1
|
Shimura M, Higashi-Kuwata N, Fujiwara A, Taniguchi M, Ichinose T, Hamano F, Uematsu M, Inoue T, Matsuyama S, Suzuki T, Ghosh AK, Shindou H, Shimuzu T, Mitsuya H. A lipid index for risk of hyperlipidemia caused by anti-retroviral drugs. Antiviral Res 2024; 223:105819. [PMID: 38272319 DOI: 10.1016/j.antiviral.2024.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
HIV-associated lipodystrophy has been reported in people taking anti-retroviral therapy (ART). Lipodystrophy can cause cardiovascular diseases, affecting the quality of life of HIV-infected individuals. In this study, we propose a pharmacological lipid index to estimate the risk of hyperlipidemia caused by anti-retroviral drugs. Lipid droplets were stained in cells treated with anti-retroviral drugs and cyclosporin A. Signal intensities of lipid droplets were plotted against the drug concentrations to obtain an isodose of 10 μM of cyclosporin A, which we call the Pharmacological Lipid Index (PLI). The PLI was then normalized by EC50. PLI/EC50 values were low in early proteinase inhibitors and the nucleoside reverse transcriptase inhibitor, d4T, indicating high risk of hyperlipidemia, which is consistent with previous findings of hyperlipidemia. In contrast, there are few reports of hyperlipidemia for drugs with high PLI/EC50 scores. Data suggests that PLI/EC50 is a useful index for estimating the risk of hyperlipidemia.
Collapse
Affiliation(s)
- Mari Shimura
- Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan; RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Asuka Fujiwara
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Mai Taniguchi
- Inorganic Analysis Laboratories, Toray Research Center, Inc., Otsu, Shiga, Japan
| | - Takayuki Ichinose
- Inorganic Analysis Laboratories, Toray Research Center, Inc., Otsu, Shiga, Japan
| | - Fumie Hamano
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Masaaki Uematsu
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Takato Inoue
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Satoshi Matsuyama
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan; Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Arun K Ghosh
- Department of Chemistry & Department of Medicinal Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Hideo Shindou
- Department of Lipid Life Science, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan; Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takao Shimuzu
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan; Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Diseases, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Center Institute, National Institutes of Health, Bethesda, MD, 20893, USA.
| |
Collapse
|
2
|
Wanjalla CN, McDonnell WJ, Barnett L, Simmons JD, Furch BD, Lima MC, Woodward BO, Fan R, Fei Y, Baker PG, Ram R, Pilkinton MA, Mashayekhi M, Brown NJ, Mallal SA, Kalams SA, Koethe JR. Adipose Tissue in Persons With HIV Is Enriched for CD4 + T Effector Memory and T Effector Memory RA + Cells, Which Show Higher CD69 Expression and CD57, CX3CR1, GPR56 Co-expression With Increasing Glucose Intolerance. Front Immunol 2019; 10:408. [PMID: 30941121 PMCID: PMC6433850 DOI: 10.3389/fimmu.2019.00408] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/15/2019] [Indexed: 01/14/2023] Open
Abstract
Chronic T cell activation and accelerated immune senescence are hallmarks of HIV infection, which may contribute to the increased risk of cardiometabolic diseases in people living with HIV (PLWH). T lymphocytes play a central role in modulating adipose tissue inflammation and, by extension, adipocyte energy storage and release. Here, we assessed the CD4+ and CD8+ T cell profiles in the subcutaneous adipose tissue (SAT) and blood of non-diabetic (n = 9; fasting blood glucose [FBG] < 100 mg/dL), pre-diabetic (n = 8; FBG = 100-125 mg/dL) and diabetic (n = 9; FBG ≥ 126 mg/dL) PLWH, in addition to non- and pre-diabetic, HIV-negative controls (n = 8). SAT was collected by liposuction and T cells were extracted by collagenase digestion. The proportion of naïve (TNai) CD45RO-CCR7+, effector memory (TEM) CD45RO+CCR7-, central memory (TCM) CD45RO+CCR7+, and effector memory revertant RA+(TEMRA) CD45RO-CCR7- CD4+ and CD8+ T cells were measured by flow cytometry. CD4+ and CD8+ TEM and TEMRA were significantly enriched in SAT of PLWH compared to blood. The proportions of SAT CD4+ and CD8+ memory subsets were similar across metabolic status categories in the PLWH, but CD4+ T cell expression of the CD69 early-activation and tissue residence marker, particularly on TEM cells, increased with progressive glucose intolerance. Use of t-distributed Stochastic Neighbor Embedding (t-SNE) identified a separate group of predominantly CD69lo TEM and TEMRA cells co-expressing CD57, CX3CR1, and GPR56, which were significantly greater in diabetics compared to non-diabetics. Expression of the CX3CR1 and GPR56 markers indicate these TEM and TEMRA cells may have anti-viral specificity. Compared to HIV-negative controls, SAT from PLWH had an increased CD8:CD4 ratio, but the distribution of CD4+ and CD8+ memory subsets was similar irrespective of HIV status. Finally, whole adipose tissue from PLWH had significantly higher expression of TLR2, TLR8, and multiple chemokines potentially relevant to immune cell homing compared to HIV-negative controls with similar glucose tolerance.
