1
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
2
|
Zhang WT, Zhu GL, Xu WQ, Zhang W, Wang HZ, Wang YB, Li YX. Association of PD-1/PD-L1 expression and Epstein--Barr virus infection in patients with invasive breast cancer. Diagn Pathol 2022; 17:61. [PMID: 35842661 PMCID: PMC9287995 DOI: 10.1186/s13000-022-01234-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Causative factors of breast cancer include infections, such as Epstein-Barr virus (EBV) infection. The aim of this study was to analyze the clinicopathological features of EBV-positive (IBC) and determine if EBV affects programmed cell death receptor 1 (PD-1)/PD ligand 1 (PD-L1) expression in IBC, similar to other EBV-infected tumors with PD-L1/PD-1 expression. METHODS We collected 140 samples of IBC tissues and 25 samples of adjacent tissues. All patients were followed-up by telephone from the day of surgery to December 2020. Chromogenic in-situ hybridization was performed to evaluate EBV-encoded RNA (EBER). Immunohistochemistry was performed to evaluate PD-L1 and PD-1 expressions. The correlation between PD1/PDL1 expression and clinicopathological features was also analyzed. RESULTS EBER was detected in 57 of 140 (40.7%) IBC tissues and not detected in any adjacent tissue (P < 0.05). Clinicopathologic features of patients were consistent with EBV-associated IBC. EBV infection was correlated with the mass size, menopausal status, axillary lymph node metastasis, vascular invasion, Ki-67 index, clinical stage, and estrogen receptor and progesterone receptor expressions (all P < 0.05), but not with the histological type, invasive ductal carcinoma histological grade, or human epidermal growth factor receptor 2 (HER2) expression (all P > 0.05). The positive rate of PD-1/PD-L1 expression was higher in the EBV-positive group than in the EBV-negative group (P < 0.05). The Kaplan-Meier univariate survival analysis showed that EBV was associated with poor disease-free survival and overall survival in patients with IBC. PD-L1/PD-1 expression could predict a poor prognosis. CONCLUSIONS In this study, clinicopathologic characteristics of patients were consistent with EBV-infected IBC. Patients with EBV-positive breast cancer were more likely to have elevated PD-1/PDL-1 expression compared to those with EBV-negative breast cancer. This finding could serve as a basis to explore therapeutic targets, particularly immunotherapy, for patients with IBC.
Collapse
Affiliation(s)
- Wei-Tong Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Gui-Lu Zhu
- Department of Clinical Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Wu-Qin Xu
- Department of Clinical Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Wei Zhang
- Department of Clinical Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Hui-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ya-Bing Wang
- Breast Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China.
| | - Yong-Xiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
3
|
Liu Y, Liu S, Li G, Li Y, Chen L, Feng J, Yang Y, Jiang T, Qiu X. Association of high-dose radiotherapy with improved survival in patients with newly diagnosed low-grade gliomas. Cancer 2021; 128:1085-1092. [PMID: 34780673 PMCID: PMC9299029 DOI: 10.1002/cncr.34028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND The radiation dose for patients with low-grade gliomas (LGGs) is controversial. The objective of this study was to investigate the impact of the radiation dose on survival for patients with LGGs and especially for molecularly defined subgroups. METHODS Three hundred fifty-one patients with newly diagnosed LGGs from the multicenter Chinese Glioma Cooperative Group received postoperative radiotherapy (RT) in 2005-2018. The RT dose, as a continuous variable, was entered into a Cox regression model using penalized spline regression to allow for a nonlinear relationship between the RT dose and overall survival (OS) or progression-free survival (PFS). Inverse probability of treatment weighting (IPTW)-adjusted propensity scores were used to correct for potential confounders. Dose effects on survival within IDH mutation and 1p/19q codeletion defined subgroups were analyzed. RESULTS The risk of mortality and disease progression decreased sharply until 54 Gy. High-dose RT (≥54 Gy) was associated with significantly better 5-year OS (81.7% vs 64.0%; hazard ratio [HR], 0.33; P < .001) and PFS (77.4% vs 54.5%; HR, 0.46; P < .001) than low-dose RT (<54 Gy). IPTW correction confirmed the associations (HR for OS, 0.44; P = .001; HR for PFS, 0.48; P = .003). High-dose RT was associated with longer PFS (HR, 0.25; P = .002; HR, 0.21; P = .039) and OS (HR, 0.27; P = .006; HR, 0.07; P = .017) in IDH-mutant/1p/19q noncodeleted and IDH wild-type subgroups, respectively. No significant difference in survival was observed with high-dose RT in the IDH-mutant/1p/19q codeleted subgroup. CONCLUSIONS High-dose RT (≥54 Gy) was effective in LGGs. Patients with an IDH mutation/1p/19q noncodeletion or IDH wild-type may need to be considered for high-dose RT. LAY SUMMARY The radiotherapy dose-response was observed in patients with low-grade gliomas, and high-dose radiotherapy (≥54 Gy) was associated with improved survival. Patients with an IDH mutation/1p/19q noncodeletion or wild-type IDH may have improved survival with the administration of high-dose radiotherapy.
Collapse
Affiliation(s)
- Yanwei Liu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanong Li
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Chen
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jin Feng
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Yang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaoguang Qiu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
4
|
Jacobo JA, Buentello M, Del Valle R. C-methionine-PET-guided Gamma Knife radiosurgery boost as adjuvant treatment for newly diagnosed glioblastomas. Surg Neurol Int 2021; 12:247. [PMID: 34221578 PMCID: PMC8247676 DOI: 10.25259/sni_706_2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background: The most common glial tumor is the glioblastoma, and the prognosis remains dismal despite a multimodal therapeutic approach. The role of radiosurgery for the treatment of glioblastomas has been evaluated in several studies with some benefit at the recurrent stage. We evaluate the results of the protocol administered at the Gamma Knife unit administering radiosurgery as a boost to metabolic active parts of the tumor after the patient had completed traditional external beam radiotherapy (XBRT) as part of the Stupp protocol for high-grade gliomas. Methods: This is a retrospective analysis of seven patients with newly diagnosed glioblastomas who were treated with Gamma Knife radiosurgery as a boost after receiving XBRT as part of the Stupp protocol. The target of radiation was determined according to the findings of the C-methionine PET scan in relation to magnetic resonance images. The primary end point of this study was to determine the progression-free survival (PFS) from the time of diagnosis. Results: The median age of patients was 48.8 years and the mean Karnofsky performance score was 92.8%. The median PFS was 12.4 months. No radiation adverse effects were documented. Conclusion: Stereotactic radiosurgery is safe to use in the upfront treatment for these patients and appears to have a beneficial role in improving the PFS. This beneficial role seems to be conditioned not only by the time the treatment is administered but also where the radiation dose is targeted to.
