1
|
Cardioprotective Mechanisms of Interrupted Anesthetic Preconditioning with Sevoflurane in the Setting of Ischemia/Reperfusion Injury in Rats. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Anesthetic preconditioning (AP) is known to mimic ischemic preconditioning. The purpose of this study was to investigate the effects of an interrupted sevoflurane administration protocol on myocardial ischemia/reperfusion (I/R) injury. Methods: Male Wistar rats (n = 60) were ventilated for 30 min with room air (control group, CG) or with a mixture of air and sevoflurane (1 minimum alveolar concentration—MAC) in 5-min cycles, alternating with 5-min wash-out periods (preconditioned groups). Cytokines implicated in the AP response were measured. An (I/R) lesion was produced immediately after the sham intervention (CG) and preconditioning protocol (early AP group, EAPG) or 24 h after the intervention (late AP group, LAPG). The area of fibrosis, the degree of apoptosis and the number of c-kit+ cells was estimated for each group. Results: Cytokine levels were increased post AP. The area of fibrosis decreased in both EAPG and LAPG compared to the CG (p < 0.0001). When compared to the CG, the degree of apoptosis was reduced in both LAPG (p = 0.006) and EAPG (p = 0.007) and the number of c-kit+ cells was the greatest for the LAPG (p < 0.0001). Conclusions: Sevoflurane preconditioning, using an interrupted anesthesia protocol, is efficient in myocardial protection and could be beneficial to reduce perioperative or periprocedural ischemia in patients with increased cardiovascular risk.
Collapse
|
2
|
Fang SY, Lee JS, Roan JN, Tsai YC, Lam CF. Isoflurane Impairs Motor Function Recovery by Increasing Neuroapoptosis and Degeneration During Spinal Ischemia–Reperfusion Injury in Rats. Anesth Analg 2017; 124:254-261. [DOI: 10.1213/ane.0000000000001704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Abstract
Sevoflurane has been available for clinical practice for about 20 years. Nowadays, its pharmacodynamic and pharmacokinetic properties together with its absence of major adverse side effects on the different organ systems have made this drug accepted worldwide as a safe and reliable anesthetic agent for clinical practice in various settings.
Collapse
Affiliation(s)
- Stefan De Hert
- Department of Anesthesiology, Ghent University Hospital, De Pintelaan 185, Ghent, B-9000, Belgium
| | - Anneliese Moerman
- Department of Anesthesiology, Ghent University Hospital, De Pintelaan 185, Ghent, B-9000, Belgium
| |
Collapse
|
4
|
Bonney S, Hughes K, Eckle T. Anesthetic cardioprotection: the role of adenosine. Curr Pharm Des 2015; 20:5690-5. [PMID: 24502579 DOI: 10.2174/1381612820666140204102524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/03/2014] [Indexed: 12/25/2022]
Abstract
Brief periods of cardiac ischemia and reperfusion exert a protective effect against subsequent longer ischemic periods, a phenomenon coined ischemic preconditioning. Similarly, repeated brief episodes of coronary occlusion and reperfusion at the onset of reperfusion, called post-conditioning, dramatically reduce infarct sizes. Interestingly, both effects can be achieved by the administration of any volatile anesthetic. In fact, cardio-protection by volatile anesthetics is an older phenomenon than ischemic pre- or post-conditioning. Although the mechanism through which anesthetics can mimic ischemic pre- or post-conditioning is still unknown, adenosine generation and signaling are the most redundant triggers in ischemic pre- or post-conditioning. In fact, adenosine signaling has been implicated in isoflurane-mediated cardioprotection. Adenosine acts via four receptors designated as A1, A2a, A2b, and A3. Cardioprotection has been associated with all subtypes, although the role of each remains controversial. Much of the controversy stems from the abundance of receptor agonists and antagonists that are, in fact, capable of interacting with multiple receptor subtypes. Recently, more specific receptor agonists and new genetic animal models have become available paving way towards new discoveries. As such, the adenosine A2b receptor was shown to be the only one of the adenosine receptors whose cardiac expression is induced by ischemia in both mice and humans and whose function is implicated in ischemic pre- or post-conditioning. In the current review, we will focus on adenosine signaling in the context of anesthetic cardioprotection and will highlight new discoveries, which could lead to new therapeutic concepts to treat myocardial ischemia using anesthetic preconditioning.
Collapse
Affiliation(s)
| | | | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver, 12700 E 19th Avenue, Mailstop B112, RC 2, Room 7121, Aurora, CO 80045.
| |
Collapse
|
5
|
Yan L, Kudej RK, Vatner DE, Vatner SF. Myocardial ischemic protection in natural mammalian hibernation. Basic Res Cardiol 2015; 110:9. [PMID: 25613166 DOI: 10.1007/s00395-015-0462-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/08/2014] [Accepted: 01/07/2015] [Indexed: 12/31/2022]
Abstract
Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation.
