1
|
Kurnik-Łucka M, Latacz G, Bucki A, Rivera-Meza M, Khan N, Konwar J, Skowron K, Kołaczkowski M, Gil K. Neuroprotective Activity of Enantiomers of Salsolinol and N-Methyl-( R)-salsolinol: In Vitro and In Silico Studies. ACS OMEGA 2023; 8:38566-38576. [PMID: 37867702 PMCID: PMC10586258 DOI: 10.1021/acsomega.3c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Salsolinol (1-methyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol) is a close structural analogue of dopamine with an asymmetric center at the C1 position, and its presence in vivo, both in humans and rodents, has already been proven. Yet, given the fact that salsolinol colocalizes with dopamine-rich regions and was first detected in the urine of Parkinson's disease patients, its direct role in the process of neurodegeneration has been proposed. Here, we report that R and S enantiomers of salsolinol, which we purified from commercially available racemic mixture by means of high-performance liquid chromatography, exhibited neuroprotective properties (at the concentration of 50 μM) toward the human dopaminergic SH-SY5Y neuroblastoma cell line. Furthermore, within the study, we observed no toxic effect of N-methyl-(R)-salsolinol on SH-SY5Y neuroblastoma cells up to the concentration of 750 μM, either. Additionally, our molecular docking analysis showed that enantiomers of salsolinol should exhibit a distinct ability to interact with dopamine D2 receptors. Thus, we postulate that our results highlight the need to acknowledge salsolinol as an active dopamine metabolite and to further explore the neuroregulatory role of enantiomers of salsolinol.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Adam Bucki
- Department
of Medicinal Chemistry, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Mario Rivera-Meza
- Laboratory
of Experimental Pharmacology, Faculty of Chemical Sciences and Pharmaceutical
Sciences, University of Chile, 8380494 Santiago, Chile
| | - Nadia Khan
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Jahnobi Konwar
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Kamil Skowron
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Marcin Kołaczkowski
- Department
of Medicinal Chemistry, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Krzysztof Gil
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| |
Collapse
|
2
|
Hényková E, Kaleta M, Klíčová K, Gonzalez G, Novák O, Strnad M, Kaňovský P. Quantitative Determination of Endogenous Tetrahydroisoquinolines, Potential Parkinson's Disease Biomarkers, in Mammals. ACS Chem Neurosci 2022; 13:3230-3246. [PMID: 36375023 DOI: 10.1021/acschemneuro.2c00516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Current diagnostic options for Parkinson's disease are very limited and primarily based on characteristic clinical symptoms. Thus, there are urgent needs for reliable biomarkers that enable us to diagnose the disease in the early stages, differentiate it from other atypical Parkinsonian syndromes, monitor its progression, increase knowledge of its pathogenesis, and improve the development of potent therapies. A promising group of potential biomarkers are endogenous tetrahydroisoquinoline metabolites, which are thought to contribute to the multifactorial etiology of Parkinson's disease. The aim of this critical review is to highlight trends and limitations of available traditional and modern analytical techniques for sample pretreatment (extraction and derivatization procedures) and quantitative determination of tetrahydroisoquinoline derivatives in various types of mammalian fluids and tissues (urine, plasma, cerebrospinal fluid, brain tissue, liver tissue). Particular attention is paid to the most sensitive and specific analytical techniques, involving immunochemistry and gas or liquid chromatography coupled with mass spectrometric, fluorescence, or electrochemical detection. The review also includes a discussion of other relevant agents proposed and tested in Parkinson's disease.
