1
|
Jerusalem A, Al-Rekabi Z, Chen H, Ercole A, Malboubi M, Tamayo-Elizalde M, Verhagen L, Contera S. Electrophysiological-mechanical coupling in the neuronal membrane and its role in ultrasound neuromodulation and general anaesthesia. Acta Biomater 2019; 97:116-140. [PMID: 31357005 DOI: 10.1016/j.actbio.2019.07.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
The current understanding of the role of the cell membrane is in a state of flux. Recent experiments show that conventional models, considering only electrophysiological properties of a passive membrane, are incomplete. The neuronal membrane is an active structure with mechanical properties that modulate electrophysiology. Protein transport, lipid bilayer phase, membrane pressure and stiffness can all influence membrane capacitance and action potential propagation. A mounting body of evidence indicates that neuronal mechanics and electrophysiology are coupled, and together shape the membrane potential in tight coordination with other physical properties. In this review, we summarise recent updates concerning electrophysiological-mechanical coupling in neuronal function. In particular, we aim at making the link with two relevant yet often disconnected fields with strong clinical potential: the use of mechanical vibrations-ultrasound-to alter the electrophysiogical state of neurons, e.g., in neuromodulation, and the theories attempting to explain the action of general anaesthetics. STATEMENT OF SIGNIFICANCE: General anaesthetics revolutionised medical practice; now an apparently unrelated technique, ultrasound neuromodulation-aimed at controlling neuronal activity by means of ultrasound-is poised to achieve a similar level of impact. While both technologies are known to alter the electrophysiology of neurons, the way they achieve it is still largely unknown. In this review, we argue that in order to explain their mechanisms/effects, the neuronal membrane must be considered as a coupled mechano-electrophysiological system that consists of multiple physical processes occurring concurrently and collaboratively, as opposed to sequentially and independently. In this framework the behaviour of the cell membrane is not the result of stereotypical mechanisms in isolation but instead emerges from the integrative behaviour of a complexly coupled multiphysics system.
Collapse
Affiliation(s)
- Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
| | - Zeinab Al-Rekabi
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Haoyu Chen
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Majid Malboubi
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Miren Tamayo-Elizalde
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, UK; WIN, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Sonia Contera
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| |
Collapse
|
2
|
Sabinina TS, Bagaev VG, Alekseev IF. Prospects for Applying Xenon Curative Properties in Pediatrics. PEDIATRIC PHARMACOLOGY 2018. [DOI: 10.15690/pf.v15i5.1961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The review discusses experimental and clinical trials on applying noble gas Xenon to treat therapeutic conditions in adults, as well as the prospects for its applying in children. Xenon therapeutic effects on the body are based on the healing properties of a noble gas. Xenon is close to the ‘ideal anesthetic’ by its anesthetic properties; but in addition, it possesses organoand neuroprotective as well as anti-stress properties which have been proved in experiment and clinically. Xenon in pediatric practice is an attractive agent because it is non-toxic, effective for the treatment of posthypoxic and traumatic impairments of the central nervous system, pain syndromes and stress conditions at its therapeutic concentration up to 30%.
Collapse
Affiliation(s)
| | | | - Ilia F. Alekseev
- Research Institute of Emergency Pediatric Surgery and Traumatology
| |
Collapse
|
3
|
Zhao CS, Li H, Wang Z, Chen G. Potential application value of xenon in stroke treatment. Med Gas Res 2018; 8:116-120. [PMID: 30319767 PMCID: PMC6178644 DOI: 10.4103/2045-9912.241077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 11/04/2022] Open
Abstract
Stroke is an acute disease with extremely high mortality and disability, including ischemic stroke and hemorrhagic stroke. Currently only limited drugs and treatments have been shown to have neuroprotective effects in stroke. As a medical gas, xenon has been proven to have neuroprotective effect in considerable amount of previous study. Its unique properties are different from other neuroprotective agents, making it is promising to play a special therapeutic role in stroke, either alone or in combination with other treatments. In this article, we aim to review the role of xenon in the treatment of stroke, and summarize the mechanism of using xenon to produce therapeutic effects after stroke according to the existing research. Moreover, we intend to explore and demonstrate the feasibility and safety of xenon for clinical treatment of stroke. Despite the disadvantages of difficulty in obtaining and being expensive, as long as the use of reasonable methods, xenon can play an important role in the treatment of stroke.
