1
|
Pallar RM, Pingle SK, Gaikwad AS, Yennam NS, Raju N, Kumar P, Adepu VK, Tumane RG, Veeranjaneyulu C, Matte K. Lectin: A Molecular Tool in Cancer Diagnosis and Therapy with Special Reference to Reproductive Cancers. Mol Biotechnol 2025; 67:456-468. [PMID: 38456960 DOI: 10.1007/s12033-024-01086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
The prevalence of cancer deaths globally and domestically is higher especially due to the deferment of diagnosis and lack of facilities for women's reproductive cancers. The present review focussed to explore the application of lectins in cancer theranostics. Though there is cancer diagnostic and treatment available there is no promising early diagnostic tool and effective treatment available for the cancer which is the major concern. Lectins are cellulose-binding proteins that are strongly determined in saccharide groups of glycans, glycopeptides, or glycolipids. In the concomitance of events in cells, carbohydrates, and proteins, lectins play an important role. Lectins bind superiorly to the cancer cell membrane and their receptors induce the cytotoxic effect, which results in caspase-mediated cell death, and prohibits tumour development. Lectin snuffing also reveals polyamine stocks and impedes the growth of cancerous cells. They affect the cell cycle by non-apoptotic aggregation, seizure of the cell cycle phase G2, M, and the mediation of caspases. It can also adversely affect the action of telomerase and hinder vascularisation. They promote immunomodulation and adversely limit protein synthesis. Their easy availability and its characteristics support its use in cancer diagnosis and therapy, despite their small corollary effects. Future investigations recommend focussing more on the key applications of lectin by reducing its concurrent effects and carrying out more in-vitro investigations. However, the use of lectin formulations for cancer theranostics is a new area in cancer detection and treatment. In this review, plant lectin appears to be a potential target for cancer research in the fields of diagnosis and theranostics.
Collapse
Affiliation(s)
- Rachna M Pallar
- D Y Patil Deemed to be University, School of Biotechnology and Bioinformatics, Navi Mumbai, Maharashtra, 400614, India
| | - Shubhangi K Pingle
- Department of Biochemistry, Regional Occupational Health Centre (Southern), NIOH, ICMR Complex, Kannamangala PO, Poojanahalli Road, Devanahalli Taluk, Bengaluru, Karnataka, 562110, India.
| | - Avinash Shivaji Gaikwad
- Department of Hygiene, ICMR - Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| | - Naveen S Yennam
- D Y Patil Deemed to be University, School of Biotechnology and Bioinformatics, Navi Mumbai, Maharashtra, 400614, India
| | - N Raju
- Department of Biochemistry, ICMR- Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| | - Panja Kumar
- Department of Hygiene, ICMR - Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| | - Vinay Kumar Adepu
- Department of Biochemistry, ICMR- Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| | - Rajani G Tumane
- Department of Biochemistry, ICMR- Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| | - Chennuru Veeranjaneyulu
- Department of Biochemistry, ICMR- Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| | - Kartikey Matte
- Department of Biochemistry, ICMR- Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| |
Collapse
|
2
|
McCallum N, Najlah M. The Anticancer Activity of Monosaccharides: Perspectives and Outlooks. Cancers (Basel) 2024; 16:2775. [PMID: 39199548 PMCID: PMC11353049 DOI: 10.3390/cancers16162775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
A major hallmark of cancer is the reprogramming of cellular metabolism from oxidative phosphorylation (OXPHOS) to glycolysis, a phenomenon known as the Warburg effect. To sustain high rates of glycolysis, cancer cells overexpress GLUT transporters and glycolytic enzymes, allowing for the enhanced uptake and consumption of glucose. The Warburg effect may be exploited in the treatment of cancer; certain epimers and derivatives of glucose can enter cancer cells and inhibit glycolytic enzymes, stunting metabolism and causing cell death. These include common dietary monosaccharides (ᴅ-mannose, ᴅ-galactose, ᴅ-glucosamine, ʟ-fucose), as well as some rare monosaccharides (xylitol, ᴅ-allose, ʟ-sorbose, ʟ-rhamnose). This article reviews the literature on these sugars in in vitro and in vivo models of cancer, discussing their mechanisms of cytotoxicity. In addition to this, the anticancer potential of some synthetically modified monosaccharides, such as 2-deoxy-ᴅ-glucose and its acetylated and halogenated derivatives, is reviewed. Further, this article reviews how certain monosaccharides can be used in combination with anticancer drugs to potentiate conventional chemotherapies and to help overcome chemoresistance. Finally, the limitations of administering two separate agents, a sugar and a chemotherapeutic drug, are discussed. The potential of the glycoconjugation of classical or repurposed chemotherapy drugs as a solution to these limitations is reviewed.
