1
|
Staphylococcus aureus isolates from hospital clinics induce ROS-mediated DNA damage, apoptosis and gene expression alterations in male mice. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
2
|
Cury-Boaventura MF, Gorjão R, de Lima TM, Piva TM, Peres CM, Soriano FG, Curi R. Toxicity of a Soybean Oil Emulsion on Human Lymphocytes and Neutrophils. JPEN J Parenter Enteral Nutr 2017; 30:115-23. [PMID: 16517956 DOI: 10.1177/0148607106030002115] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The incorporation of lipid emulsions in parenteral diets is a requirement for energy and essential fatty acid supply to critically ill patients. In this study, the toxicity of a lipid emulsion rich (60%) in triacylglycerol of omega-6 polyunsaturated fatty acids on leukocytes from healthy volunteers was investigated. METHODS Eleven volunteers were recruited, and blood samples were collected before infusion of a soybean oil emulsion, immediately afterwards, and 18 hours later. The cells were studied immediately after isolation and again after 24 hours or 48 hours in culture. The following determinations were made: composition and concentration of fatty acids in plasma, lymphocytes and neutrophils, lymphocyte proliferation, levels of cell viability, DNA fragmentation, phosphatidylserine externalization, mitochondrial depolarization, reactive oxygen species production, and neutral lipid accumulation. RESULTS Soybean oil emulsion decreased lymphocyte proliferation and provoked neutrophil and lymphocyte apoptosis and necrosis. Evidence is presented herein that soybean oil emulsion is less toxic to neutrophils than to lymphocytes. The mechanism of cell death induced by this oil emulsion was characterized by mitochondrial membrane depolarization and neutral lipid accumulation but did not alter reactive oxygen species production. CONCLUSIONS Soybean oil emulsion given as a single dose of 500 mL promotes lymphocyte and neutrophil death that may enhance the susceptibility of the patients to infections.
Collapse
Affiliation(s)
- Maria Fernanda Cury-Boaventura
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, and the Division of Clinical Emergency, Faculty of Medicine, University of São Paulo, Av. Prof. Lineu Prestes 1524, CEP 05508-900 São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
3
|
Li H, Li X, Smerin SE, Zhang L, Jia M, Xing G, Su YA, Wen J, Benedek D, Ursano R. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD. Front Neurol 2014; 5:164. [PMID: 25295026 PMCID: PMC4172054 DOI: 10.3389/fneur.2014.00164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 08/15/2014] [Indexed: 12/19/2022] Open
Abstract
The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p < 0.01). Ingenuity pathway analysis revealed up- or downregulation in the amygdala complex of four signaling networks – one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear.
Collapse
Affiliation(s)
- He Li
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Xin Li
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center , Washington, DC , USA
| | - Stanley E Smerin
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Lei Zhang
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Min Jia
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Guoqiang Xing
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Yan A Su
- Department of Gene and Protein Biomarkers, GenProMarkers , Rockville, MD , USA
| | - Jillian Wen
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - David Benedek
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Robert Ursano
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
4
|
Gupta S, Weitzman S. Primary and secondary hemophagocytic lymphohistiocytosis: clinical features, pathogenesis and therapy. Expert Rev Clin Immunol 2014; 6:137-54. [PMID: 20383897 DOI: 10.1586/eci.09.58] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sumit Gupta
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | | |
Collapse
|
5
|
Immunodominance: a pivotal principle in host response to viral infections. Clin Immunol 2012; 143:99-115. [PMID: 22391152 DOI: 10.1016/j.clim.2012.01.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/25/2012] [Accepted: 01/28/2012] [Indexed: 11/24/2022]
Abstract
We encounter pathogens on a daily basis and our immune system has evolved to mount an immune response following an infection. An interesting phenomenon that has evolved in response to clearing bacterial and viral infections is called immunodominance. Immunodominance refers to the phenomenon that, despite co-expression of multiple major histocompatibility complex class I alleles by host cells and the potential generation of hundreds of distinct antigenic peptides for recognition following an infection, a large portion of the anti-viral cytotoxic T lymphocyte population targets only some peptide/MHC class I complexes. Here we review the main factors contributing to immunodominance in relation to influenza A and HIV infection. Of special interest are the factors contributing to immunodominance in humans and rodents following influenza A infection. By critically reviewing these findings, we hope to improve understanding of the challenges facing the discovery of new factors enabling better anti-viral vaccine strategies in the future.