Collapse
Affiliation(s)
- Lin Yan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | | | | | | |
Collapse
|
6
|
Activation of prosurvival signaling pathways during the memory phase of volatile anesthetic preconditioning in human myocardium: a pilot study. Mol Cell Biochem 2013; 388:195-201. [DOI: 10.1007/s11010-013-1910-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/15/2013] [Indexed: 01/31/2023]
|
7
|
Cyclosporine A at reperfusion fails to reduce infarct size in the in vivo rat heart. Basic Res Cardiol 2013; 108:379. [DOI: 10.1007/s00395-013-0379-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 07/04/2013] [Accepted: 08/06/2013] [Indexed: 01/25/2023]
|
8
|
Ma LL, Zhang FJ, Qian LB, Kong FJ, Sun JF, Zhou C, Peng YN, Xu HJ, Wang WN, Wen CY, Zhu MH, Chen G, Yu LN, Liu XB, Wang JA, Yan M. Hypercholesterolemia blocked sevoflurane-induced cardioprotection against ischemia-reperfusion injury by alteration of the MG53/RISK/GSK3β signaling. Int J Cardiol 2013; 168:3671-8. [PMID: 23856444 DOI: 10.1016/j.ijcard.2013.06.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 05/04/2013] [Accepted: 06/15/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent studies have demonstrated that volatile anesthetic preconditioning confers myocardial protection against ischemia-reperfusion (IR) injury through activation of the reperfusion injury salvage kinase (RISK) pathway. As RISK has been shown to be impaired in hypercholesterolemia, we investigate whether anesthetic-induced cardiac protection was maintained in hypercholesterolemic rats. METHODS Normocholesteolemic or hypercholesterolemic rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. Animals received 2.4% sevoflurane during three 5 min periods with and without PI3K antagonist wortmannin (10 μg/kg, Wort) or the ERK inhibitor PD 98059 (1 mg/kg, PD). The infarct size, apoptosis, p-Akt, p-ERK1/2, p-GSK3β were determined. RESULTS Two hundred and six rats were analyzed in the study. In the healthy rats, sevoflurane significantly reduced infarct size by 42%, a phenomenon completely reversed by wortmannin and PD98059 and increased the phosphorylation of Akt, ERK1/2 and their downstream target of GSK3β. In the hypercholesterolemic rats, sevoflurane failed to reduce infarct size and increase the phosphorylated Akt, ERK1/2 and GSK3β. In contrast, GSK inhibitor SB216763 conferred cardioprotection against IR injury in healthy and hypercholesterolemic hearts. CONCLUSIONS Hyperchoesterolemia abrogated sevoflurane-induced cardioprotection against IR injury by alteration of upstream signaling of GSK3β and acute GSK inhibition may provide a novel therapeutic strategy to protect hypercholesterolemic hearts against IR injury.
Collapse
Affiliation(s)
- Lei-Lei Ma
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bienengraeber M, Pellitteri-Hahn M, Hirata N, Baye TM, Bosnjak ZJ, Olivier M. Quantitative characterization of changes in the cardiac mitochondrial proteome during anesthetic preconditioning and ischemia. Physiol Genomics 2013; 45:163-70. [PMID: 23300156 PMCID: PMC3615574 DOI: 10.1152/physiolgenomics.00117.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/03/2013] [Indexed: 01/20/2023] Open
Abstract
Changes in mitochondrial bioenergetics have been proposed to be critical for triggering and effecting anesthetic-induced preconditioning (APC) against cardiac ischemia and reperfusion injury. The objective of this study was to analyze changes in mitochondrial protein levels and link those changes to potential functional changes. A (18)O-labeling method was applied for relative comparison of cardiac mitochondrial samples from control and isoflurane exposed rats before and after ischemia and reperfusion. Wistar rats were exposed to isoflurane for 30 min (APC) or did not receive the anesthetic (control). Rats were subjected to 30 min coronary occlusion and 15 min reperfusion without (ischemia) or after APC (ischemia + APC). The following comparisons were made: control vs. APC, control vs. ischemia, and APC vs. ischemia + APC. Proteins were analyzed by liquid chromatography-mass spectrometry. A total of 98 proteins currently annotated as mitochondrial proteins in the UniProt database were positively identified from three replicate experiments. Most of the changes during APC and ischemia occur in complexes of the electron transport chain. Overall, fewer changes in ETC complexes were found when comparing APC with APC + ischemia than when comparing control and ischemia. This corresponds to the preservation of bioenergetics due to APC after ischemia and reperfusion as indicated by preserved ATP level and generation. APC itself induced changes in complex I, but those changes were not correlated with activity changes in mitochondria after APC. Thus, a proteomic mass spectral approach does not only assess quantitative changes without prior knowledge of proteins, but also allows insight into the mechanisms of ischemia and reperfusion injury and APC.