Collapse
Affiliation(s)
- Javier A Jacobo
- Department of Surgical Neuro-Oncology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Masao Buentello
- Gamma Knife Unit, Medica Sur Foundation, Mexico City, Mexico
| | | |
Collapse
|
5
|
Zhao Z, Qin X. MicroRNA-708 targeting ZNF549 regulates colon adenocarcinoma development through PI3K/AKt pathway. Sci Rep 2020; 10:16729. [PMID: 33028966 PMCID: PMC7541523 DOI: 10.1038/s41598-020-73929-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
Colon adenocarcinoma (COAD) is the most common type of gastrointestinal cancer and is still the third leading cause of cancer-related mortality worldwide. Therefore, finding new and promising drugs to eradicate cancer may be a feasible method to treat COAD patients. Cys2-His2 zinc finger proteins (ZFPs) is one of the largest transcription factor family and many of them are highly involved in regulation of cell differentiation, proliferation, apoptosis, and neoplastic transformation. In this study, we identified a tumor-inhibiting factor, ZNF549, which expressed lowly in COAD tissues and COAD cell lines (HT29, HCT116, SW480, LoVo, and SW620). Overexpression of ZNF549 inhibit the ability of COAD cell proliferation and migration. On the contrary, decreasing the ZNF549 expression level promote the ability of COAD cell proliferation and migration. Through bioinformatics analysis, we found that ZNF549 was a potential target of hsa-miR-708-5p (miR-708-5p). Furthermore, we verified the possibility of miR-708-5p targeting the ZNF549 gene, and miR-708-5p inhibited the expression of ZNF549 by luciferase reporter assays, qRT-PCR and western blot assays. Moreover, the relationship between miR-708-5p and phosphatidylinositol 3-kinase/AKt (PI3K/AKt) signal pathway was elucidated. Overexpression and inhibition of miR-708-5p resulted in increased and decreased expression of p-AKt and p-PI3K in HCT116 cells, respectively. RT-qPCR and western blot assays results demonstrated that miR-708-5p regulated COAD cells development by promoting the process of Epithelial-mesenchymal transition (EMT) through PI3K/AKt signaling pathway. In summary, our findings demonstrated that ZNF549, the target gene of miR-708-5p, functions as a tumor suppressor to inhibit COAD cell lines proliferation and migration through regulate the PI3K/AKt signal pathway.
Collapse
Affiliation(s)
- Zhidong Zhao
- Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Xianju Qin
- Shanghai Eighth People's Hospital, Shanghai, 200235, China.
| |
Collapse
|
6
|
Badai J, Bu Q, Zhang L. Review of Artificial Intelligence Applications and Algorithms for Brain Organoid Research. Interdiscip Sci 2020; 12:383-394. [PMID: 32833194 DOI: 10.1007/s12539-020-00386-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
The human brain organoid is a miniature three-dimensional tissue culture that can simulate the structure and function of the brain in an in vitro culture environment. Although we consider that human brain organoids could be used to understand brain development and diseases, experimental models of human brain organoids are so highly variable that we apply artificial intelligence (AI) techniques to investigate the development mechanism of the human brain. Therefore, this study briefly reviewed commonly used AI applications for human brain organoid-magnetic resonance imaging, electroencephalography, and gene editing techniques, as well as related AI algorithms. Finally, we discussed the limitations, challenges, and future study direction of AI-based technology for human brain organoids.
Collapse
Affiliation(s)
- Jiayidaer Badai
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Qian Bu
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu, 610065, China. .,Medical Big Data Center of Sichuan University, Chengdu, 610065, China. .,PERA Corporation Ltd., Beijing, 100025, China.
| |
Collapse
|
7
|
Wang X, Zhang X, Qiu C, Yang N. STAT3 Contributes to Radioresistance in Cancer. Front Oncol 2020; 10:1120. [PMID: 32733808 PMCID: PMC7358404 DOI: 10.3389/fonc.2020.01120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy has been used in the clinic for more than one century and it is recognized as one of the main methods in the treatment of malignant tumors. Signal Transducers and Activators of Transcription 3 (STAT3) is reported to be upregulated in many tumor types, and it is believed to be involved in the tumorigenesis, development and malignant behaviors of tumors. Previous studies also found that STAT3 contributes to chemo-resistance of various tumor types. Recently, many studies reported that STAT3 is involved in the response of tumor cells to radiotherapy. But until now, the role of the STAT3 in radioresistance has not been systematically demonstrated. In this study, we will review the radioresistance induced by STAT3 and relative solutions will be discussed.
Collapse
Affiliation(s)
- Xuehai Wang
- Department of Otolaryngology, Weihai Municipal Hospital, Shandong University, Weihai, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chen Qiu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
8
|
Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin. Proc Natl Acad Sci U S A 2016; 114:370-375. [PMID: 28011764 DOI: 10.1073/pnas.1616100114] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an intractable tumor despite therapeutic advances, principally because of its invasive properties. Radiation is a staple in therapeutic regimens, although cells surviving radiation can become more aggressive and invasive. Subtraction hybridization identified melanoma differentiation-associated gene 9 [MDA-9/Syntenin; syndecan-binding protein (SDCBP)] as a differentially regulated gene associated with aggressive cancer phenotypes in melanoma. MDA-9/Syntenin, a highly conserved double-PDZ domain-containing scaffolding protein, is robustly expressed in human-derived GBM cell lines and patient samples, with expression increasing with tumor grade and correlating with shorter survival times and poorer response to radiotherapy. Knockdown of MDA-9/Syntenin sensitizes GBM cells to radiation, reducing postradiation invasion gains. Radiation induces Src and EGFRvIII signaling, which is abrogated through MDA-9/Syntenin down-regulation. A specific inhibitor of MDA-9/Syntenin activity, PDZ1i (113B7), identified through NMR-guided fragment-based drug design, inhibited MDA-9/Syntenin binding to EGFRvIII, which increased following radiation. Both genetic (shmda-9) and pharmacological (PDZ1i) targeting of MDA-9/Syntenin reduced invasion gains in GBM cells following radiation. Although not affecting normal astrocyte survival when combined with radiation, PDZ1i radiosensitized GBM cells. PDZ1i inhibited crucial GBM signaling involving FAK and mutant EGFR, EGFRvIII, and abrogated gains in secreted proteases, MMP-2 and MMP-9, following radiation. In an in vivo glioma model, PDZ1i resulted in smaller, less invasive tumors and enhanced survival. When combined with radiation, survival gains exceeded radiotherapy alone. MDA-9/Syntenin (SDCBP) provides a direct target for therapy of aggressive cancers such as GBM, and defined small-molecule inhibitors such as PDZ1i hold promise to advance targeted brain cancer therapy.
Collapse
|
9
|
Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol 2016; 26:4390-4403. [PMID: 26883333 DOI: 10.1007/s00330-016-4261-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To determine the added value of amide proton transfer (APT) imaging to conventional and perfusion MRI for differentiating tumour progression (TP) from the treatment-related effect (TE) in patients with post-treatment glioblastomas. METHODS Sixty-five consecutive patients with enlarging contrast-enhancing lesions following concurrent chemoradiotherapy were assessed using contrast-enhanced T1-weighted MRI (CE-T1WI), 90th percentile histogram parameters of normalized cerebral blood volume (nCBV90) and APT asymmetry value (APT90). Diagnostic performance was determined using the area under the receiver operating characteristic curve (AUC) and cross validations. RESULTS There were statistically significant differences in the mean APT90 between the TP and the TE groups (3.87-4.01 % vs. 1.38-1.41 %; P < .001). Compared with CE-T1WI alone, the addition of APT90 to CE-T1WI significantly improved cross-validated AUC from 0.58-0.74 to 0.89-0.91 for differentiating TP from TE. The combination of CE-T1WI, nCBV90 and APT90 resulted in greater diagnostic accuracy for differentiating TP from TE than the combination of CE-T1WI and nCBV90 (cross-validated AUC, 0.95-0.97 vs. 0.84-0.91). The inter-reader agreement between the expert and trainee was excellent for the measurements of APT90 (intraclass correlation coefficient, 0.94). CONCLUSION Adding APT imaging to conventional and perfusion MRI improves the diagnostic performance for differentiating TP from TE. KEY POINTS • APT imaging could provide a reliable distinction between TP and TE • Adding APT imaging to CE-T1WI improved the diagnostic accuracy versus CE-T1WI alone • Multimodal imaging using CE-T1WI, perfusion and APT imaging led to accurate diagnosis • The inter-reader agreement of APT histogram parameters was excellent.