Collapse
|
6
|
Liu N, Zheng Y, Zhu Y, Xiong S, Chu Y. Selective impairment of CD4+CD25+Foxp3+ regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis. Int Immunopharmacol 2010; 11:212-9. [PMID: 21115120 DOI: 10.1016/j.intimp.2010.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
Paclitaxel has become one of the most effective and widely used chemotherapeutic agents over the past decades. Although it has shown promise to selectively deplete regulatory T (Treg) cells in our previous study, the underlying molecular mechanism remains to be further elucidated. The present study focused on the effect of paclitaxel on Treg cells in 3LL Lewis tumor model and explored the possible molecular pathways involved in this process. We found that paclitaxel significantly decreased the percentage of Treg cells in CD4(+) cells and impaired their suppressive functions, but effector T (Teff) cells remained unaffected. Compared with Teff cells, Treg cells exhibited a high sensitivity to paclitaxel-mediated apoptosis in vitro. Interestingly, though paclitaxel has been characterized as a mitotic inhibitor, tubulin was not involved in the selective function of paclitaxel. Treg cells exposed to paclitaxel displayed downregulation of Bcl-2 and upregulation of Bax. Blocking the Bcl-2 pathway eliminated the difference between Treg and Teff cells responding to paclitaxel. These results suggest that Bcl-2 rather than tubulin contributes to the distinctive effect of paclitaxel on Treg cells. Therefore, we here identify a molecular pathway through which paclitaxel selectively ablates Treg cells.
Collapse
Affiliation(s)
- Nan Liu
- Department of Immunology, Shanghai Medical College, Key Laboratory of Molecular Medicine of Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Hoff H, Knieke K, Cabail Z, Hirseland H, Vratsanos G, Burmester GR, Jorch G, Nadler SG, Bröker B, Hebel K, Brunner-Weinzierl MC. Surface CD152 (CTLA-4) Expression and Signaling Dictates Longevity of CD28null T Cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:5342-51. [DOI: 10.4049/jimmunol.0801624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Leech M, Xue JR, Dacumos A, Hall P, Santos L, Yang Y, Li M, Kitching AR, Morand EF. The tumour suppressor gene p53 modulates the severity of antigen-induced arthritis and the systemic immune response. Clin Exp Immunol 2008; 152:345-53. [PMID: 18341615 PMCID: PMC2384110 DOI: 10.1111/j.1365-2249.2008.03629.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2008] [Indexed: 11/30/2022] Open
Abstract
p53 is a transcription factor with a well-described role in the induction of apoptosis and cell cycle arrest as part of a protective response to a variety of stressful stimuli. Expansion of inflamed tissue in rheumatoid arthritis has been related to the loss of functioning p53, and the severity of collagen-induced arthritis is increased in p53-/- mice. Our objective was to assess the role of p53 in a model of adaptive immunity, antigen-induced arthritis (AIA). AIA was induced in p53-/- and wild-type mice by priming with methylated bovine serum albumin followed by intra-articular challenge. Severity of arthritis was assessed using a standardized scoring system and synovial apoptosis was detected by TdT-mediated biotin-dUTP nick-end labelling. Splenocyte proliferation was measured by [H(3)] incorporation and interferon (IFN)-gamma release. Splenocyte viability was assessed using Titreglow. Splenic T cell activation status was assessed by flow cytometry. Serum cytokines were measured using enzyme-linked immunosorbent assay. Increased severity of AIA in p53-/- mice was associated with decreased synovial apoptosis and with increased delayed-type hypersensitivity response, increased mitogen and antigen-induced splenocyte proliferation and increased IFN-gamma release in p53-/- mice compared with wild-type mice. Antigen-specific immunoglobulin responses were equivalent in both groups. Splenocyte viability was increased in p53-/- mice but T cell apoptosis was equivalent. T cell activation markers were increased in p53-/- mice compared with wild-type mice. Lipopolysaccharide-induced tumour necrosis factor release was increased in p53-/- mice with a trend to increased interleukin-6 in p53-/- mice compared with littermates. p53 is involved in the modulation of adaptive and innate immune responses relevant to arthritis models and is also involved in the modulation of severity of AIA by both cell-cycle dependent and cell-cycle-independent mechanisms.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- CD4-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Genes, p53/immunology
