerns about, oral and intravenous iron supplements in patients with inflammatory bowel disease and iron deficiency anemia, and (4) the clinical implications of long-term iron supplements and management of UC. These experimental findings from animal models provide evidence to warrant further consideration and clinical studies of iron nutrition, inflammation activity, and cancer development.
Collapse
MESH Headings
- Administration, Oral
- Anemia, Iron-Deficiency/drug therapy
- Anemia, Iron-Deficiency/etiology
- Animals
- Biological Availability
- Cell Transformation, Neoplastic
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/complications
- Colitis, Ulcerative/pathology
- Colorectal Neoplasms/complications
- Colorectal Neoplasms/pathology
- Dietary Supplements/adverse effects
- Disease Models, Animal
- Disease Progression
- Dose-Response Relationship, Drug
- Humans
- Iron, Dietary/adverse effects
- Oxidative Stress
Collapse
Affiliation(s)
- Darren N Seril
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | | | | | | |
Collapse
|
14
|
Peretz G, Link G, Pappo O, Bruck R, Ackerman Z. Effect of hepatic iron concentration reduction on hepatic fibrosis and damage in rats with cholestatic liver disease. World J Gastroenterol 2006; 12:240-5. [PMID: 16482624 PMCID: PMC4066033 DOI: 10.3748/wjg.v12.i2.240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the effect of iron reduction after phlebotomy in rats with “normal” hepatic iron concentration (HIC) on the progression of hepatic fibrosis, as a result of bile duct ligation (BDL).
METHODS: Rats underwent phlebotomy before or after sham operation or BDL. Animals undergone only BDL or sham operation served as controls. Two weeks after surgery, indices of hepatic damage and fibrosis were evaluated.
RESULTS: Phlebotomy lowered HIC. Phlebotomy after BDL was associated with body weight increase, lower hepatic weight, less portal hypertension, less periportal necrosis, less portal inflammation, lower hepatic activity index score and higher albumin levels. On the other hand, phlebotomy before BDL was associated with body weight decrease and hepatic activity index score increase. Phlebotomy after sham operation was not associated with any hepatic or systemic adverse effects.
CONCLUSION: Reduction of HIC after induction of liver damage may have beneficial effects in BDL rats. However, iron deficiency could induce impairment of liver function and may make the liver more susceptible to insults like BDL.
Collapse
Affiliation(s)
- Gil Peretz
- Department of Internal Medicine, Hebrew University--Hadassah Medical Center, Mount Scopus Campus, PO Box 24035, Jerusalem 91240, Israel
| | | | | | | | | |
Collapse
|
15
|
Schröder O, Mickisch O, Seidler U, de Weerth A, Dignass AU, Herfarth H, Reinshagen M, Schreiber S, Junge U, Schrott M, Stein J. Intravenous iron sucrose versus oral iron supplementation for the treatment of iron deficiency anemia in patients with inflammatory bowel disease--a randomized, controlled, open-label, multicenter study. Am J Gastroenterol 2005; 100:2503-9. [PMID: 16279906 DOI: 10.1111/j.1572-0241.2005.00250.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Anemia is a frequent complication in patients with inflammatory bowel disease (IBD). The optimal route for iron supplementation to replenish iron stores has not been determined so far. We therefore evaluated the efficacy and safety of intravenous iron sucrose as compared with oral iron sulfate for the treatment of iron deficiency anemia (IDA) in patients with IBD. METHODS A randomized, prospective, open-label, multicenter study was performed in 46 patients with anemia and transferrin saturation <or=20% and/or serum ferritin concentrations <or=20 microg/L. The intravenous group received a single dose of iron sucrose of 7 mg iron/kg body weight, followed by five 200 mg infusions for the following 5 wks. The oral group received iron sulfate 100-200 mg per day for 6 wks. RESULTS While a comparable increase in hemoglobin was observed for both administration routes (median increase 0.25 g/L in the intravenous group vs 0.21 g/L in the oral group), only iron sucrose led to a rise in serum ferritin concentrations. Intractable gastrointestinal adverse events caused permanent study drug discontinuation in five patients (20.8%) receiving iron sulfate, whereas only one patient (4.5%) had to be withdrawn because of side effects due to iron sucrose. CONCLUSIONS Although being equal in short-term efficacy and overall tolerability our results suggest a better gastrointestinal tolerability for iron sucrose. Larger trials are mandatory to prove a possible advantage of iron sucrose in short- and long-term efficacy as well as in tolerability over iron sulfate in the management of IDA in IBD.
Collapse
Affiliation(s)
- Oliver Schröder
- First Department of Internal Medicine, Division of Gastroenterology, ZAFES, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Uritski R, Barshack I, Bilkis I, Ghebremeskel K, Reifen R. Dietary iron affects inflammatory status in a rat model of colitis. J Nutr 2004; 134:2251-5. [PMID: 15333712 DOI: 10.1093/jn/134.9.2251] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Iron deficiency anemia is a common feature in inflammatory bowel disease, and oral supplementation is one of the mainstay therapies. However, there is some concern that oral iron supplementation may lead to oxidative stress and exacerbation of inflammation. Our objective was to study the effect of severely deficient, moderately deficient, normal and high iron status on oxidative stress and the course of inflammation in a rat model of colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The rats were randomly assigned to receive the low-iron diet for 3 (moderately iron-deficient group, n = 16) or 5 (severely iron-deficient group, n = 16) wk, the normal iron diet for 2 wk (normal iron group, n = 16) or the high-iron diet for 2 wk (high-iron group, n = 16). Malondialdehyde concentration, electroparamagnetic resonance measurement, myeloperoxidase activity, and histological analysis were used to evaluate oxidative stress. Noncolitic rats in the high-iron group had higher oxidative stress parameters than those in the other groups. The induction of colitis resulted in severe inflammatory changes in the high-iron and severely iron-deficient groups, and produced higher histological scores in the colon of the normal and high-iron groups. Iron overload, oxidative stress, and inflammation were lower in the moderately iron-deficient group compared with the other 3 groups. In conclusion, we suggest that low rather than normal or high iron supplementation should be considered for the treatment of iron deficiency in inflammatory bowel disease.