Collapse
Affiliation(s)
- Celestine N. Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wyatt J. McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Louise Barnett
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua D. Simmons
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Briana D. Furch
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Morgan C. Lima
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Beverly O. Woodward
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Run Fan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ye Fei
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paxton G. Baker
- VANTAGE, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Mark A. Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mona Mashayekhi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University, Nashville, TN, United States
| | - Nancy J. Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simon A. Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
- VANTAGE, Vanderbilt University Medical Center, Nashville, TN, United States
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John R. Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Perovanovic J, Dell'Orso S, Gnochi VF, Jaiswal JK, Sartorelli V, Vigouroux C, Mamchaoui K, Mouly V, Bonne G, Hoffman EP. Laminopathies disrupt epigenomic developmental programs and cell fate. Sci Transl Med 2017; 8:335ra58. [PMID: 27099177 DOI: 10.1126/scitranslmed.aad4991] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
The nuclear envelope protein lamin A is encoded by thelamin A/C(LMNA) gene, which can contain missense mutations that cause Emery-Dreifuss muscular dystrophy (EDMD) (p.R453W). We fused mutated forms of the lamin A protein to bacterial DNA adenine methyltransferase (Dam) to define euchromatic-heterochromatin (epigenomic) transitions at the nuclear envelope during myogenesis (using DamID-seq). Lamin A missense mutations disrupted appropriate formation of lamin A-associated heterochromatin domains in an allele-specific manner-findings that were confirmed by chromatin immunoprecipitation-DNA sequencing (ChIP-seq) in murine H2K cells and DNA methylation studies in fibroblasts from muscular dystrophy patient who carried a distinctLMNAmutation (p.H222P). Observed perturbations of the epigenomic transitions included exit from pluripotency and cell cycle programs [euchromatin (open, transcribed) to heterochromatin (closed, silent)], as well as induction of myogenic loci (heterochromatin to euchromatin). In muscle biopsies from patients with either a gain- or change-of-functionLMNAgene mutation or a loss-of-function mutation in theemeringene, both of which cause EDMD, we observed inappropriate loss of heterochromatin formation at theSox2pluripotency locus, which was associated with persistent mRNA expression ofSox2 Overexpression ofSox2inhibited myogenic differentiation in human immortalized myoblasts. Our findings suggest that nuclear envelopathies are disorders of developmental epigenetic programming that result from altered formation of lamina-associated domains.
Collapse
Affiliation(s)
- Jelena Perovanovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA. Department of Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Stefania Dell'Orso
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Viola F Gnochi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA. Department of Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Corinne Vigouroux
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Laboratoire Commun de Biologie et Génétique Moléculaires, F-75012 Paris, France. INSERM UMR_S938, Centre de Recherche Saint-Antoine, F-75012 Paris, France. Sorbonne Universités, UPMC (Université Pierre et Marie Curie) Univ Paris 06, UMR_S938, F-75005 Paris, France. ICAN (Institute of Cardiometabolism and Nutrition), F-75013 Paris, France
| | - Kamel Mamchaoui
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, F-75013 Paris, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, F-75013 Paris, France
| | - Gisèle Bonne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, F-75013 Paris, France
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA. Department of Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.
| |
Collapse
|
4
|
Abstract
HIV infection and antiretroviral therapy (ART) treatment exert diverse effects on adipocytes and stromal-vascular fraction cells, leading to changes in adipose tissue quantity, distribution, and energy storage. A HIV-associated lipodystrophic condition was recognized early in the epidemic, characterized by clinically apparent changes in subcutaneous, visceral, and dorsocervical adipose depots. Underlying these changes is altered adipose tissue morphology and expression of genes central to adipocyte maturation, regulation, metabolism, and cytokine signaling. HIV viral proteins persist in circulation and locally within adipose tissue despite suppression of plasma viremia on ART, and exposure to these proteins impairs preadipocyte maturation and reduces adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and other genes involved in cell regulation. Several early nucleoside reverse transcriptase inhibitor and protease inhibitor antiretroviral drugs demonstrated substantial adipocyte toxicity, including reduced mitochondrial DNA content and respiratory chain enzymes, reduced PPAR-γ and other regulatory gene expression, and increased proinflammatory cytokine production. Newer-generation agents, such as integrase inhibitors, appear to have fewer adverse effects. HIV infection also alters the balance of CD4+ and CD8+ T cells in adipose tissue, with effects on macrophage activation and local inflammation, while the presence of latently infected CD4+ T cells in adipose tissue may constitute a protected viral reservoir. This review provides a synthesis of the literature on how HIV virus, ART treatment, and host characteristics interact to affect adipose tissue distribution, immunology, and contribution to metabolic health, and adipocyte maturation, cellular regulation, and energy storage. © 2017 American Physiological Society. Compr Physiol 7:1339-1357, 2017.
Collapse
Affiliation(s)
- John R Koethe
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Wood AM, Danielsen JMR, Lucas CA, Rice EL, Scalzo D, Shimi T, Goldman RD, Smith ED, Le Beau MM, Kosak ST. TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends. Nat Commun 2014; 5:5467. [PMID: 25399868 PMCID: PMC4235626 DOI: 10.1038/ncomms6467] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022] Open
Abstract
Telomeres protect the ends of linear genomes, and the gradual loss of telomeres is associated with cellular ageing. Telomere protection involves the insertion of the 3' overhang facilitated by telomere repeat-binding factor 2 (TRF2) into telomeric DNA, forming t-loops. We present evidence suggesting that t-loops can also form at interstitial telomeric sequences in a TRF2-dependent manner, forming an interstitial t-loop (ITL). We demonstrate that TRF2 association with interstitial telomeric sequences is stabilized by co-localization with A-type lamins (lamin A/C). We also find that lamin A/C interacts with TRF2 and that reduction in levels of lamin A/C or mutations in LMNA that cause an autosomal dominant premature ageing disorder--Hutchinson Gilford Progeria Syndrome (HGPS)-lead to reduced ITL formation and telomere loss. We propose that cellular and organismal ageing are intertwined through the effects of the interaction between TRF2 and lamin A/C on chromosome structure.