Collapse
Affiliation(s)
| | - Mohammad Najlah
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK;
| |
Collapse
|
3
|
Zhang C, Liu J, Chao F, Wang S, Li D, Han D, Xu Z, Xu G, Chen G. Alpha-L-Fucosidase Has Diagnostic Value in Prostate Cancer With "Gray-Zone PSA" and Inhibits Cancer Progression via Regulating Glycosylation. Front Oncol 2021; 11:742354. [PMID: 34881177 PMCID: PMC8645591 DOI: 10.3389/fonc.2021.742354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023] Open
Abstract
Background This study aimed to explore the diagnostic value of alpha-l-fucosidase (AFU) in prostate cancer (PCa) patients with “gray-zone PSA” and to investigate the correlation between AFU expression and clinicopathological characteristics of PCa patients. Methods The level of AFU and other necessary clinicopathological variables of patients were retrieved from electronic medical records. The transcriptome profiling and clinical information of PCa patients were obtained from The Cancer Genome Atlas (TCGA) database. The protein level of AFU in tissue was assessed by immunohistochemistry (IHC). All the data were processed by appropriate analysis methods. The p-value of <0.05 was considered statistically significant. Results AFU showed ideal diagnostic value for PCa with prostate-specific antigen (PSA) levels ranging from 4 to 10 ng/ml, and its optimal cutoffs were 19.5 U/L. Beyond this, low AFU expression was associated with high pathological grade, T stage and N stage, more postoperative residual tumors, and poor primary therapy outcome, as well as shorter progression-free interval. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis illustrated that FUCA1/FUCA2 exerted tumor-suppressive function by regulating the glycosylation. Conclusions AFU (<19.5 U/L) could effectively distinguish the PCa from the patients with “gray-zone PSA”, and low expression of AFU was an independent unfavorable predictor for the clinicopathological characteristics of PCa patients.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jikai Liu
- Department of Urology, Qilu Hospital, Shandong University, Jinan, China
| | - Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Dawei Li
- Department of Urology, Qilu Hospital, Shandong University, Jinan, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital, Shandong University, Jinan, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Conroy LR, Stanback AE, Young LEA, Clarke HA, Austin GL, Liu J, Allison DB, Sun RC. In Situ Analysis of N-Linked Glycans as Potential Biomarkers of Clinical Course in Human Prostate Cancer. Mol Cancer Res 2021; 19:1727-1738. [PMID: 34131069 DOI: 10.1158/1541-7786.mcr-20-0967] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the most common cancer in men worldwide. Despite its prevalence, there is a critical knowledge gap in understanding factors driving disparities in survival among different cohorts of patients with prostate cancer. Identifying molecular features separating disparate populations is an important first step in prostate cancer research that could lead to fundamental hypotheses in prostate biology, predictive biomarker discovery, and personalized therapy. N-linked glycosylation is a cotranslational event during protein folding that modulates a myriad of cellular processes. Recently, aberrant N-linked glycosylation has been reported in prostate cancers. However, the full clinical implications of dysregulated glycosylation in prostate cancer has yet to be explored. Herein, we performed direct on-tissue analysis of N-linked glycans using matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) from tissue microarrays of over 100 patient tumors with over 10 years of follow-up metadata. We successfully identified a panel of N-glycans that are unique between benign and prostate tumor tissue. Specifically, high-mannose as well as tri-and tetra-antennary N-glycans were more abundant in tumor tissue and increase proportionally with tumor grade. Further, we expanded our analyses to examine the N-glycan profiles of Black and Appalachian patients and have identified unique glycan signatures that correlate with recurrence in each population. Our study highlights the potential applications of MALDI-MSI for digital pathology and biomarker discovery for prostate cancer. IMPLICATIONS: MALDI-MSI identifies N-glycan perturbations in prostate tumors compared with benign tissue. This method can be utilized to predict prostate cancer recurrence and study prostate cancer disparities.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky.,Markey Cancer Center, Lexington, Kentucky