Collapse
Affiliation(s)
- Chong-Shun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hao Li
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Dandekar MP, Peng T, McPherson DD, Quevedo J, Soares JC, Huang SL. Intravenous infusion of xenon-containing liposomes generates rapid antidepressant-like effects. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:140-149. [PMID: 29559371 DOI: 10.1016/j.pnpbp.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
AIM Similar to ketamine, xenon gas acts as a glutamatergic N-methyl-d-aspartate receptor antagonist, but devoid of propensity to cause untoward effects. Herein, we loaded xenon gas into a liposomal carrier called xenon-containing liposomes (Xe-liposome) for systemic delivery, and investigated its effect as an antidepressant and also analyzed synaptic biomarkers including brain-derived neurotrophic factor (BDNF), protein kinase B (AKT), mammalian target of rapamycin (mTOR), protein kinase C (PKC) and extracellular signal-regulated kinase-1/2 (ERK1/2) in blood and brain. METHODS Xe-liposomes (15 μl/mg) were prepared by a pressurized freeze-thaw method, and injected via the lateral tail vein (0.6 mL/rat) in male Wistar rats. The uncaging of xenon gas from circulating Xe-liposome was facilitated by continuous ultrasound application externally on the neck over the internal common carotid artery. One-hour after Xe-liposome infusion, animals were assessed for depression-like behaviors using a forced swimming test (FST), and spontaneous locomotor activity. Blood, as well as frontal cortex and hippocampal samples were obtained for immunoblotting and/or enzyme-linked immune sorbent assays. RESULTS Acute intravenous infusion of Xe-liposome, at 6 mg/kg, showed an increase in swimming time in the FST (p < 0.006), indicating antidepressant-like phenotypes. Higher doses of Xe-liposomes (9 mg/kg) failed to improve swimming duration. This behavioral discrepancy was not associated with locomotion aberrations, as gross activity of rats remained similar for both doses. In biochemical analyses of frontal cortex, protein levels of BDNF increased by 64%, and enhanced phosphorylation of AKT (43%) and mTOR (93%) was observed at the 6 mg/kg dose level of Xe-liposomes, while these biomarkers and phosphorylated PKC and ERK1/2 levels remained unchanged at the higher dose. Moreover, Xe-liposomal treatment did not change the plasma and protein levels of BDNF, and phosphorylated AKT, mTOR, PKC and ERK1/2 hippocampal expressions. CONCLUSION Xe-liposomes mediate a rapid antidepressant-like effect through activation of AKT/mTOR/BDNF signaling pathway.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA
| | - Tao Peng
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA; Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, USA
| | - David D McPherson
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA; Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, USA; Department of Biomedical Sciences, The University of Texas Medical School at Houston, USA; Memorial Hermann Heart and Vascular Institute-Texas Medical Center, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA
| | - Shao-Ling Huang
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA; Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, USA.
| |
Collapse
|
5
|
Neice AE, Zornow MH. Xenon anaesthesia for all, or only a select few? Anaesthesia 2016; 71:1267-1272. [DOI: 10.1111/anae.13569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 11/28/2022]
Affiliation(s)
- A. E. Neice
- Department of Anesthesiology and Perioperative Medicine; Oregon Health and Science University; Portland OR USA
| | - M. H. Zornow
- Department of Anesthesiology and Perioperative Medicine; Oregon Health and Science University; Portland OR USA
| |
Collapse
|
6
|
|
7
|
Sauguet L, Fourati Z, Prangé T, Delarue M, Colloc'h N. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel. PLoS One 2016; 11:e0149795. [PMID: 26910105 PMCID: PMC4765991 DOI: 10.1371/journal.pone.0149795] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/04/2016] [Indexed: 12/15/2022] Open
Abstract
GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and "locally-closed" (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels.
Collapse
Affiliation(s)
- Ludovic Sauguet
- Unité de Dynamique Structurale des Macromolécules (UMR 3528 CNRS) Institut Pasteur, Paris, France
| | - Zeineb Fourati
- Unité de Dynamique Structurale des Macromolécules (UMR 3528 CNRS) Institut Pasteur, Paris, France
| | - Thierry Prangé
- Laboratoire de cristallographie et RMN biologiques (UMR 8015 CNRS), Paris, France
| | - Marc Delarue
- Unité de Dynamique Structurale des Macromolécules (UMR 3528 CNRS) Institut Pasteur, Paris, France
- * E-mail:
| | - Nathalie Colloc'h
- CNRS, UMR 6301, ISTCT CERVOxy group, GIP Cyceron, Caen, France
- UNICAEN, Normandie Univ., UMR 6301 ISTCT, Caen, France
- CEA, DSV/I2BM, UMR 6301 ISTCT, Caen, France
| |
Collapse
|
8
|
Disma N, Mondardini MC, Terrando N, Absalom AR, Bilotta F. A systematic review of methodology applied during preclinical anesthetic neurotoxicity studies: important issues and lessons relevant to the design of future clinical research. Paediatr Anaesth 2016; 26:6-36. [PMID: 26530523 DOI: 10.1111/pan.12786] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Preclinical evidence suggests that anesthetic agents harm the developing brain thereby causing long-term neurocognitive impairments. It is not clear if these findings apply to humans, and retrospective epidemiological studies thus far have failed to show definitive evidence that anesthetic agents are harmful to the developing human brain. AIM The aim of this systematic review was to summarize the preclinical studies published over the past decade, with a focus on methodological issues, to facilitate the comparison between different preclinical studies and inform better design of future trials. METHOD The literature search identified 941 articles related to the topic of neurotoxicity. As the primary aim of this systematic review was to compare methodologies applied in animal studies to inform future trials, we excluded a priori all articles focused on putative mechanism of neurotoxicity and the neuroprotective agents. Forty-seven preclinical studies were finally included in this review. RESULTS Methods used in these studies were highly heterogeneous-animals were exposed to anesthetic agents at different developmental stages, in various doses and in various combinations with other drugs, and overall showed diverse toxicity profiles. Physiological monitoring and maintenance of physiological homeostasis was variable and the use of cognitive tests was generally limited to assessment of specific brain areas, with restricted translational relevance to humans. CONCLUSION Comparison between studies is thus complicated by this heterogeneous methodology and the relevance of the combined body of literature to humans remains uncertain. Future preclinical studies should use better standardized methodologies to facilitate transferability of findings from preclinical into clinical science.