Collapse
Affiliation(s)
- Ashley M. Wood
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | - Catherine A. Lucas
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ellen L. Rice
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - David Scalzo
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Erica D. Smith
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Michelle M. Le Beau
- Section of Hematology/Oncology, Department of Medicine and Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois 60637, USA
| | - Steven T. Kosak
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
6
|
Perrin S, Cremer J, Faucher O, Reynes J, Dellamonica P, Micallef J, Solas C, Lacarelle B, Stretti C, Kaspi E, Robaglia-Schlupp A, Tamalet CNBC, Lévy N, Poizot-Martin I, Cau P, Roll P. HIV protease inhibitors do not cause the accumulation of prelamin A in PBMCs from patients receiving first line therapy: the ANRS EP45 "aging" study. PLoS One 2012; 7:e53035. [PMID: 23285253 PMCID: PMC3532351 DOI: 10.1371/journal.pone.0053035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/22/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The ANRS EP45 "Aging" study investigates the cellular mechanisms involved in the accelerated aging of HIV-1 infected and treated patients. The present report focuses on lamin A processing, a pathway known to be altered in systemic genetic progeroid syndromes. METHODS 35 HIV-1 infected patients being treated with first line antiretroviral therapy (ART, mean duration at inclusion: 2.7±1.3 years) containing boosted protease inhibitors (PI/r) (comprising lopinavir/ritonavir in 65% of patients) were recruited together with 49 seronegative age- and sex-matched control subjects (http://clinicaltrials.gov/, NCT01038999). In more than 88% of patients, the viral load was <40 copies/ml and the CD4+ cell count was >500/mm³. Prelamin A processing in peripheral blood mononuclear cells (PBMCs) from patients and controls was analysed by western blotting at inclusion. PBMCs from patients were also investigated at 12 and 24 months after enrolment in the study. PBMCs from healthy controls were also incubated with boosted lopinavir in culture medium containing various concentrations of proteins (4 to 80 g/L). RESULTS Lamin A precursor was not observed in cohort patient PBMC regardless of the PI/r used, the dose and the plasma concentration. Prelamin A was detected in PBMC incubated in culture medium containing a low protein concentration (4 g/L) but not in plasma (60-80 g/L) or in medium supplemented with BSA (40 g/L), both of which contain a high protein concentration. CONCLUSIONS Prelamin A processing abnormalities were not observed in PBMCs from patients under the PI/r first line regimen. Therefore, PI/r do not appear to contribute to lamin A-related aging in PBMCs. In cultured PBMCs from healthy donors, prelamin A processing abnormalities were only observed when the protein concentration in the culture medium was low, thus increasing the amount of PI available to enter cells. ClinicalTrials.gov NCT01038999 http://clinicaltrials.gov/ct2/show/NCT01038999.
Collapse
Affiliation(s)
- Sophie Perrin
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Jonathan Cremer
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Olivia Faucher
- Service d’Immuno-Hématologie Clinique, Centre Hospitalier Universitaire (CHU) Sainte Marguerite Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Jacques Reynes
- Département des Maladies Infectieuses et Tropicales, Centre Hospitalier Régional et Universitaire (CHRU) Gui-de-Chauliac, Montpellier, France
| | - Pierre Dellamonica
- Service d’Infectiologie, Centre Hospitalier Universitaire (CHU) L’Archet 1, Sophia-Antipolis Université, Nice, France
| | - Joëlle Micallef
- Centre d’Investigation Clinique - Unité de Pharmacologie Clinique et d’Evaluations Thérapeutiques (CIC-UPCET), Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Caroline Solas
- Laboratoire de Pharmacocinétique et de Toxicologie, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
- Inserm UMR_S 911, Aix-Marseille Université, Marseille, France
| | - Bruno Lacarelle
- Laboratoire de Pharmacocinétique et de Toxicologie, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
- Inserm UMR_S 911, Aix-Marseille Université, Marseille, France
| | - Charlotte Stretti
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Elise Kaspi
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Andrée Robaglia-Schlupp
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | | | - Nicolas Lévy
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Génetique Moléculaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Isabelle Poizot-Martin
- Département des Maladies Infectieuses et Tropicales, Centre Hospitalier Régional et Universitaire (CHRU) Gui-de-Chauliac, Montpellier, France
| | - Pierre Cau
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Patrice Roll
- Inserm UMR_S 910, Aix-Marseille Université, Marseille, France
- Laboratoire de Biologie Cellulaire, Centre Hospitalier Universitaire (CHU) La Timone Assistance Publique des Hôpitaux de Marseille (APHM), Marseille, France
- * E-mail:
| |
Collapse
|
7
|
Lessard J, Tchernof A. Depot- and obesity-related differences in adipogenesis. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.49] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Inner nuclear membrane proteins: impact on human disease. Chromosoma 2012; 121:153-67. [DOI: 10.1007/s00412-012-0360-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 02/01/2023]
|
9
|
Duband-Goulet I, Woerner S, Gasparini S, Attanda W, Kondé E, Tellier-Lebègue C, Craescu CT, Gombault A, Roussel P, Vadrot N, Vicart P, Ostlund C, Worman HJ, Zinn-Justin S, Buendia B. Subcellular localization of SREBP1 depends on its interaction with the C-terminal region of wild-type and disease related A-type lamins. Exp Cell Res 2011; 317:2800-13. [PMID: 21993218 DOI: 10.1016/j.yexcr.2011.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 09/02/2011] [Accepted: 09/26/2011] [Indexed: 11/26/2022]
Abstract
Lamins A and C are nuclear intermediate filament proteins expressed in most differentiated somatic cells. Previous data suggested that prelamin A, the lamin A precursor, accumulates in some lipodystrophy syndromes caused by mutations in the lamin A/C gene, and binds and inactivates the sterol regulatory element binding protein 1 (SREBP1). Here we show that, in vitro, the tail regions of prelamin A, lamin A and lamin C bind a polypeptide of SREBP1. Such interactions also occur in HeLa cells, since expression of lamin tail regions impedes nucleolar accumulation of the SREBP1 polypeptide fused to a nucleolar localization signal sequence. In addition, the tail regions of A-type lamin variants that occur in Dunnigan-type familial partial lipodystrophy of (R482W) and Hutchison Gilford progeria syndrome (∆607-656) bind to the SREBP1 polypeptide in vitro, and the corresponding FLAG-tagged full-length lamin variants co-immunoprecipitate the SREBP1 polypeptide in cells. Overexpression of wild-type A-type lamins and variants favors SREBP1 polypeptide localization at the intranuclear periphery, suggesting its sequestration. Our data support the hypothesis that variation of A-type lamin protein level and spatial organization, in particular due to disease-linked mutations, influences the sequestration of SREBP1 at the nuclear envelope and thus contributes to the regulation of SREBP1 function.