Collapse
|
10
|
Increased survival using delayed gamma knife radiosurgery for recurrent high-grade glioma: a feasibility study. World Neurosurg 2014; 82:e623-32. [PMID: 24930898 DOI: 10.1016/j.wneu.2014.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 03/04/2014] [Accepted: 06/09/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The current study retrospectively assessed delayed gamma knife radiosurgery (GKRS) in the management of high-grade glioma recurrences. METHODS A total of 55 consecutive patients with high-grade glioma comprising 68 World Health Organization (WHO) III and WHO IV were treated with GKRS for local recurrences between 2001 and 2007. All patients had undergone microsurgery and radiochemotherapy, considered as standard therapy for high-grade glioma. Complete follow-up was available in all patients; median follow-up was 17.2 months (2.5-114.2 months). Median tumor volume was 5.2 mL, prescription dose was 20 Gy (14-22 Gy), and median max dose was 45 Gy (30-77.3 Gy). RESULTS The patients with WHO III tumors showed a median survival of 49.6 months with and a 2-year survival of 90%. After GKRS of the recurrences, these patients showed a median survival of 24.2 months and a 2-year survival of 50%. The patients with WHO IV tumors had a median survival of 24.5 months with a 2-year survival of 51.4%. After the recurrence was treated with GKRS, the median survival was 11.3 months and a 2-year survival: 22.9% for the WHO IV patients. CONCLUSION The current study shows a survival benefit for high-grade glioma recurrences when GKRS was administered after standard therapy. This is a relevant improvement compared with earlier studies that had had not been able to provide a beneficial effect timing radiosurgery in close vicinity to EBRT.
Collapse
|
11
|
|
12
|
Lefranc F, Sadeghi N, Camby I, Metens T, Dewitte O, Kiss R. Present and potential future issues in glioblastoma treatment. Expert Rev Anticancer Ther 2014; 6:719-32. [PMID: 16759163 DOI: 10.1586/14737140.6.5.719] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The treatment of glioblastomas requires a multidisciplinary approach that takes the presently incurable nature of the disease into consideration. Treatments are multimodal and include surgery, radiotherapy and chemotherapy. Current recommendations are that patients with glioblastomas should undergo maximum surgical resection, followed by concurrent radiation and chemotherapy with the novel alkylating drug temozolomide. This is then to be followed by additional adjuvant temozolomide for a period of up to 6 months. Major advances in surgical and imaging technologies used to treat glioblastoma patients are described. These technologies include magnetic resonance imaging and metabolic data that are helpful in the diagnosis and guiding of surgical resection. However, glioblastomas almost invariably recur near their initial sites. Disease progression usually occurs within 6 months and leads rapidly to death. A number of signaling pathways can be activated constitutively in migrating glioma cells, thus rendering these cells resistant to proapoptotic insults, such as conventional chemotherapies. Therefore, the molecular and cellular therapies and local drug delivery that could be used to complement conventional treatments are described, and some of the currently ongoing clinical trials are reviewed, with respect to these new approaches.
Collapse
Affiliation(s)
- Florence Lefranc
- Departments of Neurosurgery, Erasme University Hospital, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
13
|
Hwang CS, Marymont MH, Muro K. Photon radiotherapy for the treatment of high-grade gliomas. Expert Rev Anticancer Ther 2014; 7:S37-43. [DOI: 10.1586/14737140.7.12s.s37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Chung WJ, Kim HS, Kim N, Choi CG, Kim SJ. Recurrent glioblastoma: optimum area under the curve method derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Radiology 2013; 269:561-8. [PMID: 23878286 DOI: 10.1148/radiol.13130016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine whether the ratio of the initial area under the time-signal intensity curve (AUC) (IAUC) to the final AUC--or AUCR--derived from dynamic contrast material-enhanced magnetic resonance (MR) imaging can be an imaging biomarker for distinguishing recurrent glioblastoma multiforme (GBM) from radiation necrosis and to compare the diagnostic accuracy of the AUCR with commonly used model-free dynamic contrast-enhanced MR imaging parameters. MATERIALS AND METHODS The institutional review board approved this retrospective study and waived the informed consent requirement. Fifty-seven consecutive patients with pathologically confirmed recurrent GBM (n = 32) or radiation necrosis (n = 25) underwent dynamic contrast-enhanced MR imaging. Histogram parameters of the IAUC at 30, 60, and 120 seconds and the AUCR, which included the mean value at the higher curve of the bimodal histogram (mAUCR(H)), as well as 90th percentile cumulative histogram cutoffs, were calculated and were correlated with final pathologic findings. The best predictor for differentiating recurrent GBM from radiation necrosis was determined by means of receiver operating characteristic (ROC) curve analysis. RESULTS The demographic data were not significantly different between the two patient groups. There were statistically significant differences in all of the IAUC and AUCR parameters between the recurrent GBM and the radiation necrosis patient groups (P < .05 for each). ROC curve analyses showed mAUCR(H) to be the best single predictor of recurrent GBM (mAUCR(H) for recurrent GBM = 0.35 ± 0.11 [standard deviation], vs 0.19 ± 0.17 for radiation necrosis; P < .0001; optimum cutoff, 0.23), with a sensitivity of 93.8% and a specificity of 88.0%. CONCLUSION A bimodal histogram analysis of AUCR derived from dynamic contrast-enhanced MR imaging can be a potential noninvasive imaging biomarker for differentiating recurrent GBM from radiation necrosis. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.13130016/-/DC1.
Collapse
Affiliation(s)
- Won Jung Chung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 6 Asanbyeongwon-Gil, Songpa-Gu, Seoul 138-736, Korea
| | | | | | | | | |
Collapse
|
15
|
Geer CP, Simonds J, Anvery A, Chen MY, Burdette JH, Zapadka ME, Ellis TL, Tatter SB, Lesser GJ, Chan MD, McMullen KP, Johnson AJ. Does MR perfusion imaging impact management decisions for patients with brain tumors? A prospective study. AJNR Am J Neuroradiol 2011; 33:556-62. [PMID: 22116105 DOI: 10.3174/ajnr.a2811] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE MR perfusion imaging can be used to help predict glial tumor grade and disease progression. Our purpose was to evaluate whether perfusion imaging has a diagnostic or therapeutic impact on clinical management planning in patients with glioma. MATERIALS AND METHODS Standard MR imaging protocols were interpreted by a group of 3 NRs in consensus, with each case being interpreted twice: first, including routine sequences; and second, with the addition of perfusion imaging. A multidisciplinary team of treating physicians assessed tumor status and created hypothetical management plans, on the basis of clinical presentation and routine MR imaging and then routine MR imaging plus perfusion MR imaging. Physicians' confidence in the tumor status assessment and management plan was measured by using Likert-type items. RESULTS Fifty-nine consecutive subjects with glial tumors were evaluated; 50 had known pathologic diagnoses. NRs and the treatment team agreed on tumor status in 45/50 cases (κ = 0.81). With the addition of perfusion, confidence in status assessment increased in 20 (40%) for NRs and in 28 (56%) for the treatment team. Of the 59 patient-care episodes, the addition of perfusion was associated with a change in management plan in 5 (8.5%) and an increase in the treatment team's confidence in their management plan in 34 (57.6%). NRs and the treatment team found perfusion useful in most episodes of care and wanted perfusion included in future MR images for >80% of these subjects. CONCLUSIONS Perfusion imaging appears to have a significant impact on clinical decision-making and subspecialist physicians' confidence in management plans for patients with brain tumor.