Collapse
Affiliation(s)
- Nicola Disma
- Department of Anesthesia, Istituto Giannina Gaslini, Genoa, Italy
| | - Maria C Mondardini
- Department of Pediatric Anesthesia and Intensive Care Unit, University Hospital Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Niccolò Terrando
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Anthony R Absalom
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Federico Bilotta
- Section of Neuroanesthesia and Neurocritical Care, Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
9
|
Thevis M, Piper T, Geyer H, Schaefer MS, Schneemann J, Kienbaum P, Schänzer W. Urine analysis concerning xenon for doping control purposes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:61-66. [PMID: 25462364 DOI: 10.1002/rcm.7080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 06/04/2023]
Abstract
RATIONALE On September 1(st) 2014, a modified Prohibited List as established by the World Anti-Doping Agency (WADA) became effective featuring xenon as a banned substance categorized as hypoxia-inducible factor (HIF) activator. Consequently, the analysis of xenon from commonly provided doping control specimens such as blood and urine is desirable, and first data on the determination of xenon from urine in the context of human sports drug testing, are presented. METHODS In accordance to earlier studies utilizing plasma as doping control matrix, urine was enriched to saturation with xenon, sequentially diluted, and the target analyte was detected as supported by the internal standard d6 -cyclohexanone by means of gas chromatography/triple quadrupole mass spectrometry (GC/MS/MS) using headspace injection. Three major xenon isotopes at m/z 128.9, 130.9 and 131.9 were targeted in (pseudo) selected reaction monitoring mode enabling the unambiguous identification of the prohibited substance. Assay characteristics including limit of detection (LOD), intraday/interday precision, and specificity as well as analyte recovery under different storage conditions were determined. Proof-of-concept data were generated by applying the established method to urine samples collected from five patients before, during and after (up to 48 h) xenon-based general anesthesia. RESULTS Xenon was traceable in enriched human urine samples down to the detection limit of approximately 0.5 nmol/mL. The intraday and interday imprecision values of the method were found below 25%, and specificity was demonstrated by analyzing 20 different blank urine samples that corroborated the fitness-for-purpose of the analytical approach to unequivocally detect xenon at non-physiological concentrations in human urine. The patients' urine specimens returned 'xenon-positive' test results up to 40 h post-anesthesia, indicating the limits of the expected doping control detection window. CONCLUSIONS Since xenon has been considered a prohibited substance according to WADA regulations in September 2014, its analysis from common specimens of routine sports drug testing is desirable. In previous studies, its traceability in whole blood and plasma was shown, and herein a complementary approach utilizing doping control urine samples for the GC/MS/MS analysis of xenon was reported.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany; European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Thevis M, Piper T, Geyer H, Thomas A, Schaefer MS, Kienbaum P, Schänzer W. Measuring xenon in human plasma and blood by gas chromatography/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1501-1506. [PMID: 24861600 DOI: 10.1002/rcm.6926] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Due to the favorable pharmacokinetic properties and minimal side effects of xenon, its use in modern anesthesia has been well accepted, and recent studies further demonstrated the intra- and postoperative neuro-, cardio-, and reno-protective action of the noble gas. Since the production of the hypoxia-inducible factor 1α (HIF-1α) and its downstream effector erythropoietin as well as noradrenalin reuptake inhibition have been found to play key roles in this context, the question arose as to whether the use of xenon is a matter for doping controls and preventive doping research. The aim of the present study was hence to evaluate whether the (ab)use of xenon can be detected from doping control samples with the instrumentation commonly available in sports drug testing laboratories. METHODS Plasma was saturated with xenon according to reported protocols, and the target analyte was measured by means of gas chromatography/time-of-flight and triple quadrupole mass spectrometry with headspace injection. Recording the accurate mass of three major xenon isotopes at m/z 128.9048, 130.9045 and 131.9042 allowed for the unequivocal identification of the analyte and the detection assay was characterized concerning limit of detection (LOD), intraday precision, and specificity as well as