1
|
Eser TM, Baranov O, Huth M, Ahmed MIM, Deák F, Held K, Lin L, Pekayvaz K, Leunig A, Nicolai L, Pollakis G, Buggert M, Price DA, Rubio-Acero R, Reich J, Falk P, Markgraf A, Puchinger K, Castelletti N, Olbrich L, Vanshylla K, Klein F, Wieser A, Hasenauer J, Kroidl I, Hoelscher M, Geldmacher C. Nucleocapsid-specific T cell responses associate with control of SARS-CoV-2 in the upper airways before seroconversion. Nat Commun 2023; 14:2952. [PMID: 37225706 DOI: 10.1038/s41467-023-38020-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Despite intensive research since the emergence of SARS-CoV-2, it has remained unclear precisely which components of the early immune response protect against the development of severe COVID-19. Here, we perform a comprehensive immunogenetic and virologic analysis of nasopharyngeal and peripheral blood samples obtained during the acute phase of infection with SARS-CoV-2. We find that soluble and transcriptional markers of systemic inflammation peak during the first week after symptom onset and correlate directly with upper airways viral loads (UA-VLs), whereas the contemporaneous frequencies of circulating viral nucleocapsid (NC)-specific CD4+ and CD8+ T cells correlate inversely with various inflammatory markers and UA-VLs. In addition, we show that high frequencies of activated CD4+ and CD8+ T cells are present in acutely infected nasopharyngeal tissue, many of which express genes encoding various effector molecules, such as cytotoxic proteins and IFN-γ. The presence of IFNG mRNA-expressing CD4+ and CD8+ T cells in the infected epithelium is further linked with common patterns of gene expression among virus-susceptible target cells and better local control of SARS-CoV-2. Collectively, these results identify an immune correlate of protection against SARS-CoV-2, which could inform the development of more effective vaccines to combat the acute and chronic illnesses attributable to COVID-19.
Collapse
Affiliation(s)
- Tabea M Eser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Olga Baranov
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Manuel Huth
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Center for Mathematics, Technische Universität München, 85748, Garching, Germany
| | - Mohammed I M Ahmed
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Flora Deák
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Luming Lin
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377, Munich, Germany
| | - Alexander Leunig
- Department of Medicine I, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377, Munich, Germany
| | - Leo Nicolai
- Department of Medicine I, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377, Munich, Germany
| | - Georgios Pollakis
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 2BE, UK
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, CF14 4XN, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, CF14 4XN, UK
| | - Raquel Rubio-Acero
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Jakob Reich
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Philine Falk
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Alissa Markgraf
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Kerstin Puchinger
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Noemi Castelletti
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Laura Olbrich
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, LMU Munich, 81377, Munich, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Center for Mathematics, Technische Universität München, 85748, Garching, Germany
- Faculty of Mathematics and Natural Sciences, University of Bonn, 53113, Bonn, Germany
| | - Inge Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany.
| |
Collapse
|
2
|
Immunological Control of HIV-1 Disease Progression by Rare Protective HLA Allele. J Virol 2022; 96:e0124822. [DOI: 10.1128/jvi.01248-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HLA-B57 is a relatively rare allele around world and the strongest protective HLA allele in Caucasians and African black individuals infected with HIV-1. Previous studies suggested that the advantage of this allele in HIV-1 disease progression is due to a strong functional ability of HLA-B57-restricted Gag-specific T cells and lower fitness of mutant viruses selected by the T cells.