Collapse
Affiliation(s)
- Isabelle Duband-Goulet
- Laboratoire du Stress et Pathologies du Cytosquelette, Université Paris Diderot-Paris 7, CNRS, Institut de Biologie Fonctionnelle et Adaptative, 4 rue M.A. Lagroua Weill Halle, 75205 Paris cedex 13, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Decreased proliferation kinetics of mouse myoblasts overexpressing FRG1. PLoS One 2011; 6:e19780. [PMID: 21603621 PMCID: PMC3095625 DOI: 10.1371/journal.pone.0019780] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/04/2011] [Indexed: 11/24/2022] Open
Abstract
Although recent publications have linked the molecular events driving facioscapulohumeral muscular dystrophy (FSHD) to expression of the double homeobox transcription factor DUX4, overexpression of FRG1 has been proposed as one alternative causal agent as mice overexpressing FRG1 present with muscular dystrophy. Here, we characterize proliferative defects in two independent myoblast lines overexpressing FRG1. Myoblasts isolated from thigh muscle of FRG1 transgenic mice, an affected dystrophic muscle, exhibit delayed proliferation as measured by decreased clone size, whereas myoblasts isolated from the unaffected diaphragm muscle proliferated normally. To confirm the observation that overexpression of FRG1 could impair myoblast proliferation, we examined C2C12 myoblasts with inducible overexpression of FRG1, finding increased doubling time and G1-phase cells in mass culture after induction of FRG1 and decreased levels of pRb phosphorylation. We propose that depressed myoblast proliferation may contribute to the pathology of mice overexpressing FRG1 and may play a part in FSHD.
Collapse
|
11
|
Lei B, Zha W, Wang Y, Wen C, Studer EJ, Wang X, Jin F, Wang G, Zhang L, Zhou H. Development of a novel self-microemulsifying drug delivery system for reducing HIV protease inhibitor-induced intestinal epithelial barrier dysfunction. Mol Pharm 2010; 7:844-53. [PMID: 20349948 DOI: 10.1021/mp100003r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of HIV protease inhibitors (PIs) has been one of the most significant advances of the past decade in controlling HIV infection. Unfortunately, the benefits of HIV PIs are compromised by serious side effects. One of the most frequent and deleterious side effects of HIV PIs is severe gastrointestinal (GI) disorders including mucosal erosions, epithelial barrier dysfunction, and leak-flux diarrhea, which occurs in 16-62% of patients on HIV PIs. Although the underlying mechanisms behind HIV PI-associated serious adverse side effects remain to be identified, our recent studies have shown that activation of endoplasmic reticulum (ER) stress response plays a critical role in HIV PI-induced GI complications. The objective of this study was to develop a novel self-microemulsifying drug delivery system (SMEDDS) using various antioxidants as surfactants and cosurfactants to reduce the GI side effects of the most commonly used HIV PI, ritonavir. The biological activities of this SMSDDS of ritonavir were compared with that of Norvir, which is currently used in the clinic. Rat normal intestinal epithelial cells (IEC-6) and mouse Raw 264.7 macrophages were used to examine the effect of new SMEDDS of ritonavir on activation of ER stress and oxidative stress. Sprague-Dawley rats and C57/BL6 mice were used for pharmacokinetic studies and in vivo studies. The intracellular and plasma drug concentrations were determined by HPLC analysis. Activation of ER stress was detected by Western blot analysis and secreted alkaline phosphatase (SEAP) reporter assay. Reactive oxygen species (ROS) was measured using dichlorodihydrofluorescein diacetate as a probe. Cell viability was determined by Roche's cell proliferation reagent WST-1. Protein levels of inflammatory cytokines (TNF-alpha and IL-6) were determined by enzyme-linked immunosorbent assays (ELISA). The intestinal permeability was assessed by luminal enteral administration of fluorescein isothiocyanate conjugated dextran (FITC-dextran, 4 kDa). The pathologic changes in intestine were determined by histological examination. The results indicated that incorporation of antioxidants in this new SMEDDS not only significantly reduced ritonavir-induced ER stress activation, ROS production and apoptosis in intestinal epithelial cells and macrophages, but also improved the solubility, stability and bioavailability of ritonavir, and significantly reduced ritonavir-induced disruption of intestinal barrier function in vivo. In conclusion, this new SMEDDS of ritonavir has less GI side effects compared to Norvir. This new SMEDDS can be used for other HIV PIs and any insoluble antiviral drug with serious GI side effects.
Collapse
Affiliation(s)
- Bokai Lei
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
One of the many debated topics in ageing research is whether progeroid syndromes are really accelerated forms of human ageing. The answer requires a better understanding of the normal ageing process and the molecular pathology underlying these rare diseases. Exciting recent findings regarding a severe human progeria, Hutchinson-Gilford progeria syndrome, have implicated molecular changes that are also linked to normal ageing, such as genome instability, telomere attrition, premature senescence and defective stem cell homeostasis in disease development. These observations, coupled with genetic studies of longevity, lead to a hypothesis whereby progeria syndromes accelerate a subset of the pathological changes that together drive the normal ageing process.