analyte recovery under different storage conditions. RESULTS Xenon was detected in fortified plasma samples with detection limits of approximately 0.5 nmol/mL to 50 nmol/mL, depending on the type of mass spectrometer used. The method characteristics of intraday precision (coefficient of variation <20%) and specificity demonstrated the fitness-for-purpose of the analytical approach to unambiguously detect xenon at non-physiological concentrations in human plasma and blood. Eventually, authentic plasma and blood samples collected pre-, intra-, and post-operative (4, 8, and 24 h) were positively analyzed after storage for up to 30 h, and provided proof-of-concept for the developed assay. CONCLUSIONS If relevant to doping controls, xenon can be determined from plasma and blood samples, i.e. common specimens of routine sports drug testing in the context of Athlete Biological Passport (ABP) analyses. Optimization of sampling and analytical procedures will allow the detection limit to be further improved and potentially enable accurate quantification of the anesthetic agent.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany; European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Nikolić M, Gardner H, Tucker K. Postnatal neuronal apoptosis in the cerebral cortex: Physiological and pathophysiological mechanisms. Neuroscience 2013; 254:369-78. [DOI: 10.1016/j.neuroscience.2013.09.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 12/15/2022]
|
12
|
Peng T, Britton GL, Kim H, Cattano D, Aronowski J, Grotta J, McPherson DD, Huang SL. Therapeutic time window and dose dependence of xenon delivered via echogenic liposomes for neuroprotection in stroke. CNS Neurosci Ther 2013; 19:773-84. [PMID: 23981565 DOI: 10.1111/cns.12159] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 12/14/2022] Open
Abstract
AIMS Neurologic impairment following ischemic injury complicates the quality of life for stroke survivors. Xenon (Xe) has favorable neuroprotective properties to modify stroke. Xe delivery is hampered by a lack of suitable administration strategies. We have developed Xe-containing echogenic liposomes (Xe-ELIP) for systemic Xe delivery. We investigated the time window for Xe-ELIP therapeutic effect and the most efficacious dose for neuroprotection. Molecular mechanisms for Xe neuroprotection were investigated. METHODS Xenon-containing echogenic liposomes were created by a previously developed pressurization-freezing method. Following right middle cerebral artery occlusion (2 h), animals were treated with Xe-ELIP at 2, 3, or 5 h to determine time window of therapeutic effect. The neuroprotectant dosage for optimal effect was evaluated 3 h after stroke onset. Expression of brain-derived neurotrophic factor (BDNF), protein kinase B (Akt), and mitogen-activated protein kinases (MAPK) was determined. RESULTS Xenon-containing echogenic liposomes administration for up to 5 h after stroke onset reduced infract size. Treatment groups given 7 and 14 mg/kg of Xe-ELIP reduced infarct size. Behavioral outcomes corresponded to changes in infarct volume. Xe-ELIP treatment reduced ischemic neuronal cell death via activation of both MAPK and Akt. Elevated BDNF expression was shown following Xe-ELIP delivery. CONCLUSION This study demonstrates the therapeutic efficacy of Xe-ELIP administered within 5 h after stroke onset with an optimal dosage range of 7-14 mg/kg for maximal neuroprotection.
Collapse
Affiliation(s)
- Tao Peng
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Esencan E, Yuksel S, Tosun YB, Robinot A, Solaroglu I, Zhang JH. XENON in medical area: emphasis on neuroprotection in hypoxia and anesthesia. Med Gas Res 2013; 3:4. [PMID: 23369273 PMCID: PMC3626616 DOI: 10.1186/2045-9912-3-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/25/2013] [Indexed: 01/03/2023] Open
Abstract
Xenon is a medical gas capable of establishing neuroprotection, inducing anesthesia as well as serving in modern laser technology and nuclear medicine as a contrast agent. In spite of its high cost, its lack of side effects, safe cardiovascular and organoprotective profile and effective neuroprotective role after hypoxic-ischemic injury (HI) favor its applications in clinics. Xenon performs its anesthetic and neuroprotective functions through binding to glycine site of glutamatergic N-methyl-D-aspartate (NMDA) receptor competitively and blocking it. This blockage inhibits the overstimulation of NMDA receptors, thus preventing their following downstream calcium accumulating cascades. Xenon is also used in combination therapies together with hypothermia or sevoflurane. The neuroprotective effects of xenon and hypothermia cooperate synergistically whether they are applied synchronously or asynchronously. Distinguishing properties of Xenon promise for innovations in medical gas field once further studies are fulfilled and Xenon’s high cost is overcome.