Collapse
|
3
|
Delgado E, Benito S, Montero V, Cuevas MT, Fernández-García A, Sánchez-Martínez M, García-Bodas E, Díez-Fuertes F, Gil H, Cañada J, Carrera C, Martínez-López J, Sintes M, Pérez-Álvarez L, Thomson MM. Diverse Large HIV-1 Non-subtype B Clusters Are Spreading Among Men Who Have Sex With Men in Spain. Front Microbiol 2019; 10:655. [PMID: 31001231 PMCID: PMC6457325 DOI: 10.3389/fmicb.2019.00655] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/15/2019] [Indexed: 11/23/2022] Open
Abstract
In Western Europe, the HIV-1 epidemic among men who have sex with men (MSM) is dominated by subtype B. However, recently, other genetic forms have been reported to circulate in this population, as evidenced by their grouping in clusters predominantly comprising European individuals. Here we describe four large HIV-1 non-subtype B clusters spreading among MSM in Spain. Samples were collected in 9 regions. A pol fragment was amplified from plasma RNA or blood-extracted DNA. Phylogenetic analyses were performed via maximum likelihood, including database sequences of the same genetic forms as the identified clusters. Times and locations of the most recent common ancestors (MRCA) of clusters were estimated with a Bayesian method. Five large non-subtype B clusters associated with MSM were identified. The largest one, of F1 subtype, was reported previously. The other four were of CRF02_AG (CRF02_1; n = 115) and subtypes A1 (A1_1; n = 66), F1 (F1_3; n = 36), and C (C_7; n = 17). Most individuals belonging to them had been diagnosed of HIV-1 infection in the last 10 years. Each cluster comprised viruses from 3 to 8 Spanish regions and also comprised or was related to viruses from other countries: CRF02_1 comprised a Japanese subcluster and viruses from 8 other countries from Western Europe, Asia, and South America; A1_1 comprised viruses from Portugal, United Kingom, and United States, and was related to the A1 strain circulating in Greece, Albania and Cyprus; F1_3 was related to viruses from Romania; and C_7 comprised viruses from Portugal and was related to a virus from Mozambique. A subcluster within CRF02_1 was associated with heterosexual transmission. Near full-length genomes of each cluster were of uniform genetic form. Times of MRCAs of CRF02_1, A1_1, F1_3, and C_7 were estimated around 1986, 1989, 2013, and 1983, respectively. MRCA locations for CRF02_1 and A1_1 were uncertain (however initial expansions in Spain in Madrid and Vigo, respectively, were estimated) and were most probable in Bilbao, Spain, for F1_3 and Portugal for C_7. These results show that the HIV-1 epidemic among MSM in Spain is becoming increasingly diverse through the expansion of diverse non-subtype B clusters, comprising or related to viruses circulating in other countries.
Collapse
Affiliation(s)
- Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Benito
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Montero
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Cuevas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Aurora Fernández-García
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mónica Sánchez-Martínez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena García-Bodas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Díez-Fuertes
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Horacio Gil
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,European Program for Public Health Microbiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Javier Cañada
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Carrera
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Martínez-López
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos Sintes
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Pérez-Álvarez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael M Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
4
|
Preferential Targeting of Conserved Gag Regions after Vaccination with a Heterologous DNA Prime-Modified Vaccinia Virus Ankara Boost HIV-1 Vaccine Regimen. J Virol 2017; 91:JVI.00730-17. [PMID: 28701395 DOI: 10.1128/jvi.00730-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/14/2017] [Indexed: 11/20/2022] Open
Abstract
Prime-boost vaccination strategies against HIV-1 often include multiple variants for a given immunogen for better coverage of the extensive viral diversity. To study the immunologic effects of this approach, we characterized breadth, phenotype, function, and specificity of Gag-specific T cells induced by a DNA-prime modified vaccinia virus Ankara (MVA)-boost vaccination strategy, which uses mismatched Gag immunogens in the TamoVac 01 phase IIa trial. Healthy Tanzanian volunteers received three injections of the DNA-SMI vaccine encoding a subtype B and AB-recombinant Gagp37 and two vaccinations with MVA-CMDR encoding subtype A Gagp55 Gag-specific T-cell responses were studied in 42 vaccinees using fresh peripheral blood mononuclear cells. After the first MVA-CMDR boost, vaccine-induced gamma interferon-positive (IFN-γ+) Gag-specific T-cell responses were dominated by CD4+ T cells (P < 0.001 compared to CD8+ T cells) that coexpressed interleukin-2 (IL-2) (66.4%) and/or tumor necrosis factor alpha (TNF-α) (63.7%). A median of 3 antigenic regions were targeted with a higher-magnitude median response to Gagp24 regions, more conserved between prime and boost, compared to those of regions within Gagp15 (not primed) and Gagp17 (less conserved; P < 0.0001 for both). Four regions within Gagp24 each were targeted by 45% to 74% of vaccinees upon restimulation with DNA-SMI-Gag matched peptides. The response rate to individual antigenic regions correlated with the sequence homology between the MVA- and DNA Gag-encoded immunogens (P = 0.04, r2 = 0.47). In summary, after the first MVA-CMDR boost, the sequence-mismatched DNA-prime MVA-boost vaccine strategy induced a Gag-specific T-cell response that was dominated by polyfunctional CD4+ T cells and that targeted multiple antigenic regions within the conserved Gagp24 protein.IMPORTANCE Genetic diversity is a major challenge for the design of vaccines against variable viruses. While including multiple variants for a given immunogen in prime-boost vaccination strategies is one approach that aims to improve coverage for global virus variants, the immunologic consequences of this strategy have been poorly defined so far. It is unclear whether inclusion of multiple variants in prime-boost vaccination strategies improves recognition of variant viruses by T cells and by which mechanisms this would be achieved, either by improved cross-recognition of multiple variants for a given antigenic region or through preferential targeting of antigenic regions more conserved between prime and boost. Engineering vaccines to induce adaptive immune responses that preferentially target conserved antigenic regions of viral vulnerability might facilitate better immune control after preventive and therapeutic vaccination for HIV and for other variable viruses.