- Hypersensitivity, Delayed/genetics
- Hypersensitivity, Delayed/immunology
- Immunoglobulin G/biosynthesis
- Interferon-gamma/biosynthesis
- Lipopolysaccharides/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phytohemagglutinins/immunology
- Serum Albumin, Bovine/immunology
- Severity of Illness Index
- Spleen/immunology
- T-Lymphocytes/immunology
- Tumor Suppressor Protein p53/immunology
Collapse
Affiliation(s)
- M Leech
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Melbourne, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sharma V, Delgado M, Ganea D. Granzyme B, a new player in activation-induced cell death, is down-regulated by vasoactive intestinal peptide in Th2 but not Th1 effectors. THE JOURNAL OF IMMUNOLOGY 2006; 176:97-110. [PMID: 16365400 DOI: 10.4049/jimmunol.176.1.97] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Following antigenic stimulation and differentiation, Th1 and Th2 effector cells contribute differently to cellular and humoral immunity. Vasoactive intestinal peptide (VIP) induces Th2 responses by promoting Th2 differentiation and survival. In this study, we investigate the mechanisms for the protective effect of VIP against activation-induced cell death (AICD) of Th2 effectors. Surprisingly, microarray and protein data indicate that VIP prevents the up-regulation of granzyme B (GrB) in Th2 but not Th1 effectors. This is the first report of GrB expression in Th cells and of its involvement in activation-induced apoptosis. The enhanced responsiveness of Th2 cells to VIP is probably due to the higher expression of VIP receptors. The effect of VIP on Th2 survival and GrB expression is mediated through the VIP receptors 1 and 2 and cAMP signaling through exchange protein activated by cAMP and, to a lesser degree, protein kinase A. In addition to effects on GrB, VIP also down-regulates Fas ligand (FasL) and perforin (Pfr) expression. The extrinsic Fas/FasL pathway and the intrinsic GrB-dependent pathway act independently in inducing AICD. The mechanisms by which GrB induces cell death in Th1/Th2 effectors include both fratricide and suicide. Fratricide killing, prevalent in wild-type cells, is calcium and Pfr dependent, whereas the cell death of Pfr-deficient Th cells involves Fas and GrB but is calcium independent. This study identifies GrB as a new significant player in Th1/Th2 AICD and characterizes two mechanisms for the protective effect of VIP on Th2 survival, i.e., the down-regulation of GrB and FasL expression.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | | | | |
Collapse
|
10
|
Charo J, Finkelstein SE, Grewal N, Restifo NP, Robbins PF, Rosenberg SA. Bcl-2 overexpression enhances tumor-specific T-cell survival. Cancer Res 2005; 65:2001-8. [PMID: 15753400 PMCID: PMC2174600 DOI: 10.1158/0008-5472.can-04-2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although immunotherapy based on the adoptive transfer of tumor-specific T lymphocytes has been shown to result in dramatic clinical responses in some patients, the relatively low levels of engraftment and persistence of the adoptively transferred cells may limit these responses in many patients. In an attempt to develop strategies for prolonging the survival of adoptively transferred T cells, we have carried out studies in which T cells obtained from healthy donors as well as tumor-specific T cells were transduced with a retrovirus expressing the human Bcl-2 gene. Our results indicate that these transduced T cells overexpress Bcl-2, are resistant to death, and have a survival advantage following interleukin-2 withdrawal compared with control T cells transduced with a retrovirus expressing green fluorescent protein. Tumor-specific T cells overexpressing Bcl-2 maintained their ability to specifically recognize and respond to target cells. Furthermore, we show that adoptive immunotherapy of an established B16 tumor can be significantly enhanced by overexpressing Bcl-2 in melanoma-specific T-cell receptor transgenic T cells. Our data suggest that adoptive immunotherapy approaches to the treatment of cancer patients may be enhanced using Bcl-2-modified tumor-reactive T cells.