Collapse
Affiliation(s)
- C P Geer
- Department of Radiology, Wake Forest University Health Sciences, Wake Forest Baptist Health, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tamura K, Aoyagi M, Wakimoto H, Ando N, Nariai T, Yamamoto M, Ohno K. Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. J Neurosurg 2010; 113:310-8. [PMID: 20205512 DOI: 10.3171/2010.2.jns091607] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Recent evidence suggests that a glioma stem cell subpopulation might contribute to radioresistance in malignant gliomas. To investigate this hypothesis, the authors examined recurrent malignant gliomas for histopathological changes after high-dose irradiation with Gamma Knife surgery (GKS) and external beam radiation therapy (EBRT). METHODS Thirty-two patients with malignant gliomas (Grade 3 in 8 patients, Grade 4 in 24) underwent GKS in combination with EBRT. Serial MR and L-[methyl-(11)C] methionine PET images were employed to assess remnant or recurrent tumors after GKS. Twelve patients underwent surgical removal after GKS and EBRT. Histological sections were subjected to immunohistochemistry for MIB-1, factor VIII, and stem cell markers, nestin and CD133. RESULTS The site of GKS treatment failure was local in 16 (76.2%) of 21 patients with glioblastomas showing progression; in 9 of these 16 patients, the recurrence clearly arose within the target lesion of GKS. Histopathological examination after GKS and EBRT showed variable mixtures of viable tumor tissues and necrosis. Viable tumor tissues exhibited high MIB-1 indices but reduced numbers of tumor blood vessels. There was marked accumulation of CD133-positive glioma cells, particularly in remnant tumors within the necrotic areas, in sections obtained after GKS plus EBRT, whereas CD133-positive cells appeared very infrequently in primary sections prior to adjuvant treatment. CONCLUSIONS The results indicate that CD133-positive glioma stemlike cells can survive high-dose irradiation, leading to recurrence, despite prolonged damage to tumor blood vessels. This could be an essential factor limiting the effectiveness of GKS plus EBRT for malignant gliomas.
Collapse
Affiliation(s)
- Kaoru Tamura
- Department of Neurosurgery, Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma. J Immunother 2010; 32:914-9. [PMID: 19816190 DOI: 10.1097/cji.0b013e3181b2910f] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite recent advances, median survival for patients with resectable glioblastoma multiforme (GBM) is only 12 to 15 months. We previously observed minimal toxicity and a 9.0-month median survival after treatment with intralesional autologous lymphokine-activated killer (LAK) cells in 40 patients with recurrent GBM. In this study, GBM patients were treated with adjuvant intralesional LAK cells. Eligible patients had completed primary therapy for GBM without disease progression. LAK cells were produced by incubating autologous peripheral blood mononuclear cells with interleukin-2 for 3 to 7 days and then placed into the surgically exposed tumor cavity by a neurosurgeon. The 19 men and 14 women had a median age of 57 years. Prior therapy included surgical resection (97%), partial brain irradiation (97%), gamma knife radiosurgery (97%), and temozolomide chemotherapy (70%). Median time from diagnosis to LAK cell therapy was 5.3 months (range: 3.0 to 11.1 mo). LAK cell treatment was well tolerated; average length of hospitalization was 3 days. At the time of this analysis, 27 patients have died; the median survival from the date of original diagnosis is 20.5 months with a 1-year survival rate of 75%. In subset analyses, superior survival was observed for patients who received higher numbers of CD3+/CD16+/CD56+ (T-LAK) cells in the cell products, which was associated with not taking corticosteroids in the month before leukopheresis. Intralesional LAK cell therapy is safe and the survival sufficiently encouraging to warrant further evaluation in a randomized phase 2 trial of intralesional therapies with LAK or carmustine-impregnated wafers.
Collapse
|
18
|
Barajas RF, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger MS, Cha S. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009; 253:486-96. [PMID: 19789240 DOI: 10.1148/radiol.2532090007] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate whether cerebral blood volume (CBV), peak height (PH), and percentage of signal intensity recovery (PSR) measurements derived from the results of T2-weighted dynamic susceptibility-weighted contrast material-enhanced (DSC) magnetic resonance (MR) imaging performed after external beam radiation therapy (EBRT) can be used to distinguish recurrent glioblastoma multiforme (GBM) from radiation necrosis. MATERIALS AND METHODS Fifty-seven patients were enrolled in this HIPAA-compliant institutional review board-approved retrospective study after they received a diagnosis of GBM, underwent EBRT, and were examined with DSC MR imaging, which revealed progressive contrast enhancement within the radiation field. A definitive diagnosis was established at subsequent surgical resection or clinicoradiologic follow-up. Regions of interest were retrospectively drawn around the entire contrast-enhanced region. This created T2-weighted signal intensity-time curves that produced three cerebral hemodynamic MR imaging measurements: CBV, PH, and PSR. Welch t tests were used to compare measurements between groups. RESULTS Mean, maximum, and minimum relative PH and relative CBV were significantly higher (P < .01) in patients with recurrent GBM than in patients with radiation necrosis. Mean, maximum, and minimum relative PSR values were significantly lower (P < .05) in patients with recurrent GBM than in patients with radiation necrosis. CONCLUSION These findings suggest that DSC perfusion MR imaging may be used to differentiate recurrent GBM from EBRT-induced radiation necrosis.
Collapse
Affiliation(s)
- Ramon F Barajas
- Department of Radiology, Neuroradiology Section, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Survival following stereotactic radiosurgery for newly diagnosed and recurrent glioblastoma multiforme: a multicenter experience. Neurosurg Rev 2009; 32:417-24. [PMID: 19633875 DOI: 10.1007/s10143-009-0212-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 02/23/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
Abstract
Despite decades of clinical trials investigating new treatment modalities for glioblastoma multiforme (GBM), there have been no significant treatment advances since the 1980s. Reported median survival times for patients with GBM treated with current modalities generally range from 9 to 19 months. The purpose of the current study is to retrospectively review the ability of CyberKnife (Accuray Incorporated, Sunnyvale, CA, USA) radiosurgery to provide local tumor control of newly diagnosed or recurrent GBM. Twenty patients (43.5%) underwent CyberKnife treatment at the time of the initial diagnosis and/or during the first 3 months of their initial clinical management. Twenty-six patients (56.5%) were treated at the time of tumor recurrence or progression. CyberKnife was performed in addition to the traditional therapy. The median survival from diagnosis for the patients treated with CyberKnife as an initial clinical therapy was 11.5 months (range, 2-33) compared to 21 months (range, 8-96) for the patients treated at the time of tumor recurrence/progression. This difference was statistically significant (Kaplan-Meier analysis, P = 0.0004). The median survival from the CyberKnife treatment was 9.5 months (range, 0.25-31 months) and 7 months (range, 1-34 months) for patients in the newly diagnosed and recurrent GBM groups (Kaplan-Meier analysis, P = 0.79), respectively. Cox proportional hazards survival regression analysis demonstrated that survival time did not correlate significantly with treatment parameters (Dmax, Dmin, number of fractions) or target volume. Survival time and recursive partitioning analysis class were not correlated (P = 0.07). Patients with more extensive surgical interventions survived longer (P = 0.008), especially those who underwent total tumor resection vs. biopsy (P = 0.004). There is no apparent survival advantage in using CyberKnife in initial management of glioblastoma patients, and it should be reserved for patients whose tumors recur or progress after conventional therapy.