Collapse
Affiliation(s)
- Eva Hényková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Michal Kaleta
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Kateřina Klíčová
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Gabriel Gonzalez
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic.,Department of Experimental Biology, Faculty of Science, Palacky University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| |
Collapse
|
3
|
Sun Y, Pham AN, Hider RC, Zheng H, Waite TD. Effectiveness of the Iron Chelator CN128 in Mitigating the Formation of Dopamine Oxidation Products Associated with the Progression of Parkinson's Disease. ACS Chem Neurosci 2020; 11:3646-3657. [PMID: 33143428 DOI: 10.1021/acschemneuro.0c00557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The occurrence and progression of Parkinson's disease (PD) has been associated with the observation of elevated iron concentrations in the substantia nigra pars compacta (SNpc). While the reasons for the impact of elevated iron concentrations remain unclear, one hypothesis is that the presence of labile iron induces the oxidation of dopamine (DA) to toxic quinones such as aminochrome (DAC) and reactive oxygen species (ROS). As such, one of the proposed therapeutic strategies has been the use of iron chelators such as deferiprone (DFP) (which is recognized to have limitations related to its rapid degradation in the liver) to reduce the concentration of labile iron. In this study, a detailed investigation regarding the novel iron chelator, CN128, was conducted and a kinetic model developed to elucidate the fundamental behavior of this chelator. The results in this work reveal that CN128 is effective in alleviating the toxicity induced by iron and DA to neurons when DA is present at moderate concentrations. When all the iron is chelated by CN128, the formation of DAC and the oxidation of DA can be reduced to levels identical to that in the absence of iron. The production of H2O2 is lower than that generated via the autoxidation of the same amount of DA. However, when severe leakage of DA occurs, the application of CN128 is insufficient to alleviate the associated toxicity. This is attibuted to the less important role of iron in the production of toxic intermediates at high concentrations of DA. CN128 is superior to DFP with regard to the reduction in formation of DAC and elevation in DA concentration. In summary, the results of this study suggest that prodromal application of the chelator CN128 could be effective in preventing the onset and slowing the early stage development of PD symptoms associated with oxidants and toxic intermediates resulting from the iron-mediated oxidation of the neurotransmitter dopamine with CN128 likely to be superior to DFP in view of its greater in vivo availability and less problematic side effects.
Collapse
Affiliation(s)
- Yingying Sun
- Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - A. Ninh Pham
- Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert C. Hider
- Institute of Pharmaceutical Science, King’s College, London, WC2R 2LS, United Kingdom
| | - Haolin Zheng
- Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T. David Waite
- Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Kurnik-Łucka M, Latacz G, Martyniak A, Bugajski A, Kieć-Kononowicz K, Gil K. Salsolinol-neurotoxic or Neuroprotective? Neurotox Res 2019; 37:286-297. [PMID: 31732870 PMCID: PMC6989573 DOI: 10.1007/s12640-019-00118-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023]
Abstract
Salsolinol (6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline), widely available in many edibles, is considered to alter the function of dopaminergic neurons in the central nervous system and thus, multiple hypotheses on its either physiological and/or pathophysiological role have emerged. The aim of our work was to revisit its potentially neurotoxic and/or neuroprotective role through a series of both in vitro and in vivo experiments. Salsolinol in the concentration range 10-250 μM did not show any significant release of lactate dehydrogenase from necrotic SH-SY5Y cells and was able in the concentration of 50 and 100 μM to rescue SH-SY5Y cells from death induced by H2O2. Its neuroprotective effect against neurotoxin 6-hydroxydopamine was also determined. Salsolinol was found to decrease significantly the reactive oxygen species level in SH-SY5Y cells treated by 500 μM H2O2 and the caspase activity induced by 300 μM of H2O2 or 100 μM of 6-hydroxydopamine. Serum levels of TNFα and CRP of salsolinol-treated rats were not significantly different from control animals. Both TNFα and CRP served as indirect markers of neurotoxicity and/or neuroprotection. Although the neurotoxic properties of salsolinol have numerously been emphasized, its neuroprotective properties should not be neglected and need greater consideration.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Adrian Martyniak
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Andrzej Bugajski
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
5
|
Ito A, Jamal M, Ameno K, Tanaka N, Takakura A, Kawamoto T, Kitagawa K, Nakayama K, Matsumoto A, Miki T, Kinoshita H. Acetaldehyde administration induces salsolinol formation in vivo in the dorsal striatum of Aldh2-knockout and C57BL/6N mice. Neurosci Lett 2018; 685:50-54. [DOI: 10.1016/j.neulet.2018.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 01/31/2023]
|
6
|
Kurnik-Łucka M, Panula P, Bugajski A, Gil K. Salsolinol: an Unintelligible and Double-Faced Molecule-Lessons Learned from In Vivo and In Vitro Experiments. Neurotox Res 2017; 33:485-514. [PMID: 29063289 PMCID: PMC5766726 DOI: 10.1007/s12640-017-9818-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/19/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a tetrahydroisoquinoline derivative whose presence in humans was first detected in the urine of Parkinsonian patients on l-DOPA (l-dihydroxyphenylalanine) medication. Thus far, multiple hypotheses regarding its physiological/pathophysiological roles have been proposed, especially related to Parkinson’s disease or alcohol addiction. The aim of this review was to outline studies related to salsolinol, with special focus on in vivo and in vitro experimental models. To begin with, the chemical structure of salsolinol together with its biochemical implications and the role in neurotransmission are discussed. Numerous experimental studies are summarized in tables and the most relevant ones are stressed. Finally, the ability of salsolinol to cross the blood–brain barrier and its possible double-faced neurobiological potential are reviewed.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland.