Collapse
Affiliation(s)
- Ram Uritski
- School of Nutritional Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
17
|
Barollo M, D'Incà R, Scarpa M, Medici V, Cardin R, Fries W, Angriman I, Sturniolo GC. Effects of iron deprivation or chelation on DNA damage in experimental colitis. Int J Colorectal Dis 2004; 19:461-6. [PMID: 15067556 DOI: 10.1007/s00384-004-0588-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2004] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS In inflammatory bowel diseases iron contributes to the formation of DNA adducts through the production of hydroxyl radicals. The aim of our study was to evaluate the effects of dietary or pharmacological iron deprivation in an experimental model of colitis in the rat and its potential protective effect against DNA damage. METHODS Colitis was induced in rats by intracolonic instillation of dinitrobenzene sulphonic acid. Rats were assigned to an iron-deprived diet or to desferrioxamine preceding the induction of colitis. The severity of colitis was assessed by the presence of bloody diarrhea, colonic macroscopic damage score, body-weight variations and the amount of DNA colonic adducts. Hepatic and colonic iron concentrations were measured. RESULTS Treated rats experienced less diarrhea and did not lose weight in comparison to untreated animals. The macroscopic damage score was significantly reduced in the iron-deprived diet for the 5-week group (P=0.03). Liver and colonic iron levels were significantly more reduced in the iron-deprived groups than in the standard diet group (P<0.03 and P<0.01 after a 3- and 5-week iron-deprived diet, respectively). DNA adduct formation was significantly reduced in the groups deprived of iron for 5 weeks (P<0.001) or treated with desferrioxamine (P<0.01). CONCLUSIONS The degree of colitis caused by DNBS is macroscopically improved by dietary iron deprivation and to a lesser extent by pharmacological chelation; genomic damage is reduced by dietary iron deprivation or chelation, and this may have clinical implications on cancer prevention.
Collapse
Affiliation(s)
- M Barollo
- Department of Surgical and Gastroenterological Sciences, University of Padua, Via Giustiniani 2, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Esposito BP, Breuer W, Sirankapracha P, Pootrakul P, Hershko C, Cabantchik ZI. Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood 2003; 102:2670-7. [PMID: 12805056 DOI: 10.1182/blood-2003-03-0807] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plasma non-transferrin-bound-iron (NTBI) is believed to be responsible for catalyzing the formation of reactive radicals in the circulation of iron overloaded subjects, resulting in accumulation of oxidation products. We assessed the redox active component of NTBI in the plasma of healthy and beta-thalassemic patients. The labile plasma iron (LPI) was determined with the fluorogenic dihydrorhodamine 123 by monitoring the generation of reactive radicals prompted by ascorbate but blocked by iron chelators. The assay was LPI specific since it was generated by physiologic concentrations of ascorbate, involved no sample manipulation, and was blocked by iron chelators that bind iron selectively. LPI, essentially absent from sera of healthy individuals, was present in those of beta-thalassemia patients at levels (1-16 microM) that correlated significantly with those of NTBI measured as mobilizer-dependent chelatable iron or desferrioxamine chelatable iron. Oral treatment of patients with deferiprone (L1) raised plasma NTBI due to iron mobilization but did not lead to LPI appearance, indicating that L1-chelated iron in plasma was not redox active. Moreover, oral L1 treatment eliminated LPI in patients. The approach enabled the assessment of LPI susceptibility to in vivo or in vitro chelation and the potential of LPI to cause tissue damage, as found in iron overload conditions.
Collapse
Affiliation(s)
- Breno P Esposito
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Oldenburg B, Koningsberger JC, Van Berge Henegouwen GP, Van Asbeck BS, Marx JJ. Iron and inflammatory bowel disease. Aliment Pharmacol Ther 2001; 15:429-38. [PMID: 11284771 DOI: 10.1046/j.1365-2036.2001.00930.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Both anaemia of iron deficiency and anaemia of chronic disease are frequently encountered in inflammatory bowel disease. Anaemia of iron deficiency is mostly due to inadequate intake or loss of iron. Anaemia of chronic disease probably results from decreased erythropoiesis, secondary to increased levels of proinflammatory cytokines, reactive oxygen metabolites and nitric oxide. Assessment of the iron status in a condition associated with inflammation, such as inflammatory bowel disease, is difficult. The combination of serum transferrin receptor with ferritin concentrations, however, allows a reliable assessment of the iron deficit. The best treatment for anaemia of chronic disease is the cure of the underlying disease. Erythropoietin reportedly may increase haemoglobin levels in some of these patients. The anaemia of iron deficiency is usually treated with oral iron supplements. Iron supplementation may lead to an increased inflammatory activity through the generation of reactive oxygen species. To date, data from studies in animal models of inflammatory bowel disease support the theoretical disadvantage of iron supplementation in this respect. The results, however, cannot easily be extrapolated to the human situation, because the amount of supplemented iron in these experiments was much higher than the dose used in patients with iron deficiency.
Collapse
Affiliation(s)
- B Oldenburg
- Department of Gastroenterology, Infectious Diseases and Inflammation, University Medical Center Utrecht, the Netherlands.
| | | | | | | | | |
Collapse
|