Collapse
|
20
|
Djedid R, Kiss R, Lefranc F. Targeted therapy of glioblastomas: a 5-year view. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/thy.09.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Begnozzi L, Benassi M, Bertanelli M, Bonini A, Cionini L, Conte L, Fiorino C, Gabriele P, Gardani G, Giani A, Magri S, Morelli M, Morrica B, Olmi P, Orecchia R, Penduzzu G, Raffaele L, Rosi A, Tabocchini MA, Valdagni R, Viti V. Quality assurance of 3D-CRT: Indications and difficulties in their applications. Crit Rev Oncol Hematol 2009; 70:24-38. [DOI: 10.1016/j.critrevonc.2008.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/12/2008] [Accepted: 07/18/2008] [Indexed: 12/25/2022] Open
|
22
|
Abstract
Neuroimaging plays a crucial role in establishing the diagnosis, planning the therapy, as well as evaluating therapeutic effects and detecting early recurrence in brain tumors. It has evolved from a morphology-driven discipline to the multimodal assessment of CNS lesions, incorporating biochemistry (e.g., indicators of cell membrane synthesis) as well as physiologic parameters (e.g., hemodynamic variables). Tumor cellularity, metabolism, and angiogenesis are important predictors for tumor grading, therapy, and prognosis, all of which are provided by dedicated use of advanced magnetic resonance imaging (MRI) techniques by the neuroradiologist. Unprecedented views of tumor-affected brain cytoarchitecture are yielded by diffusion tensor imaging and tractography, discriminating between displacement and infiltration of highly relevant white matter tracts and guiding the neurosurgeon's CNS approach. Functional MRI (fMRI) visualizes the spatial relationship between functionally important areas and the tumor site. Many of these techniques use superimposition on high-anatomic-resolution MR images within the submillimeter range, in order to assure precise stereotactic proceedings. Yet, the borders of neuroimaging are subject to constant updating.Molecular imaging has become one of the most promising research areas, as the molecular fingerprint of the tumor is required for targeting chemotherapy-resistant, migrating glial tumor cells.
Collapse
Affiliation(s)
- R Klingebiel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany.
| | | |
Collapse
|
23
|
Lipani JD, Jackson PS, Soltys SG, Sato K, Adler JR. Survival following CyberKnife radiosurgery and hypofractionated radiotherapy for newly diagnosed glioblastoma multiforme. Technol Cancer Res Treat 2008; 7:249-55. [PMID: 18473497 DOI: 10.1177/153303460800700311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Current therapeutic goals for treatment of Glioblastoma Multiforme (GBM) involve gross total resection followed by multifractionated focal external beam radiation therapy (EBRT). Patients treated with optimal therapy have a median survival of approximately 12-15 months. In the present study, we sought to determine whether a hypofractionated dosing schedule using CyberKnife is at least as effective as multifractionated focal EBRT. A retrospective analysis was conducted on 20 histopathologically confirmed GBM patients treated with CyberKnife at Okayama Kyokuto Hospital in Japan after gross total resection (n=11), subtotal resection (n=8), or biopsy (n=1). Eight patients also received adjuvant ACNU and Vincrisitine chemotherapy according to local protocol; however, no patient received any other form of radiation besides post surgical/biopsy CyberKnife treatment. The treated tumor volumes ranged from 9.62 cm(3)-185.81 cm(3) (mean: 86.08 cm(3)). The marginal dose (D90) ranged from 19.99 Gy-41.47 Gy (mean: 34.58 Gy) with a maximum mean dose of 43.99 Gy (range: 23.33 Gy-56.89 Gy). The prescribed isodose line ranged from 50.38%-85.68% with a mean of 79.25%. Treatment was delivered in 1-8 fractions (mean: 5.65). Patients were followed from 2-36 months (mean: 16.45 months). Overall median survival was 16 months with 55% of patients alive at 12 months and 34% of patients alive at 24 months. Median survival of patients in Recursive Partitioning Analysis (RPA) classes III or IV was 32 months versus 12 months for those in RPA class V. Median survival for patients who received gross total resection was 36 months versus 8 months for those who underwent subtotal resection or biopsy. The results of this study using CyberKnife stereotactic radiosurgery (SRS) and hypofractionated radiotherapy compared favorably to historic data using focal EBRT in newly diagnosed post surgical GBM patients. A larger prospective analysis that compares CyberKnife SRS and hypofractionated radiotherapy to focal EBRT is warranted.
Collapse
Affiliation(s)
- John D Lipani
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California.
| | | | | | | | | |
Collapse
|
24
|
Colen CB, Seraji-Bozorgzad N, Marples B, Galloway MP, Sloan AE, Mathupala SP. Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: an in vitro study. Neurosurgery 2007; 59:1313-23; discussion 1323-4. [PMID: 17277695 PMCID: PMC3385862 DOI: 10.1227/01.neu.0000249218.65332.bf] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate a novel method to enhance radiosensitivity of gliomas via modification of metabolite flux immediately before radiotherapy. Malignant gliomas are highly glycolytic and produce copious amounts of lactic acid, which is effluxed to the tumor microenvironment via lactate transporters. We hypothesized that inhibition of lactic acid efflux would alter glioma metabolite profiles, including those that are radioprotective. H magnetic resonance spectroscopy (MRS) was used to quantify key metabolites, including those most effective for induction of low-dose radiation-induced cell death. METHODS We inhibited lactate transport in U87-MG gliomas with alpha-cyano-4-hydroxycinnamic acid (ACCA). Flow cytometry was used to assess induction of cell death in treated cells. Cells were analyzed by MRS after ACCA treatment. Control and treated cells were subjected to low-dose irradiation, and the surviving fractions of cells were determined by clonogenic assays. RESULTS MRS revealed changes to intracellular lactate on treatment with ACCA. Significant decreases in the metabolites taurine, glutamate, glutathione, alanine, and glycine were observed, along with inversion of the choline/phosphocholine profile. On exposure to low-dose radiation, ACCA-pretreated U-87MG cells underwent rapid morphological changes, which were followed by apoptotic cell death. CONCLUSION Inhibition of lactate efflux in malignant gliomas results in alterations of glycolytic metabolism, including decreased levels of the antioxidants taurine and glutathione and enhanced radiosensitivity of ACCA-treated cells. Thus, in situ application of lactate transport inhibitors such as ACCA as a novel adjunctive therapeutic strategy against glial tumors may greatly enhance the level of radiation-induced cell killing during a combined radio- and chemotherapeutic regimen.
Collapse
Affiliation(s)
- Chaim B Colen
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
BACKGROUND Gliomas are the most common type of primary brain tumor. Nearly two-thirds of gliomas are highly malignant lesions that account for a disproportionate share of brain tumor-related morbidity and mortality. Despite recent advances, two-year survival for glioblastoma with optimal therapy is less than 30%. Even among patients with low-grade gliomas that confer a relatively good prognosis, treatment is almost never curative. REVIEW SUMMARY Surgery and radiation have been the mainstays of therapy for most glioma patients, but temozolomide chemotherapy has recently been proven to prolong overall survival in patients with glioblastoma. Intriguing data suggests that activity of O6-methylguanine-DNA methyltransferase (MGMT), in tumor cells may predict responsiveness to temozolomide and other alkylating agents. Novel treatment approaches, especially targeted molecular therapies against critical components of glioma signaling pathways, appear promising in preliminary studies. Optimal treatment for patients with low-grade gliomas has yet to be determined. Advances in oligodendroglioma biology have identified loss of chromosomes 1p and 19q as powerful indicators of a favorable prognosis. These same changes may predict response to chemotherapy. CONCLUSIONS Though the prognosis for many patients with gliomas is poor, the last decade produced a number of important advances, some of which have translated directly into survival benefits. Rapid progress in the field of glioma molecular biology continues to identify therapeutic targets and provide hope for the future of this challenging disease.