Collapse
MESH Headings
- Animals
- Cell Survival/immunology
- Cell Survival/physiology
- Crosses, Genetic
- Female
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Immunotherapy, Adoptive
- Interleukin-2/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/therapy
- Membrane Glycoproteins
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Proteins/genetics
- Proteins/physiology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/physiology
- Retroviridae/genetics
- T-Lymphocytes/immunology
- Tissue Donors
- Transduction, Genetic
- gp100 Melanoma Antigen
Collapse
Affiliation(s)
- Jehad Charo
- Surgery Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Miller AL, Webb MS, Copik AJ, Wang Y, Johnson BH, Kumar R, Thompson EB. p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol Endocrinol 2005; 19:1569-83. [PMID: 15817653 DOI: 10.1210/me.2004-0528] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glucocorticoids (GCs) induce apoptosis in lymphoid cells through activation of the GC receptor (GR). We have evaluated the role of p38, a MAPK, in lymphoid cell apoptosis upon treatment with the synthetic GCs dexamethasone (Dex) or deacylcortivazol (DAC). The highly conserved phosphoprotein p38 MAPK is activated by specific phosphorylation of its threonine180 and tyrosine182 residues. We show that Dex and DAC stimulate p38 MAPK phosphorylation and increase the mRNA of MAPK kinase 3, a specific immediate upstream activator of p38 MAPK. Enzymatic assays confirmed elevated activity of p38 MAPK. Pharmacological inhibition of p38 MAPK activity was protective against GC-driven apoptosis in human and mouse lymphoid cells. In contrast, inhibition of the MAPKs, ERK and cJun N-terminal kinase, enhanced apoptosis. Activated p38 MAPK phosphorylates specific downstream targets. Because phosphorylation of the GR is affected by MAPKs, we examined its phosphorylation state in our system. We found serine 211 of the human GR to be a substrate for p38 MAPK both in vitro and intracellularly. Mutation of this site to alanine greatly diminished GR-driven gene transcription and apoptosis. Our results clearly demonstrate a role for p38 MAPK signaling in the pathway of GC-induced apoptosis of lymphoid cells.
Collapse
Affiliation(s)
- Aaron L Miller
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, 301 University Boulevard, Room 5.104, Medical Research Building, Route 1068, Galveston, Texas 77555-1068, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Beere HM. "The stress of dying": the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 2005; 117:2641-51. [PMID: 15169835 DOI: 10.1242/jcs.01284] [Citation(s) in RCA: 455] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins (Hsps) are a family of highly homologous chaperone proteins that are induced in response to environmental, physical and chemical stresses and that limit the consequences of damage and facilitate cellular recovery. The underlying ability of Hsps to maintain cell survival correlates with an inhibition of caspase activation and apoptosis that can, but does not always, depend upon their chaperoning activities. Several mechanisms proposed to account for these observations impact on both the "intrinsic", mitochondria-dependent and the "extrinsic", death-receptor-mediated pathways to apoptosis. Hsps can inhibit the activity of pro-apoptotic Bcl-2 proteins to prevent permeabilization of the outer mitochondrial membrane and release of apoptogenic factors. The disruption of apoptosome formation represents another mechanism by which Hsps can prevent caspase activation and induction of apoptosis. Several signaling cascades involved in the regulation of key elements within the apoptotic cascade are also subject to modulation by Hsps, including those involving JNK, NF-kappaB and AKT. The coordinated activities of the Hsps thus modulate multiple events within apoptotic pathways to help sustain cell survival following damaging stimuli.