Collapse
|
13
|
Nadeau M, Noël S, Laberge PY, Hurtubise J, Tchernof A. Adipose tissue lamin A/C messenger RNA expression in women. Metabolism 2010; 59:1106-14. [PMID: 20045150 DOI: 10.1016/j.metabol.2009.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 09/09/2009] [Indexed: 01/10/2023]
Abstract
Mutations in the lamin A/C gene (LMNA) cause lipodystrophy. However, little data are available on lamin A/C expression in various fat depots in women. We recruited 34 women scheduled for gynecologic surgery. Blood samples were collected on the morning of surgery to obtain a detailed lipid profile. Radiological examinations were performed to measure total body fat mass and abdominal fat accumulation. Fat samples were taken from the subcutaneous (SC) fat depot and from the greater omentum (OM) during the surgical procedure. Whole adipose tissue samples were used for total messenger RNA (mRNA) extraction and real-time polymerase chain reaction quantification of the LMNA transcript. No association was observed between lamin A/C mRNA expression, either in SC or OM fat tissue, and adiposity measures. Women with low SC lamin A/C expression, identified on the basis of the median value of SC lamin A/C mRNA expression, had a significantly altered lipid profile including lower levels of high-density lipoprotein (HDL) cholesterol and HDL(2) cholesterol and reduced HDL(2) cholesterol to HDL(3) cholesterol ratio (P < .05 for all). These women were also characterized by higher cholesterol to HDL cholesterol, low-density lipoprotein-triglycerides, very low-density lipoprotein-apolipoprotein B, and low-density lipoprotein cholesterol to HDL cholesterol (P < .05 for all). Low SC lamin A/C mRNA expression levels were also associated with significantly increased lipolysis in isolated fat cells from this fat depot. Specifically, the response to lipolytic agent isoproterenol was significantly increased at doses ranging from 10(-5) to 10(-10) mol/L (P < .05). A similar trend was observed in OM fat cells but did not reach significance. In conclusion, low lamin A/C expression in SC adipose tissue is associated with significant alterations in the lipid profile and increased fat cell lipolysis, independent of the level of total or abdominal adiposity.
Collapse
Affiliation(s)
- Mélanie Nadeau
- Molecular Endocrinology and Genomics Center, Laval University Medical Research Center, Quebec City, Quebec, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
14
|
Chaturvedi P, Parnaik VK. Lamin A rod domain mutants target heterochromatin protein 1alpha and beta for proteasomal degradation by activation of F-box protein, FBXW10. PLoS One 2010; 5:e10620. [PMID: 20498703 PMCID: PMC2869352 DOI: 10.1371/journal.pone.0010620] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 04/20/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lamins are major structural proteins of the nucleus and contribute to the organization of various nuclear functions. Mutations in the human lamin A gene cause a number of highly degenerative diseases, collectively termed as laminopathies. Cells expressing lamin mutations exhibit abnormal nuclear morphology and altered heterochromatin organization; however, the mechanisms responsible for these defects are not well understood. METHODOLOGY AND PRINCIPAL FINDINGS The lamin A rod domain mutants G232E, Q294P and R386K are either diffusely distributed or form large aggregates in the nucleoplasm, resulting in aberrant nuclear morphology in various cell types. We examined the effects of these lamin mutants on the distribution of heterochromatin protein 1 (HP1) isoforms. HeLa cells expressing these mutants showed a heterogeneous pattern of HP1alpha and beta depletion but without altering HP1gamma levels. Changes in HP1alpha and beta were not observed in cells expressing wild-type lamin A or mutant R482L, which assembled normally at the nuclear rim. Treatment with proteasomal inhibitors led to restoration of levels of HP1 isoforms and also resulted in stable association of lamin mutants with the nuclear periphery, rim localization of the inner nuclear membrane lamin-binding protein emerin and partial improvement of nuclear morphology. A comparison of the stability of HP1 isoforms indicated that HP1alpha and beta displayed increased turnover and higher basal levels of ubiquitination than HP1gamma. Transcript analysis of components of the ubiquitination pathway showed that a specific F-box protein, FBXW10 was induced several-fold in cells expressing lamin mutants. Importantly, ectopic expression of FBXW10 in HeLa cells led to depletion of HP1alpha and beta without alteration of HP1gamma levels. CONCLUSIONS Mislocalized lamins can induce ubiquitin-mediated proteasomal degradation of certain HP1 isoforms by activation of FBXW10, a member of the F-box family of proteins that is involved in E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | - Veena K. Parnaik
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India
- * E-mail:
| |
Collapse
|
15
|
Adipocyte dysfunction in response to antiretroviral therapy: clinical, tissue and in-vitro studies. Curr Opin HIV AIDS 2009; 2:268-73. [PMID: 19372898 DOI: 10.1097/coh.0b013e32814b1638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Lipodystrophy, a major complication of antiretroviral therapy, is an adipose tissue disease involving severe alterations of fat tissue distribution and metabolic functions. Protease inhibitors and nucleoside reverse transcriptase inhibitors (NRTIs) are implicated to different extents. We review recent findings on the toxicity of HIV antiretroviral drugs at the fat cell and tissue levels and point out the underlying pathophysiological mechanisms. RECENT FINDINGS Peripheral fat loss and central accumulation are distinct phenomena. Lipoatrophy is the dominant feature after prolonged treatment. Protease inhibitors and NRTIs promote fat tissue disease by separate mechanisms that converge and worsen adipocyte dysfunctions. The pathogenesis involves the mitochondrial toxicity of NRTIs and the adverse effects of protease inhibitors and NRTIs on adipocyte differentiation status, insulin sensitivity, survival and adipokine secretion. Oxidative stress and local inflammation induced by these drugs may participate in the setup of lipodystrophy. Partial and slow reversion can be obtained by switch strategies or drug therapy. SUMMARY Patients using antiviral therapy develop severe fat tissue damage. The toxicity of protease inhibitors and NRTIs remains an important issue for patients and clinicians. Since fat tissue regeneration is difficult, it is important to understand the mechanisms by which these drugs alter fat tissue depots.