Collapse
Affiliation(s)
- Andrew D Norden
- Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital and Center For Neuro-Oncology, Dana Farber Brigham and Women's Cancer Center, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
26
|
Yen CP, Sheehan J, Steiner M, Patterson G, Steiner L. Gamma Knife surgery for focal brainstem gliomas. J Neurosurg 2007; 106:8-17. [PMID: 17236482 DOI: 10.3171/jns.2007.106.1.8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Object
Focal tumors, a distinct subgroup of which is composed of brainstem gliomas, may have an indolent clinical course. In the past, their management involved monitoring of open-ended imaging studies and shunt placement if cerebrospinal fluid diversion was required. Nonetheless, their treatment remains a significant challenge for neurosurgeons. Gamma Knife surgery (GKS) has recently been tried as an alternative to surgical extirpation. In the present study the authors assess clinical and imaging results in 20 patients who harbored focal brainstem gliomas treated with GKS between 1990 and 2001.
Methods
There were 10 male and 10 female patients with a mean age of 19.1 years. Sixteen tumors were located in the midbrain, three in the pons, and one in the medulla oblongata. The mean tumor volume at the time of GKS was 2.5 cm3. In 10 cases a tumor specimen was obtained either by open surgery or stereotactic biopsy, securing the diagnosis of pilocytic astrocytoma in five patients and nonpilocytic astrocytoma in five others. In the remaining 10 cases, the diagnosis was based on clinical and neuroimaging findings. The prescription Gamma Knife dose varied between 10 and 18 Gy, except in three patients who were receiving a boost to a site in which external-beam radiation was previously delivered. An average of four isocenters were utilized per GKS.
Patients were followed up for a mean of 78.0 months. The tumors disappeared in four patients and shrank in 12 patients. Of these patients, one experienced transitory extrapyramidal symptoms and fluctuating impairment of consciousness (from somnolence to coma) for 6 months. Another patient whose tumor disappeared 3 years following GKS died of stroke 8 years postoperatively. The rest of the patients either remained stable or improved clinically. Tumor progression occurred in four patients; of these four, one patient developed hydrocephalus requiring a ventriculoperitoneal shunt, two showed neurological deterioration, and one 4-year-old boy died of tumor progression.
Conclusions
Gamma Knife surgery may be an effective primary treatment or adjunct to open surgery for focal brainstem gliomas.
Collapse
Affiliation(s)
- Chun Po Yen
- Lars Leksell Center for Gamma Surgery, Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
27
|
Hsieh PC, Chandler JP, Bhangoo S, Panagiotopoulos K, Kalapurakal JA, Marymont MH, Cozzens JW, Levy RM, Salehi S. Adjuvant gamma knife stereotactic radiosurgery at the time of tumor progression potentially improves survival for patients with glioblastoma multiforme. Neurosurgery 2006. [PMID: 16239880 DOI: 10.1227/01.neu.0000175550.96901.a3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Gamma knife stereotactic radiosurgery (GK-SRS) is a safe and noninvasive treatment used as adjuvant therapy for patients with glioblastoma multiforme (GBM). Several studies have yielded conflicting results in the effectiveness of radiosurgery in GBM. This study is a retrospective review of our institutional experience with GK-SRS adjuvant therapy in the treatment of GBM. METHODS From October 1998 to January 2003, 51 consecutive patients were treated with GK-SRS as an "upfront" adjuvant therapy after surgery or at the time of tumor progression at Northwestern Memorial Hospital. Survival analysis was performed using the Kaplan-Meier actuarial method. Univariate and multivariate analyses of patient characteristics and treatment variables were performed. RESULTS Treatment with adjuvant GK-SRS yielded a median overall survival of 14.3 months for our cohort. Survival rate of the cohort was 68% at 12 months, 30% at 24 months, and 24% at 36 months. Karnofsky performance score greater than 90 and adjuvant chemotherapy were associated with increased survival on multivariate analysis. Adjuvant GK-SRS performed at tumor progression seems to increase median survival to 16.7 months compared with 10 months when performed after the time of initial tumor resection. Median survival rates by recursive partitioning analysis class breakdown in our cohort are greater than those predicted by other studies. CONCLUSION GK-SRS is a relatively safe and noninvasive procedure that conferred an improvement in overall survival of GBM patients in our retrospective study. Particularly, GK-SRS may improve overall survival when performed at the time of tumor progression.
Collapse
Affiliation(s)
- Patrick C Hsieh
- Department of Neurological Surgery, Northwestern University McGaw Medical Center, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hsieh PC, Chandler JP, Bhangoo S, Panagiotopoulos K, Kalapurakal JA, Marymont MH, Cozzens JW, Levy RM, Salehi S. Adjuvant gamma knife stereotactic radiosurgery at the time of tumor progression potentially improves survival for patients with glioblastoma multiforme. Neurosurgery 2006. [PMID: 16239880 DOI: 10.1093/neurosurgery/57.4.684] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Gamma knife stereotactic radiosurgery (GK-SRS) is a safe and noninvasive treatment used as adjuvant therapy for patients with glioblastoma multiforme (GBM). Several studies have yielded conflicting results in the effectiveness of radiosurgery in GBM. This study is a retrospective review of our institutional experience with GK-SRS adjuvant therapy in the treatment of GBM. METHODS From October 1998 to January 2003, 51 consecutive patients were treated with GK-SRS as an "upfront" adjuvant therapy after surgery or at the time of tumor progression at Northwestern Memorial Hospital. Survival analysis was performed using the Kaplan-Meier actuarial method. Univariate and multivariate analyses of patient characteristics and treatment variables were performed. RESULTS Treatment with adjuvant GK-SRS yielded a median overall survival of 14.3 months for our cohort. Survival rate of the cohort was 68% at 12 months, 30% at 24 months, and 24% at 36 months. Karnofsky performance score greater than 90 and adjuvant chemotherapy were associated with increased survival on multivariate analysis. Adjuvant GK-SRS performed at tumor progression seems to increase median survival to 16.7 months compared with 10 months when performed after the time of initial tumor resection. Median survival rates by recursive partitioning analysis class breakdown in our cohort are greater than those predicted by other studies. CONCLUSION GK-SRS is a relatively safe and noninvasive procedure that conferred an improvement in overall survival of GBM patients in our retrospective study. Particularly, GK-SRS may improve overall survival when performed at the time of tumor progression.
Collapse
Affiliation(s)
- Patrick C Hsieh
- Department of Neurological Surgery, Northwestern University McGaw Medical Center, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Moskowitz SI, Jin T, Prayson RA. Role of MIB1 in predicting survival in patients with glioblastomas. J Neurooncol 2006; 76:193-200. [PMID: 16234986 DOI: 10.1007/s11060-005-5262-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Histologic immunomarkers of cell cycle proteins have been utilized for prognosis in high-grade astrocytic tumors. One such marker, MIB1, an antibody immunoreactive throughout the cell cycle, is predictive of more aggressive disease and poorer prognosis in astrocytomas. An independent role of MIB1 analysis for survival prediction and clinical management within histologic grades has not been clearly proven. METHODS This study retrospectively evaluated MIB1 reactivity in tissue samples from 116 patients with glioblastomas on initial medical presentation. Clinical variables considered included gender, age, Karnofsky Performance Scores (KPS), extent of surgical resection, adjuvant radiation and survival. RESULTS Univariate and multivariate analyses were used to correlate these variables with MIB1 staining. MIB1 staining does not predict overall survival or response to adjuvant therapy as an independent risk factor. CONCLUSION MIB1 labeling does not predict patient survival as an independent variable and does not predict response to additional therapies. Patient survival with glioblastoma was predicted by KPS, age, extent of resection and use of adjuvant radiotherapy.