Collapse
|
5
|
Obuku AE, Bugembe DL, Musinguzi K, Watera C, Serwanga J, Ndembi N, Levin J, Kaleebu P, Pala P. Macrophage Inflammatory Protein-1 Beta and Interferon Gamma Responses in Ugandans with HIV-1 Acute/Early Infections. AIDS Res Hum Retroviruses 2016; 32:237-46. [PMID: 26548707 DOI: 10.1089/aid.2015.0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Control of HIV replication through CD4(+) and CD8(+) T cells might be possible, but the functional and phenotypic characteristics of such cells are not defined. Among cytokines produced by T cells, CCR5 ligands, including macrophage inflammatory protein-1 beta (MIP-1β), compete for the CCR5 coreceptor with HIV, promoting CCR5 internalization and decreasing its availability for virus binding. Interferon (IFN)-γ also has some antiviral activity and has been used as a read-out for T cell immunogenicity. We used cultured ELISpot assays to compare the relative contribution of MIP-1β and IFN-γ to HIV-specific responses. The magnitude of responses was 1.36 times higher for MIP-1β compared to IFN-γ. The breadth of the MIP-1β response (45.41%) was significantly higher than IFN-γ (36.88%), with considerable overlap between the peptide pools that stimulated both MIP-1β and IFN-γ production. Subtype A and D cross-reactive responses were observed both at stimulation and test level, but MIP-1β and IFN-γ responses displayed different effect patterns. We conclude that the MIP-1β ELISpot would be a useful complement to the evaluation of the immunogenicity of HIV vaccines and the activity of adjuvants.
Collapse
Affiliation(s)
- Andrew Ekii Obuku
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Daniel L. Bugembe
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Kenneth Musinguzi
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Christine Watera
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Jennifer Serwanga
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Nicaise Ndembi
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Jonathan Levin
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Pietro Pala
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| |
Collapse
|
6
|
High frequency of transmitted HIV-1 Gag HLA class I-driven immune escape variants but minimal immune selection over the first year of clade C infection. PLoS One 2015; 10:e0119886. [PMID: 25781986 PMCID: PMC4363590 DOI: 10.1371/journal.pone.0119886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
In chronic HIV infection, CD8+ T cell responses to Gag are associated with lower viral loads, but longitudinal studies of HLA-restricted CD8+ T cell-driven selection pressure in Gag from the time of acute infection are limited. In this study we examined Gag sequence evolution over the first year of infection in 22 patients identified prior to seroconversion. A total of 310 and 337 full-length Gag sequences from the earliest available samples (median = 14 days after infection [Fiebig stage I/II]) and at one-year post infection respectively were generated. Six of 22 (27%) individuals were infected with multiple variants. There was a trend towards early intra-patient viral sequence diversity correlating with viral load set point (p = 0.07, r = 0.39). At 14 days post infection, 59.7% of Gag CTL epitopes contained non-consensus polymorphisms and over half of these (35.3%) comprised of previously described CTL escape variants. Consensus and variant CTL epitope proportions were equally distributed irrespective of the selecting host HLA allele and most epitopes remained unchanged over 12 months post infection. These data suggest that intrapatient diversity during acute infection is an indicator of disease outcome. In this setting, there is a high rate of transmitted CTL escape variants and limited immune selection in Gag during the first year of infection. These data have relevance for vaccine strategies designed to elicit effective CD8+ T cell immune responses.