Collapse
Affiliation(s)
- Helen M Beere
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|
13
|
Heiser D, Labi V, Erlacher M, Villunger A. The Bcl-2 protein family and its role in the development of neoplastic disease. Exp Gerontol 2004; 39:1125-35. [PMID: 15288687 DOI: 10.1016/j.exger.2004.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 04/28/2004] [Accepted: 04/30/2004] [Indexed: 01/09/2023]
Abstract
Programmed cell death is the physiological process responsible for shaping organs during embryogenesis, maintaining tissue homeostasis and allowing controlled deletion of potentially harmful cells within the adult organism. The genetics of apoptosis are well conserved in all metazoans and although the evolution of humans and worms separated more than 600 million years ago, basic signaling concepts in apoptosis are highly related in both species. More crucial to humans than worms is the fact that abnormalities in cell death control can contribute to the development of cancer. While C.elegans can easily survive with additional somatic cells that should normally be deleted during development humans may suffer pathological consequences, ranging from tumorigenesis to autoimmunity, as a result of mutations in cell death regulatory genes. Despite the high degree of evolutionary conservation in cell death control, apoptosis signaling in mammals is much more complex than in C.elegans. In mammalian cells, programmed cell death can be induced either by ligand-mediated activation of certain members of the tumor necrosis factor receptor family--so-called 'death receptors'--such as Fas (CD95/Apo-1) and TRAIL or it can be induced in a cell autonomous manner in response to certain stress signals by pro-apoptotic members of the Bcl-2 family. In this review, we focus on general concepts of how the Bcl-2 protein family regulates cell death and how deregulation of this 'intrinsic' apoptotic signaling pathway impinges on the pathogenesis of malignant disease, the major cause of death in the aging population.
Collapse
Affiliation(s)
- Dietmar Heiser
- Institute of Pathophysiology, University of Innsbruck Medical School, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
14
|
Pandiyan P, Gärtner D, Soezeri O, Radbruch A, Schulze-Osthoff K, Brunner-Weinzierl MC. CD152 (CTLA-4) determines the unequal resistance of Th1 and Th2 cells against activation-induced cell death by a mechanism requiring PI3 kinase function. ACTA ACUST UNITED AC 2004; 199:831-42. [PMID: 15007096 PMCID: PMC2212725 DOI: 10.1084/jem.20031058] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Survival of antigen-experienced T cells is essential for the generation of adaptive immune responses. Here, we show that the genetic and antibody-mediated inactivation of CD152 (cytotoxic T lymphocyte antigen 4) in T helper (Th) effector cells reduced the frequency of nonapoptotic cells in a completely Fas/Fas ligand (FasL)–dependent manner. CD152 cross-linking together with stimulation of CD3 and CD28 on activated Th2 cells prevented activation-induced cell death (AICD) as a result of reduced Fas and FasL expression. Apoptosis protection conferred by CD152 correlated with the up-regulation of Bcl-2 and was mediated by phosphatidylinositol 3 kinase, which prevented FasL expression through the inhibitory phosphorylation of Forkhead transcription factor FKHRL1. We show that signals induced by CD152 act directly on activated T lymphocytes and, due to its differential surface expression on activated Th1 and Th2 cells, induce resistance to AICD mainly in Th2 cells.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Deutsches Rheuma-Forschungszentrum, Schumannstrasse 21/22, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G. Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 2003; 278:41173-81. [PMID: 12874291 DOI: 10.1074/jbc.m302644200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface-bound heat shock protein 70 (Hsp70) renders tumor cells more sensitive to the cytolytic attack mediated by natural killer (NK) cells. A 14-amino acid Hsp70 sequence, termed TKD (TKDNNLLGRFELSG, aa450-463) could be identified as the extracellular localized recognition site for NK cells. Here, we show by affinity chromatography that both, full-length Hsp70-protein and Hsp70-peptide TKD, specifically bind a 32-kDa protein derived from NK cell lysates. The serine protease granzyme B was uncovered as the 32-kDa Hsp70-interacting protein using matrix-assisted laser desorption ionization time-of-flight mass peptide fingerprinting. Incubation of tumor cells with increasing concentrations of perforin-free, isolated granzyme B shows specific binding and uptake in a dose-dependent manner and results in initiation of apoptosis selectively in tumor cells presenting Hsp70 on the cell surface. Remarkably, Hsp70 cation channel activity was also determined selectively in purified phospholipid membranes of Hsp70 membrane-positive but not in membrane-negative tumor cells. The physiological role of our findings was demonstrated in primary NK cells showing elevated cytoplasmic granzyme B levels following contact with TKD. Furthermore, an increased lytic activity of Hsp70 membrane-positive tumor cells could be associated with granzyme B release by NK cells. Taken together we propose a novel perforin-independent, granzyme B-mediated apoptosis pathway for Hsp70 membrane-positive tumor cells.