Collapse
Affiliation(s)
- Shaye I Moskowitz
- Department of Neurosurgery, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
30
|
Mrugala MM, Kesari S, Ramakrishna N, Wen PY. Therapy for recurrent malignant glioma in adults. Expert Rev Anticancer Ther 2006; 4:759-82. [PMID: 15485312 DOI: 10.1586/14737140.4.5.759] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malignant gliomas are the most common form of primary brain tumors in adults. Although the prognosis remains poor, there has been recent progress in the treatment of these tumors. Standard therapy for patients with this disease will be reviewed, together with more novel approaches such as targeted molecular therapies, angiogenesis inhibitors, immunotherapies, gene therapies and intratumoral therapies.
Collapse
Affiliation(s)
- Maciej M Mrugala
- Harvard Medical School, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
31
|
Kesari S, Ramakrishna N, Sauvageot C, Stiles CD, Wen PY. Targeted molecular therapy of malignant gliomas. Curr Oncol Rep 2006; 8:58-70. [PMID: 16464405 DOI: 10.1007/s11912-006-0011-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malignant gliomas are the most common form of primary brain tumors in adults. Despite advances in diagnosis and standard therapies such as surgery, radiation, and chemotherapy, the prognosis remains poor. Recent scientific advances have enhanced our understanding of the biology of gliomas and the role of tyrosine kinase receptors and signal transduction pathways in tumor initiation and maintenance, such as the epidermal growth factor receptors, platelet-derived growth factor receptors, vascular endothelial growth factor receptors, and the Ras/Raf/mitogen-activated protein (MAP)-kinase and phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathways. Novel targeted drugs such as small molecular inhibitors of these receptors and signaling pathways are showing some activity in initial studies. As we learn more about these drugs and how to optimize their use as single agents and in combination with radiation, chemotherapy, and other targeted molecular agents, they will likely play an increasing role in the management of this devastating disease. This review summarizes the current results with targeted molecular agents in malignant gliomas and strategies under evaluation to increase their effectiveness.
Collapse
Affiliation(s)
- Santosh Kesari
- Center For Neuro-Oncology, Dana Farber/Brigham and Women's Cancer Center, SW430D, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
32
|
Chang SM, Barker FG. Marital status, treatment, and survival in patients with glioblastoma multiforme: a population based study. Cancer 2005; 104:1975-84. [PMID: 16130137 DOI: 10.1002/cncr.21399] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Social factors influence cancer treatment choices, potentially affecting patient survival. In the current study, the authors studied the interrelations between marital status, treatment received, and survival in patients with glioblastoma multiforme (GM), using population-based data. METHODS The data source was the Surveillance, Epidemiology, and End Results (SEER) Public Use Database, 1988-2001, 2004 release, all registries. Multivariate logistic, ordinal, and Cox regression analyses adjusted for demographic and clinical variables were used. RESULTS Of 10,987 patients with GM, 67% were married, 31% were unmarried, and 2% were of unknown marital status. Tumors were slightly larger at the time of diagnosis in unmarried patients (49% of unmarried patients had tumors larger than 45 mm vs. 45% of married patients; P = 0.004, multivariate analysis). Unmarried patients were less likely to undergo surgical resection (vs. biopsy; 75% of unmarried patients vs. 78% of married patients) and were less likely to receive postoperative radiation therapy (RT) (70% of unmarried patients vs. 79% of married patients). On multivariate analysis, the odds ratio (OR) for resection (vs. biopsy) in unmarried patients was 0.88 (95% confidence interval [95% CI], 0.79-0.98; P = 0.02), and the OR for RT in unmarried patients was 0.69 (95% CI, 0.62-0.77; P < 0.001). Unmarried patients more often refused both surgical resection and RT. Unmarried patients who underwent surgical resection and RT were found to have a shorter survival than similarly treated married patients (hazard ratio for unmarried patients, 1.10; P = 0.003). CONCLUSIONS Unmarried patients with GM presented with larger tumors, were less likely to undergo both surgical resection and postoperative RT, and had a shorter survival after diagnosis when compared with married patients, even after adjustment for treatment and other prognostic factors.
Collapse
Affiliation(s)
- Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
33
|
Facoetti A, Nano R, Zelini P, Morbini P, Benericetti E, Ceroni M, Campoli M, Ferrone S. Human Leukocyte Antigen and Antigen Processing Machinery Component Defects in Astrocytic Tumors. Clin Cancer Res 2005; 11:8304-11. [PMID: 16322289 DOI: 10.1158/1078-0432.ccr-04-2588] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the frequency of abnormalities in human leukocyte antigen (HLA) and antigen processing machinery (APM) component expression in malignant brain tumors. This information may contribute to our understanding of the immune escape mechanisms used by malignant brain tumors because HLA antigens mediate interactions of tumor cells with the host's immune system. EXPERIMENTAL DESIGN Eighty-eight surgically removed malignant astrocytic tumors, classified according to the WHO criteria, were stained in immunoperoxidase reactions with monoclonal antibody recognizing monomorphic, locus-specific, and allospecific determinants of HLA class I antigens, beta2-microglobulin, APM components (LMP2, LMP7, TAP1, TAP2, calnexin, calreticulin, and tapasin), and HLA class II antigens. RESULTS HLA class I antigens were lost in approximately 50% of the 47 glioblastoma multiforme (GBM) lesions and in approximately 20% of the 18 grade 2 astrocytoma lesions stained. Selective HLA-A2 antigen loss was observed in approximately 80% of the 24 GBM lesions and in approximately 50% of the 12 grade 2 astrocytoma lesions stained. HLA class I antigen loss was significantly (P < 0.025) correlated with tumor grade. Among the APM components investigated, tapasin expression was down-regulated in approximately 20% of the GBM lesions analyzed; it was associated, although not significantly, with HLA class I antigen down-regulation and tumor grade. HLA class II antigen expression was detected in approximately 30% of the 44 lesions analyzed. CONCLUSION The presence of HLA antigen defects in malignant brain tumors may provide an explanation for the relatively poor clinical response rates observed in the majority of the T cell-based immunotherapy clinical trials conducted to date in patients with malignant brain tumors.
Collapse
Affiliation(s)
- Angelica Facoetti
- Department of Animal Biology, University of Pavia and Center of Study for Histochemistry, Consiglio Nazionale delle Ricerche, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The human epidermal growth factor receptor (EGFR) plays an oncogenic role in solid cancer, including brain primary and metastatic cancers. Transvascular nonviral gene therapy in combination with EGFR-RNA interference (RNAi) represents a new therapeutic approach to silencing oncogenic genes in solid cancers. This is achieved with pegylated immunoliposomes (PIL) carrying short hairpin RNA expression plasmids driven by the U6 RNA polymerase promoter and directed to target EGFR expression by RNAi. The PIL is comprised of a mixture of known lipids containing polyethyleneglycol (PEG), which stabilizes the PIL structure in vivo in circulation. The tissue target specificity of PILs is given by conjugation of approximately 1% of the PEG residues to monoclonal antibodies (mAbs) that bind to specific endogenous receptors (i.e., insulin and transferrin receptors) located in the brain vascular endothelium, which forms the blood brain barrier (BBB), and brain cellular membranes, respectively. These mAbs are known to induce 1) receptor-mediated transcytosis of the PIL complex through the BBB and 2) transport to the brain cell nuclear compartment. Treatment of an experimental human brain tumor model in scid mice is possible with weekly intravenous RNAi gene therapy causing reduced tumor expression of EGFR and 88% increase in survival time of these mice with advanced intracranial brain cancer. The availability of additional RNAi tumor targets may improve the therapeutic efficacy of this new anticancer drug. The accessibility to chimeric and/or humanized mAbs directed to human BBB and brain cell specific-receptors may accelerate the application of this technology to the treatment of human tumors.