Collapse
|
7
|
Giorgi EE, Balachandran H, Muldoon M, Letvin NL, Haynes BF, Korber BT, Santra S. Cross-reactive potential of human T-lymphocyte responses in HIV-1 infection. Vaccine 2014; 32:3995-4000. [PMID: 24837783 DOI: 10.1016/j.vaccine.2014.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
An effective HIV-1 vaccine should elicit sufficient breadth of immune recognition to protect against the genetically diverse forms of the circulating virus. Evaluation of the breadth and magnitude of cellular immune responses to epitope variants is important for HIV-1 vaccine assessment. We compared HIV-1 Gag-specific T-lymphocyte responses in 20 HIV-1-infected individuals representing two different HIV-1 subtypes, B and C. By assessing T lymphocyte responses with peptides based on natural HIV-1 variants, we found evidence for limited cross-reactivity and significantly enhanced within-clade responses among clade B-infected subjects, and not among clade C-infected subjects.
Collapse
Affiliation(s)
- Elena E Giorgi
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Harikrishnan Balachandran
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mark Muldoon
- University of Manchester School of Mathematics, Manchester M60 1QD, UK
| | - Norman L Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Barton F Haynes
- Duke University Human Vaccine Institute, Durham, NC, United States; Duke Center for HIV/AIDS Vaccine Immunology, Durham, NC, United States
| | - Bette T Korber
- Los Alamos National Laboratory, Los Alamos, NM, United States; Santa Fe Institute, Santa Fe, NM, United States
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Rodríguez AM, Pascutti MF, Maeto C, Falivene J, Holgado MP, Turk G, Gherardi MM. IL-12 and GM-CSF in DNA/MVA immunizations against HIV-1 CRF12_BF Nef induced T-cell responses with an enhanced magnitude, breadth and quality. PLoS One 2012; 7:e37801. [PMID: 22655069 PMCID: PMC3360004 DOI: 10.1371/journal.pone.0037801] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/27/2012] [Indexed: 01/12/2023] Open
Abstract
In Argentina, the HIV epidemic is characterized by the co-circulation of subtype B and BF recombinant viral variants. Nef is an HIV protein highly variable among subtypes, making it a good tool to study the impact of HIV variability in the vaccine design setting. We have previously reported a specific cellular response against NefBF with low cross-reactivity to NefB in mice. The aim of this work was to analyze whether the co-administration of IL-12 and GM-CSF, using DNA and MVA vaccine vectors, could improve the final cellular response induced. Mice received three DNA priming doses of a plasmid that express NefBF plus DNAs expressing IL-12 and/or GM-CSF. Afterwards, all the groups were boosted with a MVAnefBF dose. The highest increase in the magnitude of the NefBF response, compared to that induced in the control was found in the IL-12 group. Importantly, a response with higher breadth was detected in groups which received IL-12 or GM-CSF, evidenced as an increased frequency of recognition of homologous (BF) and heterologous (B) Nef peptides, as well as a higher number of other Nef peptide pools representing different viral subtypes. However, these improvements were lost when both DNA cytokines were simultaneously administered, as the response was focused against the immunodominant peptide with a detrimental response towards subdominant epitopes. The pattern of cytokines secreted and the specific-T-cell proliferative capacity were improved in IL-12 and IL-12+GM-CSF groups. Importantly IL-12 generated a significant higher T-cell avidity against a B heterologous peptide. This study indicates that the incorporation of DNA expressing IL-12 in DNA/MVA schemes produced the best results in terms of improvements of T-cell-response key properties such as breadth, cross-reactivity and quality (avidity and pattern of cytokines secreted). These relevant results contribute to the design of strategies aimed to induce T-cell responses against HIV antigens with higher quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - María Magdalena Gherardi
- Centro Nacional de Referencia para el SIDA, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
9
|
Zembe L, Burgers WA, Jaspan HB, Bekker LG, Bredell H, Stevens G, Gilmour J, Cox JH, Fast P, Hayes P, Vardas E, Williamson C, Gray CM. Intra- and inter-clade cross-reactivity by HIV-1 Gag specific T-cells reveals exclusive and commonly targeted regions: implications for current vaccine trials. PLoS One 2011; 6:e26096. [PMID: 22022524 PMCID: PMC3192159 DOI: 10.1371/journal.pone.0026096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/19/2011] [Indexed: 11/22/2022] Open
Abstract
The genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128) and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001). Consistent with these results, the predicted Major Histocompatibility Complex Class I IC50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001), suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities.