Collapse
|
16
|
Disturbed nuclear orientation and cellular migration in A-type lamin deficient cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:312-24. [DOI: 10.1016/j.bbamcr.2008.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 08/26/2008] [Accepted: 10/08/2008] [Indexed: 11/20/2022]
|
17
|
Antiretroviral-related adipocyte dysfunction and lipodystrophy in HIV-infected patients: Alteration of the PPARγ-dependent pathways. PPAR Res 2008; 2009:507141. [PMID: 19125203 PMCID: PMC2612527 DOI: 10.1155/2009/507141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 10/09/2008] [Indexed: 12/23/2022] Open
Abstract
Lipodystrophy and metabolic alterations are major complications of antiretroviral therapy in HIV-infected patients. In vitro studies using cultured murine and human adipocytes revealed that some protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs) were implicated to a different extent in adipose cell dysfunction and that a chronic incubation with some PIs decreased mRNA and protein expression of PPARγ. Defective lamin A maturation linked to PI inhibitory activity could impede the nuclear translocation of SREBP1c, therefore, reducing PPARγ expression. Adipose cell function was partially restored by the PPARγ agonists, thiazolidinediones. Adverse effects of PIs and NRTIs have also been reported in macrophages, a cell type that coexists with, and modulates, adipocyte function in fat tissue. In HIV-infected patients under ART, a decreased expression of PPARγ and of PPARγ-related genes was observed in adipose tissue, these anomalies being more severe in patients with ART-induced lipoatrophy. Altered PPARγ expression was reversed in patients stopping PIs. Treatment of patients with agonists of PPARγ could improve, at least partially, the subcutaneous lipoatrophy. These data indicate that decreased PPARγ expression and PPARγ-related function, resulting from ART-induced adipose tissue toxicity, play a central role in HIV-related lipoatrophy and metabolic consequences.
Collapse
|
18
|
Kudlow BA, Stanfel MN, Burtner CR, Johnston ED, Kennedy BK. Suppression of proliferative defects associated with processing-defective lamin A mutants by hTERT or inactivation of p53. Mol Biol Cell 2008; 19:5238-48. [PMID: 18843043 DOI: 10.1091/mbc.e08-05-0492] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, debilitating disease with early mortality and rapid onset of aging-associated pathologies. It is linked to mutations in LMNA, which encodes A-type nuclear lamins. The most frequent HGPS-associated LMNA mutation results in a protein, termed progerin, with an internal 50 amino acid deletion and, unlike normal A-type lamins, stable farnesylation. The cellular consequences of progerin expression underlying the HGPS phenotype remain poorly understood. Here, we stably expressed lamin A mutants, including progerin, in otherwise identical primary human fibroblasts to compare the effects of different mutants on nuclear morphology and cell proliferation. We find that expression of progerin leads to inhibition of proliferation in a high percentage of cells and slightly premature senescence in the population. Expression of a stably farnesylated mutant of lamin A phenocopied the immediate proliferative defects but did not result in premature senescence. Either p53 inhibition or, more surprisingly, expression of the catalytic subunit of telomerase (hTERT) suppressed the early proliferative defects associated with progerin expression. These findings lead us to propose that progerin may interfere with telomere structure or metabolism in a manner suppressible by increased telomerase levels and possibly link mechanisms leading to progeroid phenotypes to those of cell immortalization.
Collapse
Affiliation(s)
- Brian A Kudlow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
19
|
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 2008; 22:832-53. [PMID: 18381888 PMCID: PMC2732390 DOI: 10.1101/gad.1652708] [Citation(s) in RCA: 742] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Katrin Pfleghaar
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Kaushik Sengupta
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Dale K. Shumaker
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Liliana Solimando
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
20
|
LMNA Messenger RNA Expression in Highly Active Antiretroviral Therapy-Treated HIV-Positive Patients. J Acquir Immune Defic Syndr 2007; 46:384-9. [DOI: 10.1097/qai.0b013e31815aba1b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Tarr PE, Telenti A. Toxicogenetics of Antiretroviral Therapy: Genetic Factors that Contribute to Metabolic Complications. Antivir Ther 2007. [DOI: 10.1177/135965350701200714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metabolic complications of antiretroviral therapy (ART) have emerged as a major concern for long-term, successful management of HIV infection. Variability in the response to ART between individuals has been increasingly linked to the genetic background of patients, as regards efficacy and susceptibility to adverse reactions (toxicogenetics). This review summarizes the biological and methodological background for the genetic prediction of metabolic toxicity of ART. Recent studies are discussed which suggest that single-nucleotide polymorphisms (SNPs) in several genes involved in lipid metabolism and lipid transport in the general population (ABCA1, APOA5, APOC3, APOE, CETP) might modulate plasma triglyceride and high-density lipoprotein cholesterol levels in HIV-infected patients. At present, genetic prediction of lipodystrophy is not possible. Lipodystrophy has been linked to an accumulation of mtDNA mutations, a finding causally associated with ageing phenotypes in animal models. No mutations in LMNA, a gene linked to rare, inherited forms of lipodystrophy, have been identified in small studies of patients with lipodystrophy, and a possible link to a TNF promoter SNP remains to be confirmed. With the rapidly decreasing cost of genetic testing, the main issues that need to be addressed prior to introduction of toxicogenetic prediction in HIV clinical practice include reproducibly high predictive values of SNP associations with clinically relevant and well defined metabolic outcomes, studies that evaluate the contribution of SNPs in the context of multi-SNP and haplotype analysis, and the validation of genetic markers in independent, large patient cohorts. Comprehensive, whole genome approaches are increasingly being used.