Collapse
Affiliation(s)
- Ruben J Boado
- ArmaGen Technologies, Inc., Santa Monica, California 90401, USA.
| |
Collapse
|
35
|
Chen JK, Hu LJ, Wang J, Lamborn KR, Kong EL, Deen DF. Hypoxia-induced BAX overexpression and radiation killing of hypoxic glioblastoma cells. Radiat Res 2005; 163:644-53. [PMID: 15913396 DOI: 10.1667/rr3377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
One major challenge in treating glioblastoma multiforme (GBM) has been the presence of radiation-resistant hypoxic cells. The pro-apoptosis protein BAX has been reported to be a possible radiation sensitizer of cancer cells; however, to our knowledge, no studies have reported on the effects of BAX on radiation sensitivity under hypoxic conditions. Therefore, in this study, we specifically overexpressed murine Bax in hypoxic cells in an attempt to enhance radiation-induced cell killing. We have previously stably transfected U-251 MG and U-87 MG human GBM cells with constructs containing murine Bax under the regulation of nine copies of hypoxia-responsive elements (HREs). During hypoxia, the transcriptional complex hypoxia-inducible factor 1 (HIF1) forms and binds to HRE; this binding facilitates the transcription of downstream genes. In the experiments reported here, two protocols were used. In the first protocol, parent and clone cells were exposed to graded doses of X rays under hypoxic conditions, left hypoxic for 0, 4, 16 or 24 h, and then assayed for clonogenic cell survival. In the second protocol, cells were incubated under hypoxic conditions for 20 h, irradiated with graded doses under hypoxia, then left in hypoxic conditions for 4 h before being assayed for clonogenic cell survival. Western blots showed that we had successfully increased Bax expression in both U-251 MG and U-87 MG Bax clone cells after 16 h of hypoxic incubation, yet dose-response curves showed no difference in radiation-induced cell killing between control non-Bax-expressing pNeo clone cells and the U-251 MG Bax clone cells using either protocol. In U-87 MG cells, the first protocol showed no difference in radiation response between control pNeo clone cells and the Bax clone, similar to the results obtained in U-251 cells. However, the second protocol revealed that Bax overexpression did render these cells more sensitive to radiation under hypoxic conditions. Therefore, we conclude that whether Bax is a radiation enhancer under hypoxia not only is cell line-dependent but also depends on when the Bax overexpression occurs.
Collapse
Affiliation(s)
- Jennifer K Chen
- Brain Tumor Research Center, Department of Neurological Surgery, University of California, San Francisco, California 94143-0520, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The optimal management of patients with malignant gliomas begins with the accurate determination of the pathologic diagnosis based on adequate sampling of the tumor. Clear differences in prognosis and therapeutic options have been established for the various tumor grades and cellular classification. Current recommendations, on the basis of the results of a recent phase III randomized trial, are that patients with glioblastoma should have maximal surgical resection followed by concurrent radiation and chemotherapy with temozolomide. It is further recommended that patients then be treated with 6 to 12 months of adjuvant temozolomide. However, despite the shown improvement in survival with this chemoradiation regimen, the impact on outcome is modest. It is increasingly evident that a greater understanding of the molecular mechanisms of gliomagenesis is needed to improve treatments for these patients. Recent and ongoing investigations strongly indicate that specific molecular markers tremendously impact prognosis and often can predict response to treatment. For example, allelic loss of the 1p and 19q chromosome arms predicts a dramatic improvement in response to treatment and survival for tumors histologically classified as anaplastic oligodendroglioma. Future advances for treating primary brain tumors likely will be directly related to our ability to molecularly subcategorize tumors and customize therapy based on the molecular profile within each histologic type and grade of tumor. This is evident in preliminary data indicating that inactivation of the methyl guanine methyltransferase gene by hypermethylation of the promoter region specifically predicts a better tumor response rate to chemotherapies that alkylate DNA as their mechanism of action. Similarly, elucidation of overly active signal transduction pathways within tumor cells may provide an opportunity to select the optimal therapeutic regimen composed of modulators of these pathways, analogous to restricting the use of trastuzumab to breast cancers expressing the Her-2 receptor. Advances in treating primary malignant brain tumors will likely depend on collaborative clinical trials that are designed to select patients on the basis of histologic and molecular characteristics and to determine the optimal biologic dose of the best agent that can treat each specific tumor type.
Collapse
Affiliation(s)
- Mark R Gilbert
- Department of Neuro-Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | |
Collapse
|
37
|
Kesari S, Ramakrishna N, Sauvageot C, Stiles CD, Wen PY. Targeted molecular therapy of malignant gliomas. Curr Neurol Neurosci Rep 2005; 5:186-97. [PMID: 15865884 DOI: 10.1007/s11910-005-0046-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant gliomas are the most common form of primary brain tumors in adults. Despite advances in diagnosis and standard therapies such as surgery, radiation, and chemotherapy, the prognosis remains poor. Recent scientific advances have enhanced our understanding of the biology of gliomas and the role of tyrosine kinase receptors and signal transduction pathways in tumor initiation and maintenance, such as the epidermal growth factor receptors, platelet-derived growth factor receptors, vascular endothelial growth factor receptors, and the Ras/Raf/mitogen-activated protein (MAP)-kinase and phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathways. Novel targeted drugs such as small molecular inhibitors of these receptors and signaling pathways are showing some activity in initial studies. As we learn more about these drugs and how to optimize their use as single agents and in combination with radiation, chemotherapy, and other targeted molecular agents, they will likely play an increasing role in the management of this devastating disease. This review summarizes the current results with targeted molecular agents in malignant gliomas and strategies under evaluation to increase their effectiveness.
Collapse
Affiliation(s)
- Santosh Kesari
- Center for Neuro-Oncology, Dana Farber/Brigham and Women's Cancer Center, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
To investigate the antiangiogenic potential of 10-hydroxycamptothecin (HCPT), the proliferation of human microvascular endothelial cells (HMEC) and seven human tumor cell lines were detected by SRB assay, and the endothelial cell migration and tube formation were assessed using two in vitro model systems. Also, inhibition of angiogenesis was determined with a modification of the chick embryo chorioallantoic membrane (CAM) assay in vivo. Morphological assessment of apoptosis was performed by fluorescence microscope. HCPT 0.313-5 micromol x L(-1) treatment resulted in a dose-dependent inhibition of proliferation, migration and tube formation in HMEC cells, and HCPT 6.25-25 nmol x egg(-1) inhibited angiogenesis in CAM assay. HCPT 1.25-5 micromol x L(-1) elicited typical morphological changes of apoptosis including condensed chromatin, nuclear fragmentation, and reduction in volume in HMEC cells. HCPT significantly inhibited angiogenesis both in vitro and in vivo at relatively low concentrations, and this effect was related with induction of apoptosis in HMEC cells. These results taken collectively suggest that HCPT may be a potent antiangiogenetic and cytotoxic drug and further investigation is warranted.
Collapse
Affiliation(s)
- D Xiao
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, PR China
| | | | | | | |
Collapse
|