Collapse
Affiliation(s)
- Catharina Gross
- University Hospital Regensburg, Department of Hematology, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
16
|
Haslinger B, Strangfeld K, Peters G, Schulze-Osthoff K, Sinha B. Staphylococcus aureus alpha-toxin induces apoptosis in peripheral blood mononuclear cells: role of endogenous tumour necrosis factor-alpha and the mitochondrial death pathway. Cell Microbiol 2003; 5:729-41. [PMID: 12969378 DOI: 10.1046/j.1462-5822.2003.00317.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staphylococcus aureus infections can result in septic and toxic shock with depletion of immune cells and massive cytokine production. Recently, we showed that, in S. aureus-infected Jurkat T cells, alpha-toxin is the major mediator of caspase activation and apoptosis. Here, we investigated the mechanisms of cell death induced by alpha-toxin in peripheral blood mononuclear cells (MNC). We show that alpha-toxin is required and sufficient for S. aureus-induced cell death not only in transformed Jurkat T cells but also in MNC. Low alpha-toxin doses (3-30 ng ml-1) dose- and time-dependently induced apoptosis in both cell types, which was completely blocked by the caspase inhibitor zVAD-fmk. In Jurkat T cells and MNC, alpha-toxin induced the breakdown of the mitochondrial membrane potential and the intrinsic activation of caspase-3, -8 and -9. Interestingly, unlike in Jurkat T cells, apoptosis in MNC was additionally mediated by a caspase-9-independent component. MNC, but not Jurkat T cells, produced tumour necrosis factor (TNF)-alpha upon alpha-toxin stimulation. Blocking endogenous TNF-alpha with a TNF-alpha receptor antagonist partially decreased apoptosis in MNC. Our data therefore suggest that, whereas in Jurkat T cells apoptosis is solely mediated by the mitochondrial pathway, in MNC endogenous TNF-alpha and a death receptor-dependent pathway are also involved, which may contribute to depletion of immune cells during S. aureus infection.
Collapse
Affiliation(s)
- Bettina Haslinger
- Institute of Medical Microbiology, Medical School of University Hospital of Münster, Domagkstrasse 10, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
17
|
Küenzi P, Schneider P, Dobbelaere DAE. Theileria parva-transformed T cells show enhanced resistance to Fas/Fas ligand-induced apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1224-31. [PMID: 12874209 DOI: 10.4049/jimmunol.171.3.1224] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L) are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.