| | - Alexandra E Stanback
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Lyndsay E A Young
- Markey Cancer Center, Lexington, Kentucky.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Harrison A Clarke
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,Massey Cancer Center, Richmond, Virginia
| | - Derek B Allison
- Markey Cancer Center, Lexington, Kentucky.,Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Ramon C Sun
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky. .,Markey Cancer Center, Lexington, Kentucky
| |
Collapse
|
5
|
Deng Y, Zhao Y, Fan W, Peng J, Luo X, Mo Y, Xiao B, Zhang L, Pan Z. Preoperative AFU Is a Useful Serological Prognostic Predictor for Colorectal Liver Oligometastasis Patients Undergoing Hepatic Resection. J Cancer 2019; 10:5049-5056. [PMID: 31602256 PMCID: PMC6775624 DOI: 10.7150/jca.31539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/05/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Preoperative alpha-l-fucosidase (AFU) has been used as a diagnostic biomarker for several cancers, but its role as a prognostic predictor in colorectal cancer liver oligometastasis (CLOM) patients after radical surgery has not been well defined. This study aimed to investigate the prognostic significance of preoperative serum AFU for CLOM patients after hepatic resection. Methods: A retrospective data set was collected to evaluate the prognostic value of preoperative AFU in CLOM patients after radical hepatic resection. A total of 269 patients with histopathologically confirmed CLOM were enrolled. The optimal cut-off value of preoperative AFU was determined using X-tile software. Univariate and multivariate analyses were used to identify the prognostic significance of preoperative serum AFU. Results: The X-tile software showed that the optimal cut-off value of preoperative AFU was set at 30.8 U/L. Patients with preoperative AFU≤30.8 and >30.8 were classified into high and low AFU groups, respectively. Female patients and those with a single liver metastasis had a higher tendency to have a preoperative AFU≤30.8 U/L; patients with lower clinical risk score (CRS) were more likely to have AFU >30.8 U/L than patients with higher CRS. The results showed that preoperative AFU was an independent prognostic factor for overall survival (OS) (P=0.041). Patients with a preoperative AFU≤30.8 U/L had a lower OS rate than those with AFU>30.8 U/L. Furthermore, for patients with lower CRS scores (0-2), the tendency clearly showed that patients with higher preoperative AFU had a better prognosis (P=0.029). Conclusions: Higher preoperative serum AFU can predict better survival in CLOM patients after hepatic resection, especially for CLOM patients with lower CRS scores.
Collapse
Affiliation(s)
- Yuxiang Deng
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yujie Zhao
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenhua Fan
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianhong Peng
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Luo
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yiwen Mo
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Binyi Xiao
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Zhang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhizhong Pan
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Keeley TS, Yang S, Lau E. The Diverse Contributions of Fucose Linkages in Cancer. Cancers (Basel) 2019; 11:E1241. [PMID: 31450600 PMCID: PMC6769556 DOI: 10.3390/cancers11091241] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Fucosylation is a post-translational modification of glycans, proteins, and lipids that is responsible for many biological processes. Fucose conjugation via α(1,2), α(1,3), α(1,4), α(1,6), and O'- linkages to glycans, and variations in fucosylation linkages, has important implications for cancer biology. This review focuses on the roles that fucosylation plays in cancer, specifically through modulation of cell surface proteins and signaling pathways. How L-fucose and serum fucosylation patterns might be used for future clinical diagnostic, prognostic, and therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Tyler S Keeley
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
- University of South Florida Cancer Biology Graduate Program, Tampa, FL 33602, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA.