| | - Pertti Panula
- Department of Anatomy and Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Andrzej Bugajski
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| |
Collapse
|
7
|
Rehmani N, Zafar A, Arif H, Hadi SM, Wani AA. Copper-mediated DNA damage by the neurotransmitter dopamine and L-DOPA: A pro-oxidant mechanism. Toxicol In Vitro 2017; 40:336-346. [PMID: 28137434 DOI: 10.1016/j.tiv.2017.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023]
Abstract
Oxidative DNA damage has been implicated in the pathogenesis of neurological disorders, cancer and ageing. Owing to the established link between labile copper concentrations and neurological diseases, it is critical to explore the interactions of neurotransmitters and drug supplements with copper. Herein, we investigate the pro-oxidant DNA damage induced by the interaction of L-DOPA and dopamine (DA) with copper. The DNA binding affinity order of the compounds has been determined by in silico molecular docking. Agarose gel electrophoresis reveals that L-DOPA and DA are able to induce strand scission in plasmid pcDNA3.1 (+/-) in a copper dependent reaction. These metabolites also cause cellular DNA breakage in human lymphocytes by mobilizing endogenous copper, as assessed by comet assay. Further, L-DOPA and DA-mediated DNA breaks were detected by the appearance of post-DNA damage sensitive marker γH2AX in cancer cell lines accumulating high copper. Immunofluorescence demonstrated the co-localization of downstream repair factor 53BP1 at the damaged induced γH2AX foci in cancer cells. The present study corroborates and provides a mechanism to the hypothesis that suggests metal-mediated oxidation of catecholamines contributes to the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nida Rehmani
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, UP 202002, India.
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, UP 202002, India.
| | - Hussain Arif
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, UP 202002, India.
| | - Sheikh Mumtaz Hadi
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, UP 202002, India.
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA; James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Mukai K, Nagai K, Egawa Y, Ouchi A, Nagaoka SI. Kinetic Study of Aroxyl-Radical-Scavenging and α-Tocopherol-Regeneration Rates of Five Catecholamines in Solution: Synergistic Effect of α-Tocopherol and Catecholamines. J Phys Chem B 2016; 120:7088-97. [PMID: 27346174 DOI: 10.1021/acs.jpcb.6b04285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Detailed kinetic studies have been performed for reactions of aroxyl (ArO(•)) and α-tocopheroxyl (α-Toc(•)) radicals with five catecholamines (CAs) (dopamine (DA), norepinephrine (NE), epinephrine (EN), and 5- and 6-hydroxydopamine (5- and 6-OHDA)) and two catechins (epicatechin (EC) and epigallocatechin gallate (EGCG)) to clarify the free-radical-scavenging activity of CAs. Second-order rate constants (ks and kr) for reactions of ArO(•) and α-Toc(•) radicals with the above antioxidants were measured in 2-propanol/water (5:1, v/v) solution at 25.0 °C, using single- and double-mixing stopped-flow spectrophotometries, respectively. Both the rate constants (ks and kr) increased in the order NE < EN < DA < EC < 5-OHDA < EGCG < 6-OHDA. The ks and kr values of 6-OHDA are large and comparable to the corresponding values of ubiquinol-10 and sodium ascorbate, which show high free-radical-scavenging activity. The ultraviolet-visible absorption of α-Toc(•) (λmax = 428 nm), which was produced by the reaction of α-tocopherol (α-TocH) with ArO(•), disappeared under the coexistence of CAs due to the α-TocH-regeneration reaction. The results suggest that the CAs may contribute to the protection from oxidative damage in nervous systems, by scavenging free radicals (such as lipid peroxyl radical) and regenerating α-TocH from the α-Toc(•) radical.