Collapse
Affiliation(s)
- Ecem Esencan
- Departments of Neurosurgery and Physiology, Loma Linda University, Loma Linda, CA, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Schifilliti D, Grasso G, Conti A, Fodale V. Anaesthetic-related neuroprotection: intravenous or inhalational agents? CNS Drugs 2010; 24:893-907. [PMID: 20932063 DOI: 10.2165/11584760-000000000-00000] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In designing the anaesthetic plan for patients undergoing surgery, the choice of anaesthetic agent may often appear irrelevant and the best results obtained by the use of a technique or a drug with which the anaesthesia care provider is familiar. Nevertheless, in those surgical procedures (cardiopulmonary bypass, carotid surgery and cerebral aneurysm surgery) and clinical situations (subarachnoid haemorrhage, stroke, brain trauma and post-cardiac arrest resuscitation) where protecting the CNS is a priority, the choice of anaesthetic drug assumes a fundamental role. Treating patients with a neuroprotective agent may be a consideration in improving overall neurological outcome. Therefore, a clear understanding of the relative degree of protection provided by various agents becomes essential in deciding on the most appropriate anaesthetic treatment geared to these objectives. This article surveys the current literature on the effects of the most commonly used anaesthetic drugs (volatile and gaseous inhalation, and intravenous agents) with regard to their role in neuroprotection. A systematic search was performed in the MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINHAL®) and Cochrane Library databases using the following keywords: 'brain' (with the limits 'newborn' or 'infant' or 'child' or 'neonate' or 'neonatal' or 'animals') AND 'neurodegeneration' or 'apoptosis' or 'toxicity' or 'neuroprotection' in combination with individual drug names ('halothane', 'isoflurane', 'desflurane', 'sevoflurane', 'nitrous oxide', 'xenon', 'barbiturates', 'thiopental', 'propofol', 'ketamine'). Over 600 abstracts for articles published from January 1980 to April 2010, including studies in animals, humans and in vitro, were examined, but just over 100 of them were considered and reviewed for quality. Taken as a whole, the available data appear to indicate that anaesthetic drugs such as barbiturates, propofol, xenon and most volatile anaesthetics (halothane, isoflurane, desflurane, sevoflurane) show neuroprotective effects that protect cerebral tissue from adverse events--such as apoptosis, degeneration, inflammation and energy failure--caused by chronic neurodegenerative diseases, ischaemia, stroke or nervous system trauma. Nevertheless, in several studies, the administration of gaseous, volatile and intravenous anaesthetics (especially isoflurane and ketamine) was also associated with dose-dependent and exposure time-dependent neurodegenerative effects in the developing animal brain. At present, available experimental data do not support the selection of any one anaesthetic agent over the others. Furthermore, the relative benefit of one anaesthetic versus another, with regard to neuroprotective potential, is unlikely to form a rational basis for choice. Each drug has some undesirable adverse effects that, together with the patient's medical and surgical history, appear to be decisive in choosing the most suitable anaesthetic agent for a specific situation. Moreover, it is important to highlight that many of the studies in the literature have been conducted in animals or in vitro; hence, results and conclusions of most of them may not be directly applied to the clinical setting. For these reasons, and given the serious implications for public health, we believe that further investigation--geared mainly to clarifying the complex interactions between anaesthetic drug actions and specific mechanisms involved in brain injury, within a setting as close as possible to the clinical situation--is imperative.
Collapse
Affiliation(s)
- Daniela Schifilliti
- Department of Neuroscience Psychiatric and Anesthesiological Sciences, University of Messina, Messina, Italy
| | | | | | | |
Collapse
|
15
|
van den Bergh WM. Is There a Future for Neuroprotective Agents in Cardiac Surgery? Semin Cardiothorac Vasc Anesth 2010; 14:123-35. [DOI: 10.1177/1089253210370624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article gives an overview of neuroprotective drugs that were recently tested in clinical trials in cardiac surgery. Also, recommendations are given for successful translational research and considerations for management during cardiac surgery.
Collapse
|
16
|
Stuttmann R, Jakubetz J, Schultz K, Schäfer C, Langer S, Ullmann U, Hilbert P. Recovery index, attentiveness and state of memory after xenon or isoflurane anaesthesia: a randomized controlled trial. BMC Anesthesiol 2010; 10:5. [PMID: 20459661 PMCID: PMC2877044 DOI: 10.1186/1471-2253-10-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 05/07/2010] [Indexed: 11/15/2022] Open
Abstract
Background Performance of patients immediately after anaesthesia is an area of special interest and so a clinical trial was conducted to compare Xenon with Isoflurane anaesthesia. In order to assess the early cognitive recovery the syndrome short test (SST) according to Erzigkeit (Geromed GmbH) was applied. Methods ASA I and II patients undergoing long and short surgical interventions were randomised to receive either general anaesthesia with Xenon or Isoflurane. The primary endpoint was the validated SST which covering memory disturbances and attentiveness. The test was used on the day prior to intervention, one and three hours post extubation. The secondary endpoint was the recovery index (RI) measured after the end of the inhalation of Xenon or Isoflurane. In addition the Aldrete score was evaluated up to 180 min. On the first post-operative day the patients rated the quality of the anaesthetic using a scoring system from 1-6. Results The demographics of the groups were similar. The sum score of the SST delivered a clear trend one hour post extubation and a statistically significant superiority for Xenon three hours post extubation (p < 0.01). The RI likewise revealed a statistically significant superiority of Xenon 5 minutes post extubation (p < 0.01). The Aldrete score was significantly higher for 45 min. The scoring system results were also better after Xenon anaesthesia (p < 0.001). Conclusions The results show that recovery from anaesthesia and the early return of post-operative cognitive functions are significantly better after Xenon anaesthesia compared to Isoflurane. The results of the RI for Xenon are similar with the previously published results. Trial Registration The trial was registered with the number ISRCTN01110844 http://www.controlled-trials.com/isrctn/pf/01110844.