Collapse
Affiliation(s)
- Lycias Zembe
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Wendy A. Burgers
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Heather B. Jaspan
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Desmond Tutu HIV Centre, Cape Town, South Africa
| | | | - Helba Bredell
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gwynneth Stevens
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Jill Gilmour
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Josephine H. Cox
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Patricia Fast
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Peter Hayes
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Eftyhia Vardas
- Department of Medical Virology, University of Stellenbosch, Stellenbosch, South Africa
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clive M. Gray
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
10
|
Thomson MM, Fernández-García A. Phylogenetic structure in African HIV-1 subtype C revealed by selective sequential pruning. Virology 2011; 415:30-8. [PMID: 21507449 DOI: 10.1016/j.virol.2011.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/11/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
Subtype C is the most prevalent clade in the HIV-1 pandemic. Previous studies suggested that African HIV-1 subtype C lacks a well-defined phylogenetic structure. Here we show that, by sequential pruning of ambiguously positioned taxa, a well-defined intrasubtype C phylogenetic structure becomes apparent, with 52% African HIV-1 subtype C isolates analyzed in envelope sequences branching within 11 clusters, also supported in a tree of full-length genomes, and all with geographical associations. Among 46 viruses recently transmitted in South Africa, 70% branched within 7 clusters (41% in the largest one) and 15% additional isolates were intercluster recombinants. Choice of the outgroup sequence and inclusion of intrasubtype recombinant viruses in the analyses could greatly affect support of clusters. The identification of clusters comprising a large proportion of African HIV-1 subtype C viruses may have implications for the design of vaccines intended for use in areas where subtype C is prevalent.
Collapse
Affiliation(s)
- Michael M Thomson
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km. 2, Majadahonda, Madrid, Spain.
| | | |
Collapse
|
11
|
Viral and Host Factors Associated With the HIV-1 Viral Load Setpoint in Adults From Mbeya Region, Tanzania. J Acquir Immune Defic Syndr 2010; 54:324-30. [DOI: 10.1097/qai.0b013e3181cf30ba] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
McKinnon LR, Mao X, Kimani J, Wachihi C, Semeniuk C, Mendoza M, Liang B, Luo M, Fowke KR, Plummer FA, Ball TB. Epitope mapping of HIV-specific CD8+ T cells in a cohort dominated by clade A1 infection. PLoS One 2009; 4:e6965. [PMID: 19750221 PMCID: PMC2735720 DOI: 10.1371/journal.pone.0006965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/28/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CD8+ T cell responses are often detected at large magnitudes in HIV-infected subjects, and eliciting these responses is the central aim of many HIV-1 vaccine strategies. Population differences in CD8+ T cell epitope specificity will need to be understood if vaccines are to be effective in multiple geographic regions. METHODOLOGY/PRINCIPAL FINDINGS In a large Kenyan cohort, we compared responsive CD8+ T cell HIV-1 Env overlapping peptides (OLPs) to Best Defined Epitopes (BDEs), many of which have been defined in clade B infection. While the majority of BDEs (69%) were recognized in this population, nearly half of responsive OLPs (47%) did not contain described epitopes. Recognition frequencies of BDEs were inversely correlated to epitopic sequence differences between clade A1 and BDE (P = 0.019), and positively selected residues were more frequent in "new" OLPs (without BDEs). We assessed the impact of HLA and TAP binding on epitope recognition frequencies, focusing on predicted and actual epitopes in the HLA B7 supertype. CONCLUSIONS/SIGNIFICANCE Although many previously described CD8 epitopes were recognized, several novel CD8 epitopes were defined in this population, implying that epitope mapping efforts have not been completely exhausted. Expansion of these studies will be critical to understand population differences in CD8 epitope recognition.