Collapse
Affiliation(s)
- Peter Küenzi
- Division of Molecular Pathology, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
18
|
Dimayuga FO, Ding Q, Keller JN, Marchionni MA, Seroogy KB, Bruce-Keller AJ. The neuregulin GGF2 attenuates free radical release from activated microglial cells. J Neuroimmunol 2003; 136:67-74. [PMID: 12620644 DOI: 10.1016/s0165-5728(03)00003-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuregulin glial growth factor 2 (GGF2) is a neural growth factor that is best known for its ability to promote the survival and proliferation of oligodendrocytes and Schwann cells. While it has been shown in recent years that GGF2 is effective in the treatment of autoimmune models of brain injury, it is not known if the beneficial effects of GGF2 are based in part on modulation of brain inflammation. In this report, we document the anti-inflammatory effects of recombinant human GGF2 (rhGGF2) on microglial free radical production in vitro. The presence of the neuregulin receptors ErbB2, 3, and 4 was confirmed in N9 microglial cells by Western blot analysis. Pretreatment of N9 cells with 10-100 ng/ml rhGGF2 24 h before either phorbol 12-myristate 3-acetate (PMA) or interferon gamma (IFNgamma) caused dose-dependent decreases in oxidative burst activity and nitrite release, respectively, with 50 and 100 ng/ml causing significant effects. When cells were co-treated with increasing doses of rhGGF2 and PMA or IFNgamma, only concentrations of 50 ng/ml, but not 10 or 100 ng/ml, were able to decrease oxidative burst activity and nitrite release. Finally, when microglial cell viability following treatment of cells with IFNgamma with or without rhGGF2 was evaluated, it was observed that 50 and 100 ng/ml rhGGF2 conferred significant protection against IFNgamma-induced cell death in microglial cells. Overall, these results indicate that the neuregulin rhGGF2 may have anti-inflammatory and antioxidant properties in the brain, and may also provide trophic support for brain-resident microglial cells.
Collapse
Affiliation(s)
- Filomena O Dimayuga
- Department of Anatomy and Neurobiology, MN 222 Chandler Medical Center, University of Kentucky, Lexington 40536-0298, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The genetic modification of T lymphocytes is an important approach to investigating normal T-cell biology and to increasing antitumour immunity. A number of genetic strategies aim to increase the recognition of tumour antigens, enhance antitumour activities and prevent T-cell malfunction. T cells can also be engineered to increase safety, as well as to express markers that can be tracked by non-invasive imaging technologies. Genetically modified T cells are therefore proving to be of great value for basic immunology and experimental immunotherapy.
Collapse
Affiliation(s)
- Michel Sadelain
- Department of Medicine and Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
20
|
Mak TW, Yeh WC. Signaling for survival and apoptosis in the immune system. ARTHRITIS RESEARCH 2002; 4 Suppl 3:S243-52. [PMID: 12110144 PMCID: PMC3240145 DOI: 10.1186/ar569] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Revised: 03/13/2002] [Accepted: 03/26/2002] [Indexed: 01/01/2023]
Abstract
Signal transduction induced by tumor necrosis factor (TNF) family members and their receptors has been an intensive area of research for several years. The major impact of these studies has been the delineation of apoptotic and cell survival signaling pathways. These discoveries, coupled with major advances in the study of mammalian apoptotic machinery, constitute a promising blueprint of the molecular network governing the fate of all living cells. In this review, we concentrate on the fate of cells in the immune system, where regulation of cell death and cell survival is a frequent and important exercise. A small imbalance in favor of either fate can result in disastrous pathological outcomes, such as cancer, autoimmunity or immune deficiency. It is an insurmountable task to discuss all molecules reported in the literature that are implicated in lymphocyte death or survival. We have therefore focused on discoveries made by mouse gene targeting, as these studies provide the most physiologically relevant information on each molecule. We begin with a description of signaling channels initiated by TNF receptor type 1 engagement, which can lead to either cell survival or to cell death. The point of bifurcation of this pathway and the decision-making molecules FADD, TRAF2 and RIP are discussed. We then follow apoptotic and survival pathways from upstream to downstream, describing many important players involved in signal transduction. Molecules important for NF-kappaB and JNK/stress-activated protein kinase activation such as IKKbeta, NEMO, MAP3K and TRAF6 are discussed, as is the impact of BAFF and its receptors on B-cell survival. Mouse mutants that have helped to define the mammalian apoptosis execution machinery, including animals lacking Apaf-1, caspase-3 and caspase-9, are also described. We conclude with a brief analysis of the potential therapeutic options arising from this body of work.
Collapse
Affiliation(s)
- Tak W Mak
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Ontario, Canada.
| | | |
Collapse
|