Collapse
Affiliation(s)
- Martin Bienengraeber
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Bracco D. Post-conditioning: promising answers and more questions. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:180. [PMID: 23176148 PMCID: PMC3672588 DOI: 10.1186/cc11850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Volatile anesthetic agents have been used for decades in the peri-operative setting. Data from the past 15 years have shown that pre-injury administration of volatile anesthetic can decrease the impact of ischemia-reperfusion injury on the heart, brain, and kidney. Recent data demonstrated that volatile agents administered shortly after injury can decrease the ischemia-reperfusion injury. Several questions need to be answered to optimize this therapeutic target, but this is a promising era of secondary injury mitigation.
Collapse
|
11
|
Muntean DM, Ordodi V, Ferrera R, Angoulvant D. Volatile anaesthetics and cardioprotection - lessons from animal studies. Fundam Clin Pharmacol 2012; 27:21-34. [DOI: 10.1111/j.1472-8206.2012.01055.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/03/2012] [Accepted: 06/04/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Danina M. Muntean
- Department of Pathophysiology; “Victor Babeş”; University of Medicine and Pharmacy of Timişoara; Eftimie Murgu Sq., nr.2; 300041; Timişoara; Romania
| | - Valentin Ordodi
- Department of Biology; “Victor Babeş”; University of Medicine and Pharmacy of Timişoara; Eftimie Murgu Sq., nr.2; 300041; Timişoara; Romania
| | - René Ferrera
- Inserm 1060 CarMeN; Claude Bernard University Lyon 1; F69008; Lyon; France
| | - Denis Angoulvant
- Department of Cardiology; Hospital Trousseau and EA4245 “CDG”; François Rabelais University; F-37000; Tours; France
| |
Collapse
|
12
|
Bracco D, Donatelli F. Volatile agents for ICU sedation? Intensive Care Med 2011; 37:895-7. [PMID: 21445640 DOI: 10.1007/s00134-011-2214-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 11/25/2022]
|
13
|
Pan X, Yu X, Qin L, Zhang P. “Old drugs” for the treatment of rheumatoid arthritis: will the cholinergic anti-inflammatory pathway and anti-nociceptive pathway work? Inflamm Res 2010; 59:1005-7. [DOI: 10.1007/s00011-010-0243-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/31/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022] Open
|
14
|
Eckenhoff RG, Xi J, Shimaoka M, Bhattacharji A, Covarrubias M, Dailey WP. Azi-isoflurane, a Photolabel Analog of the Commonly Used Inhaled General Anesthetic Isoflurane. ACS Chem Neurosci 2010; 1:139-145. [PMID: 20228895 PMCID: PMC2837340 DOI: 10.1021/cn900014m] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 09/28/2009] [Indexed: 11/30/2022] Open
Abstract
Volatility and low-affinity hamper an ability to define molecular targets of the inhaled anesthetics. Photolabels have proven to be a useful approach in this regard, although none have closely mimicked contemporary drugs. We report here the synthesis and validation of azi-isoflurane, a compound constructed by adding a diazirinyl moiety to the methyl carbon of the commonly used general anesthetic isoflurane. Azi-isoflurane is slightly more hydrophobic than isoflurane, and more potent in tadpoles. This novel compound inhibits Shaw2 K(+) channel currents similarly to isoflurane and binds to apoferritin with enhanced affinity. Finally, when irradiated at 300 nm, azi-isoflurane adducts to residues known to line isoflurane-binding sites in apoferritin and integrin LFA-1, the only proteins with isoflurane binding sites defined by crystallography. This reagent should allow rapid discovery of isoflurane molecular targets and binding sites within those targets.