Collapse
Affiliation(s)
- Kazuo Mukai
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Kanae Nagai
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Yoshifumi Egawa
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Aya Ouchi
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Shin-Ichi Nagaoka
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| |
Collapse
|
9
|
Jodko-Piórecka K, Litwinienko G. Antioxidant activity of dopamine and L-DOPA in lipid micelles and their cooperation with an analogue of α-tocopherol. Free Radic Biol Med 2015; 83:1-11. [PMID: 25701434 DOI: 10.1016/j.freeradbiomed.2015.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/20/2015] [Accepted: 02/09/2015] [Indexed: 12/16/2022]
Abstract
Oxidative stress contributes to the progression of neurodegenerative diseases and considerable attention has been given to the development of new antioxidant-based therapies aimed at limiting neuronal cell damage. Structural analysis of catecholamine neurotransmitters indicates that these molecules can exhibit antioxidant activity due to the presence of a catechol moiety. This hypothesis is confirmed in cell culture experiments but the mechanism of antioxidant action of catecholamines is not described. Herein, we present quantitative kinetic studies on the effect of dopamine (DA) and L-3,4-dihydroxyphenylalanine (L-DOPA) on the peroxidation of methyl linoleate dispersed in Triton X-100 micelles as a model heterogeneous lipid system. Experiments were performed at extended pH range 4.0-10.0 in order to study how protonation/deprotonation of catecholamine affect its antioxidant activity. At pH 4.0-7.0, the activity of catecholamines is limited to retardation of lipid peroxidation (caused by the reaction of catecholamines with initiating radicals in the aqueous phase). The effective suppression of lipid peroxidation can be achieved by applying catecholamines together with an analogue of α-tocopherol (2,2,5,7,8-pentamethyl-6-hydroxychroman, PMHC). For example, a mixture of 1 μM PMHC with 10 μM L-DOPA causes 18-fold elongation of suppression time as compared to 1 μM PMHC used alone. We suggest that catecholamines together with α-tocopherol efficiently enhance the protection of biological systems from oxidative stress. At pH above 8.0 a prooxidative effect caused by reaction of semiquinone radical anions with molecular oxygen is observed. However, this toxic action can be completely suppressed by PMHC acting as an agent removing the potentially harmful semiquinone radicals from the reaction environment.
Collapse
|
10
|
Qiu F, McAlpine JB, Krause EC, Chen SN, Pauli GF. Pharmacognosy of Black Cohosh: The Phytochemical and Biological Profile of a Major Botanical Dietary Supplement. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 99 2014; 99:1-68. [DOI: 10.1007/978-3-319-04900-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
García CR, Angelé-Martínez C, Wilkes JA, Wang HC, Battin EE, Brumaghim JL. Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, l-DOPA, and curcumin: metal binding as a general antioxidant mechanism. Dalton Trans 2012; 41:6458-67. [DOI: 10.1039/c2dt30060e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Abstract
Parkinson's disease (PD) is a neurological movement disorder primarily resulting from damage to the nigrostriatal dopaminergic pathway. To elucidate the pathogenesis, mechanisms of cell death, and to evaluate therapeutic strategies for PD, numerous animal models have been developed. Understanding the strengths and limitations of these models can significantly impact the choice of model, experimental design, and data interpretation. The primary objectives of this article are twofold: First, to assist new investigators who are contemplating embarking on PD research to navigate through the available animal models. Emphasis will be placed on common neurotoxic murine models in which toxic molecules are used to lesion the nigrostriatal dopaminergic system. And second, to provide an overview of basic technical requirements for assessing the pathology, structure, and function of the nigrostriatal pathway.