| |
Collapse
|
7
|
Herrera H, Dilday T, Uber A, Scott D, Zambrano JN, Wang M, Angel PM, Mehta AS, Drake RR, Hill EG, Yeh ES. Core-Fucosylated Tetra-Antennary N-Glycan Containing A Single N-Acetyllactosamine Branch Is Associated with Poor Survival Outcome in Breast Cancer. Int J Mol Sci 2019; 20:E2528. [PMID: 31126011 PMCID: PMC6566954 DOI: 10.3390/ijms20102528] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 01/26/2023] Open
Abstract
(1) Glycoproteins account for ~80% of proteins located at the cell surface and in the extracellular matrix. A growing body of evidence indicates that α-L-fucose protein modifications contribute to breast cancer progression and metastatic disease. (2) Using a combination of techniques, including matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) based in cell and on tissue imaging and glycan sequencing using exoglycosidase analysis coupled to hydrophilic interaction ultra-high performance liquid chromatography (HILIC UPLC), we establish that a core-fucosylated tetra-antennary glycan containing a single N-acetyllactosamine (F(6)A4G4Lac1) is associated with poor clinical outcomes in breast cancer, including lymph node metastasis, recurrent disease, and reduced survival. (3) This study is the first to identify a single N-glycan, F(6)A4G4Lac1, as having a correlation with poor clinical outcomes in breast cancer.
Collapse
Affiliation(s)
- Harmin Herrera
- Graduate School of Biomedical Sciences and Professional Studies, Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Tinslee Dilday
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Allison Uber
- Department of Pediatrics, Division of Hematology/Oncology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Danielle Scott
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Joelle N Zambrano
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Mengjun Wang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Elizabeth G Hill
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
8
|
Vecchio G, Parascandolo A, Allocca C, Ugolini C, Basolo F, Moracci M, Strazzulli A, Cobucci-Ponzano B, Laukkanen MO, Castellone MD, Tsuchida N. Human a-L-fucosidase-1 attenuates the invasive properties of thyroid cancer. Oncotarget 2018; 8:27075-27092. [PMID: 28404918 PMCID: PMC5432319 DOI: 10.18632/oncotarget.15635] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
Glycans containing α-L-fucose participate in diverse interactions between cells and extracellular matrix. High glycan expression on cell surface is often associated with neoplastic progression. The lysosomal exoenzyme, α-L-fucosidase-1 (FUCA-1) removes fucose residues from glycans. The FUCA-1 gene is down-regulated in highly aggressive and metastatic human tumors. However, the role of FUCA-1 in tumor progression remains unclear. It is speculated that its inactivation perturbs glycosylation of proteins involved in cell adhesion and promotes cancer. FUCA-1 expression of various thyroid normal and cancer tissues assayed by immunohistochemical (IHC) staining was high in normal thyroids and papillary thyroid carcinomas (PTC), whereas it progressively decreased in poorly differentiated, metastatic and anaplastic thyroid carcinomas (ATC). FUCA-1 mRNA expression from tissue samples and cell lines and protein expression levels and enzyme activity in thyroid cancer cell lines paralleled those of IHC staining. Furthermore, ATC-derived 8505C cells adhesion to human E-selectin and HUVEC cells was inhibited by bovine α-L-fucosidase or Lewis antigens, thus pointing to an essential role of fucose residues in the adhesive phenotype of this cancer cell line. Finally, 8505C cells transfected with a FUCA-1 containing plasmid displayed a less invasive phenotype versus the parental 8505C. These results demonstrate that FUCA-1 is down-regulated in ATC compared to PTC and normal thyroid tissues and cell lines. As shown for other human cancers, the down-regulation of FUCA-1 correlates with increased aggressiveness of the cancer type. This is the first report indicating that the down-regulation of FUCA-1 is related to the increased aggressiveness of thyroid cancer.