Collapse
Affiliation(s)
- Lyle R McKinnon
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Geldmacher C, Metzler IS, Tovanabutra S, Asher TE, Gostick E, Ambrozak DR, Petrovas C, Schuetz A, Ngwenyama N, Kijak G, Maboko L, Hoelscher M, McCutchan F, Price DA, Douek DC, Koup RA. Minor viral and host genetic polymorphisms can dramatically impact the biologic outcome of an epitope-specific CD8 T-cell response. Blood 2009; 114:1553-62. [PMID: 19542300 PMCID: PMC2731637 DOI: 10.1182/blood-2009-02-206193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 03/31/2009] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus-1 subtypes A and C differ in the highly conserved Gag-TL9 epitope at a single amino acid position. Similarly, the TL9 presenting human leukocyte antigen (HLA) class I molecules B42 and B81 differ only at 6 amino acid positions. Here, we addressed the influence of such minor viral and host genetic variation on the TL9-specific CD8 T-cell response. The clonotypic characteristics of CD8 T-cell populations elicited by subtype A or subtype C were distinct, and these responses differed substantially with respect to the recognition and selection of TL9 variants. Irrespective of the presenting HLA class I molecule, CD8 T-cell responses elicited by subtype C exhibited largely comparable TL9 variant cross-recognition properties, expressed T-cell receptors that used almost exclusively the TRBV 12-3 gene, and selected for predictable patterns of viral variation within TL9. In contrast, subtype A elicited TL9-specific CD8 T-cell populations with completely different, more diverse TCRBV genes and did not select for viral variants. Moreover, TL9 variant cross-recognition properties were extensive in B81(+) subjects but limited in B42(+) subjects. Thus, minor viral and host genetic polymorphisms can dramatically alter the immunologic and virologic outcome of an epitope-specific CD8 T-cell response.
Collapse
Affiliation(s)
- Christof Geldmacher
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Immunodominant HIV-1 Cd4+ T cell epitopes in chronic untreated clade C HIV-1 infection. PLoS One 2009; 4:e5013. [PMID: 19352428 PMCID: PMC2661367 DOI: 10.1371/journal.pone.0005013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 03/04/2009] [Indexed: 12/17/2022] Open
Abstract
Background A dominance of Gag-specific CD8+ T cell responses is significantly associated with a lower viral load in individuals with chronic, untreated clade C human immunodeficiency virus type 1 (HIV-1) infection. This association has not been investigated in terms of Gag-specific CD4+ T cell responses, nor have clade C HIV-1–specific CD4+ T cell epitopes, likely a vital component of an effective global HIV-1 vaccine, been identified. Methodology/Principal Findings Intracellular cytokine staining was conducted on 373 subjects with chronic, untreated clade C infection to assess interferon-gamma (IFN-γ) responses by CD4+ T cells to pooled Gag peptides and to determine their association with viral load and CD4 count. Gag-specific IFN-γ–producing CD4+ T cell responses were detected in 261/373 (70%) subjects, with the Gag responders having a significantly lower viral load and higher CD4 count than those with no detectable Gag response (p<0.0001 for both parameters). To identify individual peptides targeted by HIV-1–specific CD4+ T cells, separate ELISPOT screening was conducted on CD8-depleted PBMCs from 32 chronically infected untreated subjects, using pools of overlapping peptides that spanned the entire HIV-1 clade C consensus sequence, and reconfirmed by flow cytometry to be CD4+ mediated. The ELISPOT screening identified 33 CD4+ peptides targeted by 18/32 patients (56%), with 27 of the 33 peptides located in the Gag region. Although the breadth of the CD4+ responses correlated inversely with viral load (p = 0.015), the magnitude of the response was not significantly associated with viral load. Conclusions/Significance These data indicate that in chronic untreated clade C HIV-1 infection, IFN-γ–secreting Gag-specific CD4+ T cell responses are immunodominant, directed at multiple distinct epitopes, and associated with viral control.