Collapse
Affiliation(s)
- Ralph Stuttmann
- Department of Anaesthesiology/Intensive Care and Emergency Medicine/Pain Therapy, BG-Kliniken Bergmannstrost, (Merseburger Strasse 165), Halle/Saale, (06112), Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Stuttmann R, Schäfer C, Hilbert P, Meyer MR, Maurer HH. The breast feeding mother and xenon anaesthesia: four case reports. Breast feeding and xenon anaesthesia. BMC Anesthesiol 2010; 10:1. [PMID: 20167123 PMCID: PMC2837001 DOI: 10.1186/1471-2253-10-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 02/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Four nursing mothers consented to anaesthesia for urgent surgery only on condition that their ability to breast feed would not be impaired. METHODS Following induction of general anaesthesia with propofol and remifentanil, 65-69% xenon supplemented with remifentanil was used as an inhalational anaesthetic for maintenance. RESULTS After finishing surgery the women could be extubated between 2:52 and 7:22 minutes. The women were fully alert just minutes after extubation and spent about 45 minutes in the recovery room before discharge to a regular ward. They resumed regular breast feeding some time later. The propofol concentration in the blood was measured after 0, 30, 90, and 300 minutes and in the milk after 90 and 300 minutes. Just 90 minutes after extubation, the concentration of propofol in the milk was limited (> 3 mg/l) so that pharmacological effects on the babies were excluded after oral intake. Also, no traces of xenon gas were found in the maternal milk at any time. After propofol induction and maintenance of anaesthesia with xenon in combination with a water-soluble short-acting drug like remifentanil, the concentration of propofol in maternal milk is low (> 3 mg/l 90 min after anesthesia) and harmless after oral intake. CONCLUSIONS These results, as well as the rapid elimination and absence of metabolism of xenon, are of great interest to nursing mothers. General anaesthesia with propofol for induction only, combined with remifentanil and xenon for maintenance, has not yet been described in breast feeding mothers.
Collapse
Affiliation(s)
- Ralph Stuttmann
- Department of Anaesthesiology/Intensive and Emergency Medicine/Pain Therapy, BG-Kliniken Bergmannstrost, Merseburger Strasse 165, Halle/Saale, (06112), Germany.
| | | | | | | | | |
Collapse
|
18
|
Abramo A, Di Salvo C, Foltran F, Forfori F, Anselmino M, Giunta F. Xenon anesthesia improves respiratory gas exchanges in morbidly obese patients. J Obes 2010; 2010:421593. [PMID: 20721352 PMCID: PMC2915801 DOI: 10.1155/2010/421593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/13/2009] [Accepted: 01/11/2010] [Indexed: 11/30/2022] Open
Abstract
Background. Xenon-in-oxygen is a high density gas mixture and may improve PaO2/FiO2 ratio in morbidly obese patients uniforming distribution of ventilation during anesthesia. Methods. We compared xenon versus sevoflurane anesthesia in twenty adult morbidly obese patients (BMI > 35) candidate for roux-en-Y laparoscopic gastric bypass and assessed PaO2/FiO2 ratio at baseline, at 15 min from induction of anaesthesia and every 60 min during surgery. Differences in intraoperative and postoperative data including heart rate, systolic and diastolic pressure, oxygen saturation, plateau pressure, eyes opening and extubation time, Aldrete score on arrival to the PACU were compared by the Mann-Whitney test and were considered as secondary aims. Moreover the occurrence of side effects and postoperative analgesic demand were assessed. Results. In xenon group PaO2-FiO2 ratio was significantly higher after 60 min and 120 min from induction of anesthesia; heart rate and overall remifentanil consumption were lower; the eyes opening time and the extubation time were shorter; morphine consumption at 72 hours was lower; postoperative nausea was more common. Conclusions. Xenon anesthesia improved PaO2/FiO2 ratio and maintained its distinctive rapid recovery times and cardiovascular stability. A reduction of opioid consumption during and after surgery and an increased incidence of PONV were also observed in xenon group.