Collapse
Affiliation(s)
- Giancarlo Vecchio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Sergio Pansini, 5, Naples, Italy.,Istituto Superiore di Oncologia, Via Sergio Pansini, 5, Naples and Via Balbi 5, Genoa, Italy
| | | | - Chiara Allocca
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Sergio Pansini, 5, Naples, Italy
| | - Clara Ugolini
- Dipartimento di Medicina di Laboratorio, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Fulvio Basolo
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Italy
| | - Marco Moracci
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Via P. Castellino, 111, Naples, Italy.,Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Andrea Strazzulli
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Via P. Castellino, 111, Naples, Italy.,Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Beatrice Cobucci-Ponzano
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Via P. Castellino, 111, Naples, Italy
| | | | | | - Nobuo Tsuchida
- Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
9
|
Bonin S, Parascandolo A, Aversa C, Barbazza R, Tsuchida N, Castellone MD, Stanta G, Vecchio G. Reduced expression of α-L-Fucosidase-1 (FUCA-1) predicts recurrence and shorter cancer specific survival in luminal B LN+ breast cancer patients. Oncotarget 2018; 9:15228-15238. [PMID: 29632639 PMCID: PMC5880599 DOI: 10.18632/oncotarget.24445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/01/2018] [Indexed: 01/11/2023] Open
Abstract
Background The lysosomal enzyme α-L-Fucosidase-1 (FUCA-1) catalyzes the hydrolytic cleavage of terminal fucose residues. FUCA-1 gene is down-regulated in highly aggressive and metastatic human tumors as its inactivation perturbs the fucosylation of proteins involved in cell adhesion, migration and metastases. Results Negativity to FUCA-1 was significantly related to the development of later recurrences in breast cancer patients with lymph node involvement at diagnosis. Cancer specific survival of luminal B LN+ patients was influenced by FUCA-1 expression as luminal B LN+ patients with positive expression had a longer cancer specific survival. FUCA-1 mRNA expression was inversely related to cancer stage and lymph node involvement. WB and qPCR analysis of FUCA-1 expression in breast cancer-derived cell lines confirmed an inverse relationship with tumor aggressiveness. Conclusions This study shows that, within LN+ breast cancer patients, FUCA-1 is able to identify a sub-set of non recurrent patients characterized by the positive expression of FUCA-1 and that, within luminal B LN+ patients, the expression of FUCA-1 predicts longer cancer specific survival. Methods We have analyzed FUCA-1 in 305 breast cancer patients by Immunohistochemistry (IHC), and by qPCR in breast cancer patients and in breast cancer cell lines.
Collapse
Affiliation(s)
- Serena Bonin
- Dipartimento di Scienze Mediche, Università di Trieste-Cattinara, Trieste, Italy
| | | | - Cinzia Aversa
- Dipartimento di Scienze Mediche, Università di Trieste-Cattinara, Trieste, Italy
| | - Renzo Barbazza
- Dipartimento di Scienze Mediche, Università di Trieste-Cattinara, Trieste, Italy
| | - Nobuo Tsuchida
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Giorgio Stanta
- Dipartimento di Scienze Mediche, Università di Trieste-Cattinara, Trieste, Italy
| | - Giancarlo Vecchio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy.,Istituto Superiore di Oncologia, Naples, Italy.,Istituto Superiore di Oncologia, Genoa, Italy
| |
Collapse
|
10
|
Tu Z, Lin YN, Lin CH. Development of fucosyltransferase and fucosidase inhibitors. Chem Soc Rev 2013; 42:4459-75. [PMID: 23588106 DOI: 10.1039/c3cs60056d] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L-Fucose-containing glycoconjugates are essential for a myriad of physiological and pathological activities, such as inflammation, bacterial and viral infections, tumor metastasis, and genetic disorders. Fucosyltransferases and fucosidases, the main enzymes involved in the incorporation and cleavage of L-fucose residues, respectively, represent captivating targets for therapeutic treatment and diagnosis. We herein review the important breakthroughs in the development of fucosyltransferase and fucosidase inhibitors. To demonstrate how the synthesized small molecules interact with the target enzymes, i.e. delineation of the structure-activity relationship, we cover the reaction mechanisms and resolved X-ray crystal structures, discuss how this information guides the design of enzyme inhibitors, and explain how the molecules were optimized to achieve satisfying potency and selectivity.