Collapse
|
15
|
Yu S, Feng X, Shu T, Matano T, Hasegawa M, Wang X, Ma H, Li H, Li Z, Zeng Y. Potent specific immune responses induced by prime-boost-boost strategies based on DNA, adenovirus, and Sendai virus vectors expressing gag gene of Chinese HIV-1 subtype B. Vaccine 2008; 26:6124-31. [PMID: 18812199 DOI: 10.1016/j.vaccine.2008.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/22/2008] [Accepted: 09/01/2008] [Indexed: 11/30/2022]
Abstract
To study the immune responses elicited by multiple vectors and develop vaccines strategies against prevalent HIV-1 strains in China, we have examined the potency of vaccine regimens of plasmid DNA, adenovirus, and Sendai virus vectors expressing HIV-1 gag consensus sequence of HIV-1 isolates from China for inducing specific immune responses. In BALB/c mice, combination of these vectors induced higher Gag-specific cellular immune response than any regimen using single vector alone. The prime-boost-boost regimen consisting of the triple heterologous vectors induced Gag-specific T-cell responses the most efficiently. In rhesus macaques, the prime-boost-boost regimen induced potent Gag-specific cellular immune responses as well as long lasting humoral immune response, and each booster resulted in rapid and efficient expansion of Gag-specific T cells. These results indicate that this prime-boost-boost regimen using triple heterologous vectors is a promising AIDS vaccine candidate for efficiently inducing HIV-1-specific cellular and humoral immune responses. Its further studies as a promising scheme for therapeutic and/or prophylactic HIV-1 vaccines should be grounded.
Collapse
Affiliation(s)
- Shuangqing Yu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bennett MS, Ng HL, Ali A, Yang OO. Cross-clade detection of HIV-1-specific cytotoxic T lymphocytes does not reflect cross-clade antiviral activity. J Infect Dis 2008; 197:390-7. [PMID: 18184090 DOI: 10.1086/525281] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The genetic divergence of human immunodeficiency virus (HIV)-1 into distinct clades is a serious consideration for cytotoxic T lymphocyte (CTL)-based vaccine development. Demonstrations that CTLs can cross-recognize epitope sequences from different clades has been proposed as offering hope for a single vaccine. Cross-clade CTL data, however, have been generated by assessing recognition of exogenous peptides. The present study compares HIV-1-specific CTL cross-clade epitope recognition of exogenously loaded peptides with suppression of HIV-1-infected cells. Despite apparently broad cross-clade reactivity of CTLs against the former, CTL suppression of HIV-1 strains with corresponding epitope sequences is significantly impaired. The functional avidity of CTLs for nonautologous clade epitope sequences is diminished, suggesting that CTLs can fail to recognize levels of infected endogenously derived cell-surface epitopes despite recognizing supraphysiologic exogenously added epitopes. These data strongly support clade-specific antiviral activity of CTLs and call into question the validity of standard methods for assessing cross-clade CTL activity or CTL antiviral activity in general.
Collapse
Affiliation(s)
- Michael S Bennett
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
17
|
Magnitude, breadth, and functional profile of T-cell responses during human immunodeficiency virus primary infection with B and BF viral variants. J Virol 2008; 82:2853-66. [PMID: 18184702 DOI: 10.1128/jvi.02260-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The molecular pattern of the human immunodeficiency virus (HIV) epidemic in Argentina provides an appropriate scenario to study cellular immune responses in patients with non-clade B infection. We aimed to map T-cell responses in patients infected with BF recombinant variants and compare them with those of clade B patients. Sixteen recently infected patients were enrolled and grouped by viral subtype. Nef-specific responses were evaluated with a peptide matrix-based gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay using B and BF overlapping peptides. Cross-clade and clade-specific responses were found. A correlation between B versus BF Nef-specific responses was identified. Detailed analysis at the single-peptide level revealed that BF patients show a narrower response but greater magnitude. Nef immunodominant responses agreed with previous publications, although the B loop was targeted at an unexpectedly high frequency. The putative HLA allele(s) restricting each positive response was determined. Single-peptide level screening with two different peptide sets uncovered discordant responses (mostly caused by peptide offsetting) and allowed detection of increased breadth. Positive responses identified by ELISPOT assay were further studied by intracellular cytokine staining. These were almost exclusively mediated by CD8 T cells. Characterization of concordant responses revealed that cells show distinct functional profiles, depending on the peptide presented. Last, quality (in terms of polyfunctionality) of T cells was associated with better viral replication containment. Overall, interclade differences in the frequency of epitopes recognized, structural domains targeted, and magnitude of responses were identified. Screening T-cell responses with multiple sets increased sensitivity. Further support for the notion of polyfunctional CD8(+) T-cell requirement to better control viral replication is also provided.