Collapse
Affiliation(s)
- Philip E Tarr
- Infectious Disease Service, University Hospital, Lausanne, Switzerland
| | - Amalio Telenti
- Infectious Disease Service, University Hospital, Lausanne, Switzerland
- Institute for Microbiology, University of Lausanne, Switzerland
| |
Collapse
|
22
|
Nitta RT, Smith CL, Kennedy BK. Evidence that proteasome-dependent degradation of the retinoblastoma protein in cells lacking A-type lamins occurs independently of gankyrin and MDM2. PLoS One 2007; 2:e963. [PMID: 17896003 PMCID: PMC1978514 DOI: 10.1371/journal.pone.0000963] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 09/06/2007] [Indexed: 12/11/2022] Open
Abstract
Background A-type lamins, predominantly lamins A and C, are nuclear intermediate filaments believed to act as scaffolds for assembly of transcription factors. Lamin A/C is necessary for the retinoblastoma protein (pRB) stabilization through unknown mechanism(s). Two oncoproteins, gankyrin and MDM2, are known to promote pRB degradation in other contexts. Consequently, we tested the hypothesis that gankyrin and/or MDM2 are required for enhanced pRB degradation in Lmna−/− fibroblasts. Principal Findings. To determine if gankyrin promotes pRB destabilization in the absence of lamin A/C, we first analyzed its protein levels in Lmna−/− fibroblasts. Both gankyrin mRNA levels and protein levels are increased in these cells, leading us to further investigate its role in pRB degradation. Consistent with prior reports, overexpression of gankyrin in Lmna+/+ cells destabilizes pRB. This decrease is functionally significant, since gankyrin overexpressing cells are resistant to p16ink4a-mediated cell cycle arrest. These findings suggest that lamin A-mediated degradation of pRB would be gankyrin-dependent. However, effective RNAi-enforced reduction of gankyrin expression in Lmna−/− cells was insufficient to restore pRB stability. To test the importance of MDM2, we disrupted the MDM2-pRB interaction by transfecting Lmna−/− cells with p14arf. p14arf expression was also insufficient to stabilize pRB or confer cell cycle arrest, suggesting that MDM2 also does not mediate pRB degradation in Lmna−/− cells. Conclusions/Significance Our findings suggest that pRB degradation in Lmna−/− cells occurs by gankyrin and MDM2-independent mechanisms, leading us to propose the existence of a third proteasome-dependent pathway for pRB degradation. Two findings from this study also increase the likelihood that lamin A/C functions as a tumor suppressor. First, protein levels of the oncoprotein gankyrin are elevated in Lmna−/− fibroblasts. Second, Lmna−/− cells are refractory to p14arf-mediated cell cycle arrest, as was previously shown with p16ink4a. Potential roles of lamin A/C in the suppression of tumorigenesis are discussed.
Collapse
Affiliation(s)
- Ryan T. Nitta
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Catherine L. Smith
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Caron M, Auclair M, Donadille B, Béréziat V, Guerci B, Laville M, Narbonne H, Bodemer C, Lascols O, Capeau J, Vigouroux C. Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ 2007; 14:1759-67. [PMID: 17612587 DOI: 10.1038/sj.cdd.4402197] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lipodystrophic syndromes associated with mutations in LMNA, encoding A-type lamins, and with HIV antiretroviral treatments share several clinical characteristics. Nuclear alterations and prelamin A accumulation have been reported in fibroblasts from patients with LMNA mutations and adipocytes exposed to protease inhibitors (PI). As genetically altered lamin A maturation also results in premature ageing syndromes with lipodystrophy, we studied prelamin A expression and senescence markers in cultured human fibroblasts bearing six different LMNA mutations or treated with PIs. As compared to control cells, fibroblasts with LMNA mutations or treated with PIs had nuclear shape abnormalities and reduced proliferative activity that worsened with increasing cellular passages. They exhibited prelamin A accumulation, increased oxidative stress, decreased expression of mitochondrial respiratory chain proteins and premature cellular senescence. Inhibition of prelamin A farnesylation prevented cellular senescence and oxidative stress. Adipose tissue samples from patients with LMNA mutations or treated with PIs also showed retention of prelamin A, overexpression of the cell cycle checkpoint inhibitor p16 and altered mitochondrial markers. Thus, both LMNA mutations and PI treatment result in accumulation of farnesylated prelamin A and oxidative stress that trigger premature cellular senescence. These alterations could participate in the pathophysiology of lipodystrophic syndromes and lead to premature ageing complications.
Collapse
Affiliation(s)
- M Caron
- INSERM U680, Université Pierre et Marie Curie-Paris 6, Faculté de Médecine, Site Saint-Antoine, 27 rue Chaligny, 75571 Paris Cedex 12, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Muñoz-Sanz A, Rodríguez-Vidigal FF, Domingo P. Patogenia de la lipodistrofia y de las alteraciones metabólicas asociadas a la infección por el VIH. Med Clin (Barc) 2006; 127:465-74. [PMID: 17040633 DOI: 10.1157/13093057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipodystrophy, and the metabolic alterations (dislipemia, insulin-resistance) associated with human immunodeficiency virus (HIV) infection, is a multifactorial syndrome due to the interaction of host related factors (cellular immune status, diet, gene mutations), viral factors (cytokine synthesis, polyunsaturated fatty acid or PUFA depletion), and pharmacological effects (mitochondrial DNA-polymerase inhibition, lipolysis inhibition, adiponectin synthesis reduction). HIV probably modifies the adipocyte differentiation and the lipid metabolism. This retroviral effect is mediated by proinflammatory cytokines (tumor necrosis factor) and the participation of other factors (drugs, diet), all in the context of a particular host genetic setting. The adipocyte (and several cellular receptors, fatty acids, membrane proteins, and cytokines) plays a central role in the pathogenesis of HIV-associated lipodystrophy.