Collapse
Affiliation(s)
- Zhijay Tu
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | | | | |
Collapse
|
11
|
Lin YN, Stein D, Lin SW, Chang SM, Lin TC, Chuang YR, Gervay-Hague J, Narimatsu H, Lin CH. Chemoenzymatic Synthesis of GDP-L-Fucose Derivatives as Potent and Selective α-1,3-Fucosyltransferase Inhibitors. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100940] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Meng J, Yu S, Wan S, Ren S, Jiang T. Synthesis, Saccharide-Binding and Anti-cancer Cell Proliferation Properties of Arylboronic Acid Derivatives of Indoquinolines. Chem Biol Drug Des 2011; 78:816-25. [DOI: 10.1111/j.1747-0285.2011.01196.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Abstract
AbstractIt is documented that deficient fucosylation may play an important role in the pathogenesis of cancer. Since the supplementation of L-fucose could restore fucosylation in both in vitro and in vivo conditions, our intent was to examine the effect of intraperitoneal administration of L-fucose and L-rhamnose (a similar deoxysaccharide) on tumour growth, mitotic activity and metastatic setting of a solid form of Ehrlich carcinoma as well as on the survival rate of tumour bearing mice. Both L-fucose and L-rhamnose exerted a significant suppressive effect on tumour growth (P<0.05). After 10 days of therapy, the greatest inhibition of tumour growth expressed as a percentage of controls was observed in L-rhamnose at a dose of 3 g/kg/day (by 62%) and L-fucose at a dose of 5 g/kg/day (by 47%). Moreover, the mitotic index decreased with increasing doses of L-fucose and L-rhamnose. Prolonged survival of tumour bearing mice was observed after 14 consecutive days of daily administering L-rhamnose. Its optimal dose was estimated to be 3.64 g/kg/day. L-Fucose, however, displayed only a slight effect on the survival of the mice. Our results suggest that L-fucose and especially L-rhamnose have anticancer potential. This study is the first to demonstrate the tumour-inhibitory effect of L-rhamnose.
Collapse
|
14
|
Pugalendhi P, Manoharan S, Suresh K, Baskaran N. Genistein and daidzein, in combination, protect cellular integrity during 7,12-dimethylbenz[a]anthracene (DMBA) induced mammary carcinogenesis in Sprague-Dawley rats. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2010; 8:91-7. [PMID: 22238489 PMCID: PMC3252688 DOI: 10.4314/ajtcam.v8i2.63196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The status of glycoconjugates (protein bound hexose, hexosamine, sialic acid and fucose) in plasma or serum serve as potential biomarkers for assessing tumor progression and therapeutic interventions. Aim of the present study was to investigate the protective effect of two major soy isoflavones, genistein and daidzein, in combination on the status of glycoconjugates in plasma, erythrocyte membrane and mammary tissues during 7,12-dimethylbenz[a]anthracene (DMBA) induced mammary carcinogenesis in female Sprague-Dawley rats. A single subcutaneous injection of DMBA (25 mg rat(-1)) in the mammary gland developed mammary carcinoma in female Sprague-Dawley rats. Elevated levels of plasma and mammary tissue glycoconjugates accompanied by reduction in erythrocyte membrane glycoconjugates were observed in rats bearing mammary tumors. Oral administration of genistein + daidzein (20 mg + 20 mg kg(-1) bw/day) to DMBA treated rats significantly (p< 0.05) brought back the status of glycoconjugates to near normal range. The present study thus demonstrated that genistein and daidzein in combination protected the structural integrity of the cell surface and membranes during DMBA-induced mammary carcinogenesis.