Collapse
Affiliation(s)
- Antonio Abramo
- Anestesia e Rianimazione Universitaria IV, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, Pisa 56100, Italy
- *Antonio Abramo:
| | - Claudio Di Salvo
- Anestesia e Rianimazione Universitaria IV, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, Pisa 56100, Italy
| | - Francesca Foltran
- Anestesia e Rianimazione Universitaria IV, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, Pisa 56100, Italy
| | - Francesco Forfori
- Anestesia e Rianimazione Universitaria IV, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, Pisa 56100, Italy
| | - Marco Anselmino
- Bariatric Surgery Unit, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, Pisa 56100, Italy
| | - Francesco Giunta
- Anestesia e Rianimazione Universitaria IV, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, Pisa 56100, Italy
| |
Collapse
|
19
|
Sun P, Gu J, Maze M, Ma D. Is xenon a future neuroprotectant? FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute neuronal injury has devastating consequences with increased risks of morbidity and mortality. Among its survivors, neurological deficit is associated with loss of function, independence and quality of life. Currently, there is a distinctive lack of effective clinical strategies to obviate this problem. Xenon, a noble gas with anesthetic properties, exhibits neuroprotective effects. It is efficacious and nontoxic and has been used safely in clinical settings involving both anesthetic and imaging applications in patients of all ages. Xenon blocks the NMDA subtype of the glutamate receptor, a pivotal step in the pathway towards neuronal death. The preclinical data obtained from animal models of stroke, neonatal asphyxia and global ischemia induced by cardiac arrest, as well as recent data of traumatic brain injury, revealed that xenon is a potentially ideal candidate as a neuroprotectant. In addition, recent studies demonstrated that xenon can uniquely prevent anesthetic-induced neurodegeneration in the developing brain. Thus, clinical studies are urgently required to investigate the neuroprotective effects of xenon in the clinical setting of brain damage.
Collapse
Affiliation(s)
- Pamela Sun
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Jianteng Gu
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, UK and, Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Mervyn Maze
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Daqing Ma
- Department of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London SW10 9NH, UK
| |
Collapse
|
20
|
Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology 2009; 110:986-95. [PMID: 19352153 DOI: 10.1097/aln.0b013e31819dadc7] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Ischemic preconditioning is an important intrinsic mechanism for neuroprotection. Preconditioning can also be achieved by exposure of neurons to K+ channel-opening drugs that act on adenosine triphosphate-sensitive K+ (K(ATP)) channels. However, these agents do not readily cross the blood-brain barrier. Inhalational anesthetics which easily partition into brain have been shown to precondition various tissues. Here, the authors explore the neuronal preconditioning effect of modern inhalational anesthetics and investigate their effects on K(ATP) channels. METHODS Neuronal-glial cocultures were exposed to inhalational anesthetics in a preconditioning paradigm, followed by oxygen-glucose deprivation. Increased cell survival due to preconditioning was quantified with the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction test. Recombinant plasmalemmal K(ATP) channels of the main neuronal type (Kir6.2/SUR1) were expressed in HEK293 cells, and the effects of anesthetics were evaluated in whole cell patch clamp recordings. RESULTS Both sevoflurane and the noble gas xenon preconditioned neurons at clinically used concentrations. The effect of sevoflurane was independent of K(ATP) channel activation, whereas the effect of xenon required the opening of plasmalemmal K(ATP) channels. Recombinant K(ATP) channels were activated by xenon but inhibited by halogenated volatiles. Modulation of mitochondrial K-ATP channels did not affect the activity of K(ATP) channels, thus ruling out an indirect effect of volatiles via mitochondrial channels. CONCLUSIONS The preconditioning properties of halogenated volatiles cannot be explained by their effect on K(ATP) channels, whereas xenon preconditioning clearly involves the activation of these channels. Therefore, xenon might mimic the intrinsic mechanism of ischemic preconditioning most closely. This, together with its good safety profile, might suggest xenon as a viable neuroprotective agent in the clinical setting.
Collapse
|
21
|
Coburn M, Baumert JH, Zühlsdorff A, Hein M, Fries M, Rossaint R. A comparison of waste gas concentrations during xenon or nitrous oxide anaesthesia. Eur J Anaesthesiol 2008; 25:748-751. [PMID: 18405409 DOI: 10.1017/s0265021508004109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to compare waste gas concentrations during xenon or nitrous oxide anaesthesia. METHODS A total of 64 patients were included in this study. Gas concentrations were measured with a mass spectrometer during anaesthesia. The probes were taken beside the patient's head and thorax and at a height of 180 cm above and at the floor level. RESULTS In both groups, waste gas concentrations peak after intubation and extubation. Waste gas levels during xenon anaesthesia are low compared with nitrous oxide. CONCLUSIONS The low waste gas levels of xenon seem to be beneficial compared to nitrous oxide.