Collapse
Affiliation(s)
| | - Jin Xi
- Department of Anesthesiology & Critical Care, School of Medicine
| | - Motomu Shimaoka
- Immune Disease Institute; Molecular & Cellular Medicine, Children’s Hospital Boston, and Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bhattacharji
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Manuel Covarrubias
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | |
Collapse
|
15
|
Abstract
In recent years, there has been increased interest in the mechanisms involved in anaesthetic-induced cardioprotection. It is not thoroughly understood how volatile anaesthetics protect the myocardium from ischaemia or reperfusion injury, but the overall mechanism is likely to be multifactorial. This review examines the recent experimental and clinical research underlying the cellular and molecular mechanisms involved in anaesthetic-induced preconditioning. A variety of intracellular signalling pathways have been implicated in the protective phenomenon. Ischaemic preconditioning and anaesthetic-induced preconditioning share similar molecular mechanisms, including activation of guanine nucleotide-binding proteins, triggering of second messenger pathways, activation of multiple kinases, mediation of nitric oxide formation and reactive oxygen species release, maintenance of intracellular and/or mitochondrial Ca2+ homeostasis and moderation of the opening of adenosine-triphosphate-sensitive potassium channels. A more thorough understanding of the multiple signalling steps and the ultimate cytoprotective mechanisms underlying anaesthetic-induced preconditioning may lead to improvements in the management of ischaemia and/or reperfusion injury.
Collapse
Affiliation(s)
- Z-Y Hu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, PR China
| | | |
Collapse
|
16
|
|
17
|
Hu ZY, Luo NF, Liu J. The protective effects of emulsified isoflurane on myocardial ischemia and reperfusion injury in rats. Can J Anaesth 2008; 56:115-25. [DOI: 10.1007/s12630-008-9016-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/24/2008] [Accepted: 11/14/2008] [Indexed: 10/20/2022] Open
|
18
|
Li H, Wang JK, Zeng YM, Yang CX, Chen HT, Wen XJ, Shui CL, Liang H. SEVOFLURANE POST-CONDITIONING PROTECTS AGAINST MYOCARDIAL REPERFUSION INJURY BY ACTIVATION OF PHOSPHATIDYLINOSITOL-3-KINASE SIGNAL TRANSDUCTION. Clin Exp Pharmacol Physiol 2008; 35:1043-51. [PMID: 18505453 DOI: 10.1111/j.1440-1681.2008.04952.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Heng Li
- Department of Anaesthesiology, Affiliated Hospital of First Clinical College, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang L, Traystman RJ, Murphy SJ. Inhalational anesthetics as preconditioning agents in ischemic brain. Curr Opin Pharmacol 2007; 8:104-10. [PMID: 17962069 DOI: 10.1016/j.coph.2007.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
While many pharmacological agents have been shown to protect the brain from cerebral ischemia in animal models, none have translated successfully to human patients. One potential clinical neuroprotective strategy in humans may involve increasing the brain's tolerance to ischemia by preischemic conditioning (preconditioning). There are many methods to induce tolerance via preconditioning such as ischemia itself, pharmacological, hypoxia, endotoxin, and others. Inhalational anesthetic agents have also been shown to result in brain preconditioning. Mechanisms responsible for brain preconditioning are many, complex, and unclear and may involve Akt activation, ATP-sensitive potassium channels, and nitric oxide, amongst many others. Anesthetics, however, may play an important and unique role as preconditioning agents, particularly during the perioperative period.
Collapse
Affiliation(s)
- Lan Wang
- Oregon Health and Science University, Department of Anesthesiology and Peri-Operative Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
20
|
Suleiman MS, Zacharowski K, Angelini GD. Inflammatory response and cardioprotection during open-heart surgery: the importance of anaesthetics. Br J Pharmacol 2007; 153:21-33. [PMID: 17952108 DOI: 10.1038/sj.bjp.0707526] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Open-heart surgery triggers an inflammatory response that is largely the result of surgical trauma, cardiopulmonary bypass, and organ reperfusion injury (e.g. heart). The heart sustains injury triggered by ischaemia and reperfusion and also as a result of the effects of systemic inflammatory mediators. In addition, the heart itself is a source of inflammatory mediators and reactive oxygen species that are likely to contribute to the impairment of cardiac pump function. Formulating strategies to protect the heart during open heart surgery by attenuating reperfusion injury and systemic inflammatory response is essential to reduce morbidity. Although many anaesthetic drugs have cardioprotective actions, the diversity of the proposed mechanisms for protection (e.g. attenuating Ca(2+) overload, anti-inflammatory and antioxidant effects, pre- and post-conditioning-like protection) may have contributed to the slow adoption of anaesthetics as cardioprotective agents during open heart surgery. Clinical trials have suggested at least some cardioprotective effects of volatile anaesthetics. Whether these benefits are relevant in terms of morbidity and mortality is unclear and needs further investigation. This review describes the main mediators of myocardial injury during open heart surgery, explores available evidence of anaesthetics induced cardioprotection and addresses the efforts made to translate bench work into clinical practice.