Collapse
Affiliation(s)
- Pachaiappan Pugalendhi
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | | | | | |
Collapse
|
15
|
Chang WW, Lee CH, Lee P, Lin J, Hsu CW, Hung JT, Lin JJ, Yu JC, Shao LE, Yu J, Wong CH, Yu AL. Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci U S A 2008; 105:11667-72. [PMID: 18685093 PMCID: PMC2575305 DOI: 10.1073/pnas.0804979105] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Indexed: 12/14/2022] Open
Abstract
We examined the expression in breast cancer stem cells (BCSCs) of Globo H, a potential tumor-associated antigen for immunotherapy of epithelial cancers including breast cancer. Flow cytometry revealed Globo H expression in 25/41 breast cancer specimens (61.0%). Non-BCSCs from 25/25 and BCSCs from 8/40 (20%) expressed Globo H. We showed the expression of stage-specific embryonic antigen 3 (SSEA3), the pentasaccharide precursor of Globo H, in 31/40 (77.5%) tumors. Non-BCSCs from 29/40 [corrected] and BCSCs from 25/40 (62.5%) expressed SSEA3. Like Globo H, SSEA3 expression in normal tissues was predominately at the secretory borders of epithelium, where access to the immune system is restricted. Immunization of mice with Globo H-KLH and alpha-GalCer induced antibodies reactive with Globo H and SSEA3, suggesting that a Globo H-based vaccine will target tumor cells expressing Globo H or SSEA3. We next sought to reduce Globo H expression by siRNA targeting fucosyltransferase (FUT) 1 and 2, which mediate alpha-1,2 linkage of fucose to SSEA3 to generate Globo H. We showed both genes to be involved in the biosynthesis of Globo H. Moreover, FUT2 expression in BCSCs was significantly lower than in non-BCSCs harvested from a primary human breast cancer in NOD/SCID mouse, whereas FUT1 was slightly lower in BCSCs. Thus, the lower expression of Globo H in BCSCs may be attributed to less FUT2/FUT1, and to reduced SSEA3 in BCSCs compared with non-BCSCs. Our findings provide insight into further development of a Globo H-based vaccine and FUT1/FUT2-targeted therapy for breast cancer.
Collapse
Affiliation(s)
| | | | | | - Juway Lin
- *Genomics Research Center and
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan; and
| | | | | | | | - Jyh-Cherng Yu
- General Surgery, Department of Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | | | - John Yu
- *Genomics Research Center and
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | |
Collapse
|
16
|
Cell Surface Associated Alpha-l-Fucose Moieties Modulate Human Breast Cancer Neoplastic Progression. Pathol Oncol Res 2008; 14:145-56. [DOI: 10.1007/s12253-008-9036-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/18/2008] [Indexed: 12/25/2022]
|
17
|
|
18
|
Mountford C, Lean C, Malycha P, Russell P. Proton spectroscopy provides accurate pathology on biopsy and in vivo. J Magn Reson Imaging 2006; 24:459-77. [PMID: 16897689 DOI: 10.1002/jmri.20668] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the last 25 years, MR spectroscopy (MRS) has moved from being a basic research tool into routine clinical use. The spectroscopy method reports on those chemicals that are mobile on the MR time scale. Many of these chemicals reflect specific pathological processes but are complicated by the fact that many chemicals change at one time. There are currently two clinical applications for spectroscopy. The first is in the pathology laboratory, where it can be an adjunct to, and in some cases replacement, for difficult pathologies like Barrett's esophagus and follicular adenoma of the thyroid. The spectroscopy method on a breast biopsy can also report on prognostic indicators, including the potential for spread, from information present in the primary tumor alone. The second application for spectroscopy is in vivo to provide a preoperative diagnosis and this is now achievable for several organs including the prostate. The development of spectroscopy for clinical purposes has relied heavily on the serially-sectioned histopathology to confirm the high accuracy of the method. The combination of in vivo MRI, in vivo MRS, and ex vivo MRS on biopsy samples offers a modality of very high accuracy for preoperative diagnosis and provision of prognostic information for human cancers.