Collapse
Affiliation(s)
- M Coburn
- University Hospital Aachen, RWTH Aachen, Department of Anaesthesiology, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The ability to reduce brain injury before, during or after an ischaemic injury, irrespective of the cause, remains an exciting prospect. In this article, we will discuss some of the current research behind cerebral protection, which will include the use of anaesthetic agents, as well as therapies targeted specifically at the complex cascades following brain injury.
Collapse
Affiliation(s)
- Jane Sturgess
- Cambridge University Hospitals Foundation Trust, Hills Road, Cambridge CB2 2QQ, UK
| | | |
Collapse
|
23
|
Fernández-Alcantud J, Sanabria Carretero P, Rodríguez Pérez E, Planas Roca A. [Anesthetic induction with nitrous-oxide-free sevoflurane in pediatric patients]. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2008; 55:69-74. [PMID: 18383967 DOI: 10.1016/s0034-9356(08)70512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To evaluate the pediatric use of inhaled nitrous oxide (N2O)-free induction with sevoflurane for the purpose of protecting staff from exposure to workplace air pollution. PATIENTS AND METHODS Prospective, randomized trial in ASA class 1-2 children in whom a tidal breathing technique was used for anesthetic induction in a variety of surgical procedures. Patients were allocated to 2 groups. The sevo-N2O group inhaled 8% sevoflurane in a 60/40% mixture of oxygen and N2O. The sevo-air group received 8% sevoflurane in a mixture of oxygen and air (inspired oxygen fraction, 40%). We recorded mean arterial pressure (MAP), heart rate, oxygen saturation by pulse oximetry (SpO2), limb response to venous puncture, alveolar concentration of sevoflurane, and incidence of adverse events. RESULTS Twenty-two patients were assigned to each group. The vein was catheterized in all patients without a pain reflex in the limb, and there were no statistically significant differences in MAP, heart rate, SpO2, or incidence of adverse events. Mean (SD) alveolar concentration of sevoflurane, however, differed between the 2 groups: 53% (0.51%) in the sevo-N2O group and 4.91% (0.41%) in the sevo-air group (P = .028). CONCLUSIONS N2O-free anesthetic induction by tidal breathing of 8% sevoflurane provides similar anesthetic conditions (efficacy, safety, and rapid onset) without a higher incidence of adverse events. The use of N2O can therefore be avoided.
Collapse
Affiliation(s)
- J Fernández-Alcantud
- Servicio de Anestesiología, Reanimación y Tratamiento del Dolor, Hospital Universitario Principe de Asturias.
| | | | | | | |
Collapse
|
24
|
Abstract
We suggest that bubbles are the bistable hydrophobic gates responsible for the on-off transitions of single channel currents. In this view, many types of channels gate by the same physical mechanism-dewetting by capillary evaporation-but different types of channels use different sensors to modulate hydrophobic properties of the channel wall and thereby trigger and control bubbles and gating. Spontaneous emptying of channels has been seen in many simulations. Because of the physics involved, such phase transitions are inherently sensitive, unstable threshold phenomena that are difficult to simulate reproducibly and thus convincingly. We present a thermodynamic analysis of a bubble gate using morphometric density functional theory of classical (not quantum) mechanics. Thermodynamic analysis of phase transitions is generally more reproducible and less sensitive to details than simulations. Anesthetic actions of inert gases-and their interactions with hydrostatic pressure (e.g., nitrogen narcosis)-can be easily understood by actions on bubbles. A general theory of gas anesthesia may involve bubbles in channels. Only experiments can show whether, or when, or which channels actually use bubbles as hydrophobic gates: direct observation of bubbles in channels is needed. Existing experiments show thin gas layers on hydrophobic surfaces in water and suggest that bubbles nearly exist in bulk water.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Patients at risk for perioperative stroke, or those who have suffered recent cerebral injury, may benefit from neuroprotective properties of anesthetic agents during surgery. This manuscript reviews recent clinical and experimental evidence for neuroprotective effects of common anesthetic agents, and presents potential mechanisms involved in anesthetic neuroprotection. RECENT FINDINGS Although strong experimental data support a neuroprotective potential of several anesthetic agents, specifically isoflurane and xenon, consistent long-term protection by either agent has not been demonstrated. Unfortunately, there is a lack of clinical studies that would support the use of any one anesthetic agent over the others. Mechanisms of neuroprotection by anesthetic agents appear to involve suppression of excitatory neurotransmission, and potentiation of inhibitory activity, which may contribute to the reduction of excitotoxic injury. Activation of intracellular signaling cascades that lead to altered expression of protective genes may also be involved. SUMMARY Solid experimental evidence supports neuroprotection by anesthetic agents. It is too early to recommend any specific agent for clinical use as a neuroprotectant, however. Further study is warranted to unravel relevant mechanisms and to appreciate the potential clinical relevance of experimental findings.
Collapse
Affiliation(s)
- Ines P Koerner
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | |
Collapse
|
26
|
|