Collapse
|
18
|
Peptide impurities in commercial synthetic peptides and their implications for vaccine trial assessment. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:267-76. [PMID: 18077621 DOI: 10.1128/cvi.00284-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The advent of T-cell assay methodologies that are amenable to high throughput coupled with the availability of large libraries of overlapping peptides have revolutionized the fields of vaccine efficacy testing and cellular immune response assessment. Since T-cell assay performance is critically dependent upon the quality and specificity of the stimulating peptides, assurance of high-quality and reliable input peptides is an important aspect of assay validation. Herein, we demonstrate that individual peptides from large human immunodeficiency virus (HIV)-based peptide library sets obtained directly from two independent custom peptide suppliers contained contaminating peptides capable of giving false-positive results, which were consistent with nominal antigen-specific CD8+ T-cell responses. In-depth investigation of the cellular response in terms of responding CD8+ T-cell frequency and human leukocyte antigen (HLA) restriction led to the conclusion that one set of HIV type 1 (HIV-1)-derived peptides was contaminated with a peptide from human cytomegalovirus (HCMV), which is commonly used in cellular immunology research applications. Analytical characterization of the original stock of the suspect HIV-1 peptide confirmed the presence of approximately 1% by weight of the HCMV peptide. These observations have critical implications for quality assurance (QA) and quality control (QC) of peptides used in clinical trials where cellular immune-based assays are important end-point determinants. We propose a simple schema of biological QA/QC protocols to augment the standard biochemical QA/QC analyses as a means to circumvent this and other problems that can affect cellular immune-based assay outcome and interpretation.
Collapse
|
19
|
Geldmacher C, Gray C, Nason M, Currier JR, Haule A, Njovu L, Geis S, Hoffmann O, Maboko L, Meyerhans A, Cox J, Hoelscher M. A high viral burden predicts the loss of CD8 T-cell responses specific for subdominant gag epitopes during chronic human immunodeficiency virus infection. J Virol 2007; 81:13809-15. [PMID: 17898052 PMCID: PMC2168820 DOI: 10.1128/jvi.01566-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus (HIV)-specific CD8 T-cell responses targeting products encoded within the Gag open reading frame have frequently been associated with better viral control and disease outcome during the chronic phase of HIV infection. To further clarify this relationship, we have studied the dynamics of Gag-specific CD8 T-cell responses in relation to plasma viral load and time since infection in 33 chronically infected subjects over a 9-month period. High baseline viral loads were associated with a net loss of breadth (P < 0.001) and a decrease in the total magnitude of the Gag-specific T-cell response in general (P = 0.03). Most importantly, the baseline viral load predicted the subsequent change in the breadth of Gag recognition over time (P < 0.0001, r(2) = 0.41). Compared to maintained responses, lost responses were low in magnitude (P < 0.0001) and subdominant in the hierarchy of Gag-specific responses. The present study indicates that chronic exposure of the human immune system to high levels of HIV viremia is a determinant of virus-specific CD8 T-cell loss.
Collapse
|
20
|
Geldmacher C, Currier JR, Herrmann E, Haule A, Kuta E, McCutchan F, Njovu L, Geis S, Hoffmann O, Maboko L, Williamson C, Birx D, Meyerhans A, Cox J, Hoelscher M. CD8 T-cell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steady-state viremia in human immunodeficiency virus type 1-seropositive patients. J Virol 2006; 81:2440-8. [PMID: 17182686 PMCID: PMC1865944 DOI: 10.1128/jvi.01847-06] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The importance of HLA class I-restricted CD8 T-cell responses in the control of human immunodeficiency virus (HIV) infection is generally accepted. While several studies have shown an association of certain HLA class I alleles with slower disease progression, it is not fully established whether this effect is mediated by HIV-specific CD8 T-cell responses restricted by these alleles. In order to study the influence of the HLA class I alleles on the HIV-specific CD8 T-cell response and on viral control, we have assessed HIV-specific epitope recognition, plasma viral load, and expression of HLA class I alleles in a cohort of HIV-seropositive bar workers. Possession of the HLA class I alleles B5801, B8101, and B0702 was associated with a low median viral load and simultaneously with a broader median recognition of Gag epitopes compared to all other HLA alleles (twofold increase) (P = 0.0035). We further found an inverse linear relationship between the number of Gag epitopes recognized and the plasma viral load (R = -0.36; P = 0.0016). Particularly, recognition of multiple epitopes within two regions of Gag (amino acids [aa] 1 to 75 and aa 248 to 500) was associated with the maintenance of a low steady-state viremia, even years after acute infection.
Collapse
Affiliation(s)
- Christof Geldmacher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases/NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|