Collapse
Affiliation(s)
- Agustín Muñoz-Sanz
- Unidad de Patología Infecciosa, Hospital Universitario Infanta Cristina, Servicio Extremeño de Salud, Universidad de Extremadura, Avenida de Elvas s/n, 06080 Badajoz, Spain.
| | | | | |
Collapse
|
25
|
Nitta RT, Jameson SA, Kudlow BA, Conlan LA, Kennedy BK. Stabilization of the retinoblastoma protein by A-type nuclear lamins is required for INK4A-mediated cell cycle arrest. Mol Cell Biol 2006; 26:5360-72. [PMID: 16809772 PMCID: PMC1592700 DOI: 10.1128/mcb.02464-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mutations in the LMNA gene, which encodes all A-type lamins, including lamin A and lamin C, cause a variety of tissue-specific degenerative diseases termed laminopathies. Little is known about the pathogenesis of these disorders. Previous studies have indicated that A-type lamins interact with the retinoblastoma protein (pRB). Here we probe the functional consequences of this association and further examine links between nuclear structure and cell cycle control. Since pRB is required for cell cycle arrest by p16(ink4a), we tested the responsiveness of multiple lamin A/C-depleted cell lines to overexpression of this CDK inhibitor and tumor suppressor. We find that the loss of A-type lamin expression results in marked destabilization of pRB. This reduction in pRB renders cells resistant to p16(ink4a)-mediated G(1) arrest. Reintroduction of lamin A, lamin C, or pRB restores p16(ink4a)-responsiveness to Lmna(-/-) cells. An array of lamin A mutants, representing a variety of pathologies as well as lamin A processing mutants, was introduced into Lmna(-/-) cells. Of these, a mutant associated with mandibuloacral dysplasia (MAD R527H), as well as two lamin A processing mutants, but not other disease-associated mutants, failed to restore p16(ink4a) responsiveness. Although our findings do not rule out links between altered pRB function and laminopathies, they fail to support such an assertion. These findings do link lamin A/C to the functional activation of a critical tumor suppressor pathway and further the possibility that somatic mutations in LMNA contribute to tumor progression.
Collapse
Affiliation(s)
- Ryan T Nitta
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
26
|
Frock RL, Kudlow BA, Evans AM, Jameson SA, Hauschka SD, Kennedy BK. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev 2006; 20:486-500. [PMID: 16481476 PMCID: PMC1369050 DOI: 10.1101/gad.1364906] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mutations within LMNA, encoding A-type nuclear lamins, are associated with multiple tissue-specific diseases, including Emery-Dreifuss (EDMD2/3) and Limb-Girdle muscular dystrophy (LGMD1B). X-linked EDMD results from mutations in emerin, a lamin A-associated protein. The mechanisms through which these mutations cause muscular dystrophy are not understood. Here we show that most, but not all, cultured muscle cells from lamin A/C knockout mice exhibit impaired differentiation kinetics and reduced differentiation potential. Similarly, normal muscle cells that have been RNA interference (RNAi) down-regulated for either A-type lamins or emerin have impaired differentiation potentials. Replicative myoblasts lacking A-type lamins or emerin also have decreased levels of proteins important for muscle differentiation including pRB, MyoD, desmin, and M-cadherin; up-regulated Myf5; but no changes in Pax3, Pax7, MEF2C, MEF2D, c-met, and beta-catenin. To determine whether impaired myogenesis is linked to reduced MyoD or desmin levels, these proteins were individually expressed in Lmna(-/-) myoblasts that were then induced to undergo myogenesis. Expression of either MyoD or, more surprisingly, desmin in Lmna(-/-) myoblasts resulted in increased differentiation potential. These studies indicate roles for A-type lamins and emerin in myogenic differentiation and also suggest that these effects are at least in part due to decreased endogenous levels of other critical myoblast proteins. The delayed differentiation kinetics and decreased differentiation potential of lamin A/C-deficient and emerin-deficient myoblasts may in part underlie the dystrophic phenotypes observed in patients with EDMD.
Collapse
Affiliation(s)
- Richard L Frock
- Department of Biochemistry, Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
27
|
Boguslavsky RL, Stewart CL, Worman HJ. Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 2006; 15:653-63. [PMID: 16415042 DOI: 10.1093/hmg/ddi480] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mutations in the LMNA gene encoding A-type lamins cause several diseases, including Emery-Dreifuss muscular dystrophy and Dunnigan-type familial partial lipodystrophy (FPLD). We analyzed differentiation of 3T3-L1 preadipocytes to adipocytes in cells overexpressing wild-type lamin A as well as lamin A with amino acid substitutions at position 482 that cause FPLD. We also examined adipogenic conversion of mouse embryonic fibroblasts lacking A-type lamins. Overexpression of both wild-type and mutant lamin A inhibited lipid accumulation, triglyceride synthesis and expression of adipogenic markers. This was associated with inhibition of expression of peroxisome-proliferator-activated receptor gamma 2 (PPARgamma2) and Glut4. In contrast, embryonic fibroblasts lacking A-type lamins accumulated more intracellular lipid and exhibited elevated de novo triglyceride synthesis compared with wild-type fibroblasts. They also had increased basal phosphorylation of AKT1, a mediator of insulin signaling. We conclude that A-type lamins act as inhibitors of adipocyte differentiation, possibly by affecting PPARgamma2 and insulin signaling.
Collapse
Affiliation(s)
- Revekka L Boguslavsky
- Department of Medicine and Anatomy, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|