Collapse
Affiliation(s)
- Carolyn Mountford
- Institute for Magnetic Resonance Research, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
19
|
Lin TW, Chang WW, Chen CC, Tsai YC. Stachybotrydial, a potent inhibitor of fucosyltransferase and sialyltransferase. Biochem Biophys Res Commun 2005; 331:953-7. [PMID: 15882970 DOI: 10.1016/j.bbrc.2005.03.232] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Indexed: 10/25/2022]
Abstract
Elevated expression of fucosylated glycoconjugates and fucosyltransferases (Fuc-Ts) is found in various tumor cells and has been correlated with aspects of tumor progression such as cell adhesion and metastasis. Thus, fucosyltransferase inhibitors are potentially useful as anti-tumor agents. In the present study, three known spirocyclic drimanes (1, 2, and 3) were isolated from the culture broth of the fungus Stachybotrys cylindrospora. Compound 1 (stachybotrydial) exhibits potent inhibitory activity against alpha1,3-fucosyltransferase (Fuc-TV) during screening, while compounds 2 and 3 show no such inhibitory activity. Kinetic analysis indicates that compound 1 is an uncompetitive inhibitor with respect to GDP-fucose and a noncompetitive inhibitor with respect to N-acetyllactosamine with Ki values of 10.7 and 9.7 microM, respectively. In addition, all three compounds also possess inhibitory activity against sialyltransferase (ST) but not against beta1,4-galactosyltransferase. These observations provide novel chemical structure information that will help in the design of novel Fuc-T and ST inhibitors.
Collapse
Affiliation(s)
- Tzu-Wen Lin
- Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
20
|
Zipin A, Israeli-Amit M, Meshel T, Sagi-Assif O, Yron I, Lifshitz V, Bacharach E, Smorodinsky NI, Many A, Czernilofsky PA, Morton DL, Witz IP. Tumor-microenvironment interactions: the fucose-generating FX enzyme controls adhesive properties of colorectal cancer cells. Cancer Res 2004; 64:6571-8. [PMID: 15374970 DOI: 10.1158/0008-5472.can-03-4038] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extravasation of tumor cells is a pivotal step in metastasis formation. This step is initiated by an interaction of extravasating tumor cells with endothelial cells. Among the molecules mediating tumor-endothelium interactions are selectins and their fucosylated ligands. In a previous study, we demonstrated that the fucose-generating FX enzyme regulates the expression of selectin ligands by B and T lymphocytes and by head and neck squamous cell carcinoma cells. It was also shown that the FX enzyme regulated important interaction parameters between these cancer cells and endothelial cells. The present study was aimed to determine whether the FX enzyme controls adhesive interactions between colorectal cancer cells and endothelial cells. The results clearly indicate that this is indeed the case. Overexpressing the FX enzyme by the transfer of FX cDNA to low FX-expressing colorectal cancer cells resulted in an increased adhesive capacity of the transfectants to activated endothelial cells and to recombinant E-selectin. Down-regulating FX levels in colorectal cancer cells expressing high levels of endogenous FX by transfection with small-interfering RNA resulted in a down-regulated expression of the selectin ligand sialyl Lewis-a and a decrease in the adhesive capacity of the transfectants to activated endothelial cells and to recombinant E-selectin. These transfection experiments also indicated that manipulating the levels of the FX enzyme affected global cellular fucosylation and altered the interaction of colorectal cancer cells with some extracellular matrix components such as fibronectin. We also found that highly metastatic colorectal cancer variants express higher levels of FX and of sialyl Lewis-a than low metastatic variants originating in the same tumors. These results lead us to hypothesize that the FX enzyme controls the capacity of colorectal cancer to extravasate and form metastasis. If this hypothesis will be confirmed the FX enzyme could become a target molecule for metastasis prevention.
Collapse
Affiliation(s)
- Adi Zipin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|