Collapse
Affiliation(s)
- Kim Tieu
- Department of Neurology in the Center for Translational Neuromedicine, University of Rochester, Rochester, New York 14625, USA.
| |
Collapse
|
13
|
Hipólito L, Sánchez-Catalán MJ, Martí-Prats L, Granero L, Polache A. Revisiting the controversial role of salsolinol in the neurobiological effects of ethanol: old and new vistas. Neurosci Biobehav Rev 2011; 36:362-78. [PMID: 21802444 DOI: 10.1016/j.neubiorev.2011.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 10/18/2022]
Abstract
The possible involvement of salsolinol (Sal), an endogenous condensation product of ACD (the first metabolite of ethanol) and dopamine, in the neurochemical basis underlying ethanol action has been repeatedly suggested although it has not been unequivocally established, still being a controversial matter of debate. The main goal of this review is to evaluate the presumed contribution of Sal to ethanol effects summarizing the reported data since the discovery in the 1970s of Sal formation in vitro during ethanol metabolism until the more recent studies characterizing its behavioral and neurochemical effects. Towards this end, we first analyze the production and detection of Sal, in different brain areas, in basal conditions and after alcohol consumption, highlighting its presence in regions especially relevant in regulating ethanol-drinking behaviour and the importance of the newly developed methods to differentiate both enantiomers of Sal which could help to explain some previous negative findings. Afterwards, we review the behavioral and neurochemical studies. Finally, we present and discuss the previous and current enunciated mechanisms of action of Sal in the CNS.
Collapse
Affiliation(s)
- Lucía Hipólito
- Departament de Farmàcia i Tecnologia Farmacèutica, Universitat de València, Avda Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | | | | | | | | |
Collapse
|
14
|
Nagasawa Y, Ueoka R, Yamanokuchi R, Horiuchi N, Ikeda T, Rotinsulu H, Mangindaan REP, Ukai K, Kobayashi H, Namikoshi M, Hirota H, Yokosawa H, Tsukamoto S. Isolation of Salsolinol, a Tetrahydroisoquinoline Alkaloid, from the Marine Sponge Xestospongia cf. vansoesti as a Proteasome Inhibitor. Chem Pharm Bull (Tokyo) 2011; 59:287-90. [DOI: 10.1248/cpb.59.287] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yumiko Nagasawa
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Reiko Ueoka
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | | | - Tsuyoshi Ikeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Henki Rotinsulu
- Faculty of Agriculture, Universitas Pembangunan Indonesia
- Tohoku Pharmaceutical University
| | | | | | | | | | | | | | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University
- Graduate School of Science, Chiba University
| |
Collapse
|
15
|
Kuklinski NJ, Berglund EC, Engelbreksson J, Ewing AG. Determination of salsolinol, norsalsolinol, and twenty-one biogenic amines using micellar electrokinetic capillary chromatography-electrochemical detection. Electrophoresis 2010; 31:1886-93. [PMID: 20446293 PMCID: PMC2892185 DOI: 10.1002/elps.200900761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Micellar electrokinetic chromatography coupled to amperometric electrochemical detection was used to resolve and then quantify biogenic amines and metabolites within the fruit fly Drosophila melanogaster. A new separation scheme was devised to allow resolution of 24 compounds of interest. This was accomplished by precisely controlling the amount of base added to the background buffer, optimizing the resolution of the separation, and then calculating the pH. Here we focused on measurements of six of the analytes that are thought to be involved in the response to alcohol, dopamine, salsolinol, norsalsolinol, N-acetyloctopamine, octopamine, and N-acetyldopamine. These were identified and quantified within the fly head. We believe that the identification of salsolinol and norsalsolinol in the fly brain is novel.