Collapse
Affiliation(s)
- M-S Suleiman
- Bristol Heart Institute and Department of Anaesthesia, Faculty of Medicine and Dentistry, Bristol Royal Infirmary, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
21
|
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in industrial societies, with myocardial infarction as the primary assassin. Pharmacologic agents, including the myocardial cell membrane receptor agonists adenosine, bradykinin/angiotensin-converting enzyme inhibitors, opioids and erythropoietin or the mixed cell membrane and intracellular agonists, glucose insulin potassium, and volatile anesthetics, either clinically or experimentally reduce the extent of myocardial injury when administered just prior to reperfusion. Agents that specifically target proteins, transcription factors or ion channels, including PKC agonists/antagonists, PPAR, Phosphodiesterase-5 inhibitors, 3-Hydroxy-3-methyl glutaryl coenzyme A reductase and the ATP-dependent potassium channel are also promising. However, no agent has been specifically approved to reduce reperfusion injury clinically. In this review, we will discuss the advantages and limitations of agents to combat reperfusion injury, their market development status and findings reported in both clinical and preclinical studies. The molecular pathways activated by these agents that preserve myocardium from reperfusion injury, which appear to commonly involve glycogen synthase kinase 3beta and mitochondrial permeability transition pore inhibition, are also described.
Collapse
Affiliation(s)
- Eric R Gross
- Medical College of Wisconsin, Department of Pharmacology and Toxicology, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
22
|
Stadnicka A, Marinovic J, Ljubkovic M, Bienengraeber MW, Bosnjak ZJ. Volatile anesthetic-induced cardiac preconditioning. J Anesth 2007; 21:212-9. [PMID: 17458651 DOI: 10.1007/s00540-006-0486-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 11/19/2006] [Indexed: 10/23/2022]
Abstract
Pharmacological preconditioning with volatile anesthetics, or anesthetic-induced preconditioning (APC), is a phenomenon whereby a brief exposure to volatile anesthetic agents protects the heart from the potentially fatal consequences of a subsequent prolonged period of myocardial ischemia and reperfusion. Although not completely elucidated, the cellular and molecular mechanisms of APC appear to mimic those of ischemic preconditioning, the most powerful endogenous cardioprotective mechanism. This article reviews recently accumulated evidence underscoring the importance of mitochondria, reactive oxygen species, and K(ATP) channels in cardioprotective signaling by volatile anesthetics. Moreover, the article addresses current concepts and controversies regarding the specific roles of the mitochondrial and the sarcolemmal K(ATP) channels in APC.
Collapse
Affiliation(s)
- Anna Stadnicka
- Department of Anesthesiology, Medical College of Wisconsin, MEB-M4280, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
23
|
Valen G, Hinokiyama K, Vedin J, Vaage J. Preoperative unstable angina causes venous adaptation to surgical graft injury. Basic Res Cardiol 2007; 102:265-73. [PMID: 17268886 DOI: 10.1007/s00395-007-0642-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/29/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Ischemic preconditioning may provide a systemic organ protection, evident as the phenomenon known as remote preconditioning. Unstable angina may be a clinical analogue to ischemic preconditioning. Vein graft harvesting induces inflammation of the graft wall. We hypothesized that preoperative unstable angina preconditions vein grafts and reduces the inflammatory response to graft harvesting. Consecutive patients with stable or unstable angina undergoing open heart surgery (n = 12 in each group) were studied. Saphenous vein biopsies were collected at the start of graft harvesting, and when the last proximal anastomosis to the aorta was finished (average 112 minutes later). Gene expression of inflammatory mediators (tumor necrosis factor alpha, interleukin-1beta (IL-1beta), E-selectin (CD62E), intercellular leukocyte adhesion molecule 1, inducible nitric oxide synthase, endothelin-1) increased after surgical handling (semiquantitative RT-PCR). In vein grafts from unstable patients the increase was attenuated for Il-1beta (p < 0.004) and CD62E (p < 0.001). In stable patients the protein expression of IkappaBalpha and heat shock protein72 was reduced by surgical handling (p < 0.04), but was not influenced in unstable patients (immunoblotting). In vitro relaxation to acetylcholine was enhanced, and contractions to phenylephrine and endothelin-1 were attenuated in veins rings from unstable patients (p < 0.003). In conclusion, surgical handling of vein grafts induces inflammation of the vessel wall. This response was reduced in grafts from patients with unstable angina, indicating a possible systemic preconditioning-like effect of acute coronary syndromes.
Collapse
Affiliation(s)
- Guro Valen
- Institute of Basic Medical Science, Dept. of Physiology University of Oslo, 1103 Blindern, 0317, Oslo, Norway.
| | | | | | | |
Collapse
|