Collapse
Affiliation(s)
- Nicholas J. Kuklinski
- Department of Chemistry, The Pennsylvania State University, 125 Chemistry Building, University Park, PA 16802, USA
- Department of Chemistry, University of Gothenburg, Kemivägen 10, SE-41296, Göteborg, Sweden
| | - E. Carina Berglund
- Department of Chemistry, University of Gothenburg, Kemivägen 10, SE-41296, Göteborg, Sweden
| | - Johan Engelbreksson
- Department of Chemistry, University of Gothenburg, Kemivägen 10, SE-41296, Göteborg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry, The Pennsylvania State University, 125 Chemistry Building, University Park, PA 16802, USA
- Department of Chemistry, University of Gothenburg, Kemivägen 10, SE-41296, Göteborg, Sweden
| |
Collapse
|
16
|
Lee J, Ramchandani VA, Hamazaki K, Engleman EA, McBride WJ, Li TK, Kim HY. A critical evaluation of influence of ethanol and diet on salsolinol enantiomers in humans and rats. Alcohol Clin Exp Res 2009; 34:242-50. [PMID: 19951298 DOI: 10.1111/j.1530-0277.2009.01087.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND (R/S)-Salsolinol (SAL), a condensation product of dopamine (DA) with acetaldehyde, has been speculated to have a role in the etiology of alcoholism. Earlier studies have shown the presence of SAL in biological fluids and postmortem brains from both alcoholics and nonalcoholics. However, the involvement of SAL in alcoholism has been controversial over several decades, since the reported SAL levels and their changes after ethanol exposure were not consistent, possibly due to inadequate analytical procedures and confounding factors such as diet and genetic predisposition. Using a newly developed mass spectrometric method to analyze SAL stereoisomers, we evaluated the contribution of ethanol, diet, and genetic background to SAL levels as well as its enantiomeric distribution. METHODS Simultaneous measurement of SAL enantiomers and DA were achieved by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). Plasma samples were collected from human subjects before and after banana (a food rich in SAL) intake, and during ethanol infusion. Rat plasma and brain samples were collected at various time points after the administration of SAL or banana by gavage. The brain parts including nucleus accumbens (NAC) and striatum (STR) were obtained from alcohol-non-preferring (NP) or alcohol-preferring (P) rats as well as P-rats which had a free access to ethanol (P-EtOH). RESULTS Plasma SAL levels were increased significantly after banana intake in humans. Consistently, administration of banana to rats also resulted in a drastic increase of plasma SAL levels, whereas brain SAL levels remained unaltered. Acute ethanol infusion did not change SAL levels or R/S ratio in plasma from healthy humans. The levels of both SAL isomers and DA were significantly lower in the NAC of P rats in comparison to NP rats. The SAL levels in NAC of P rats remained unchanged after chronic free-choice ethanol drinking. There were decreasing trends of SAL in STR and DA in both brain regions. No changes in enantiomeric ratio were observed after acute or chronic ethanol exposure. CONCLUSIONS SAL from dietary sources is the major contributor to plasma SAL levels. No significant changes of SAL plasma levels or enantiomeric distribution after acute or chronic ethanol exposure suggest that SAL may not be a biomarker for ethanol drinking. Significantly lower SAL and DA levels observed in NAC of P rats may be associated with innate alcohol preference.
Collapse
Affiliation(s)
- Jeongrim Lee
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
DeCuypere M, Lu Y, Miller DD, LeDoux MS. Regional distribution of tetrahydroisoquinoline derivatives in rodent, human, and Parkinson's disease brain. J Neurochem 2008; 107:1398-413. [PMID: 19013830 DOI: 10.1111/j.1471-4159.2008.05709.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several members of the tetrahydroisoquinoline (TIQ) family of monoamine alkaloids can be formed from dopamine or its oxidized metabolites and may be involved in the pathogenesis of monoaminergic cell death in Parkinson's disease (PD). Using enantiomeric-selective high-performance liquid chromatography with electrochemical detection and liquid chromatography with tandem mass spectroscopy, the regional concentrations of several TIQ derivatives, including salsolinols, were determined in mouse, rat, normal human, and PD brain. TIQ derivatives were detected in all regions subjected to analysis. In general, salsolinols were present at higher concentrations than TIQ and its benzyl and methyl derivatives, especially in human brain. Moreover, salsolinols were concentrated in areas with increased dopamine synthesis and turnover such as the ventral midbrain and striatum, respectively. A possible consequence of nigrostriatal dopaminergic cell death, significantly lower levels of (R)salsolinol, (S)salsolinol, N-methyl-(R)salsolinol and N-methyl-(S)salsolinol were found in the caudate nuclei of PD in comparison with normal human brain. Our data support the hypothesis of endogenous synthesis of salsolinols and provide evidence for their accumulation in catecholaminergic neurons.
Collapse
Affiliation(s)
- Michael DeCuypere
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
18
|
Kobayashi H, Fukuhara K, Tada-Oikawa S, Yada Y, Hiraku Y, Murata M, Oikawa S. The mechanisms of oxidative DNA damage and apoptosis induced by norsalsolinol, an endogenous tetrahydroisoquinoline derivative associated with Parkinson's disease. J Neurochem 2008; 108:397-407. [PMID: 19012744 DOI: 10.1111/j.1471-4159.2008.05774.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetrahydroisoquinoline (TIQ) derivatives are putative neurotoxins that may contribute to the degeneration of dopaminergic neurons in Parkinson's disease. One TIQ, norsalsolinol (NorSAL), is present in dopamine-rich areas of human brain, including the substantia nigra. Here, we demonstrate that NorSAL reduces cell viability and induces apoptosis via cytochrome c release and caspase 3 activation in SH-SY5Y human neuroblastoma cells. Cytochrome c release, caspase 3 activation, and apoptosis induction were all inhibited by the antioxidant N-acetylcysteine. Thus, reactive oxygen species (ROS) contribute to apoptosis induced by NorSAL. Treatment with NorSAL also increased levels of oxidative damage to DNA, a stimulus for apoptosis, in SH-SY5Y. To clarify the mechanism of intracellular DNA damage, we examined the DNA damage caused by NorSAL using (32)P-5'-end-labeled isolated DNA fragments. NorSAL induced DNA damage in the presence of Cu(II). Catalase and bathocuproine, a Cu(I) chelator, inhibited this DNA damage, suggesting that ROS such as the Cu(I)-hydroperoxo complex derived from the reaction of H(2)O(2) with Cu(I), promote DNA damage by NorSAL. In summary, NorSAL-generated ROS induced oxidative DNA damage, which led to caspase-dependent apoptosis in neuronal cells.
Collapse
Affiliation(s)
- Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Rojkovicova T, Mechref Y, Starkey JA, Wu G, Bell RL, McBride WJ, Novotny MV. Quantitative chiral analysis of salsolinol in different brain regions of rats genetically predisposed to alcoholism. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 863:206-14. [PMID: 18272438 DOI: 10.1016/j.jchromb.2008.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 12/07/2007] [Accepted: 01/02/2008] [Indexed: 11/29/2022]
Abstract
A method to determine the catecholamine content in putamen (CPU) and midbrain (MB) regions of the brain of alcohol-preferring rats (P) is presented with a focus on the low-level detection of S,R-salsolinol, a metabolite of dopamine and a putative alcoholism marker. The developed strategy allows both quantitative profiling of related catecholamines and the enantiomeric separation and quantification of the S- and R-salsolinol isomers and their ratios. The described LC/MS strategy simplifies the current methodology that typically employs GC-MS by eliminating the need for derivatization. The data also suggest an increase in the non-enzymatic formation of salsolinol as a consequence of ethanol exposure.
Collapse
|
20
|
Talhout R, Opperhuizen A, van Amsterdam JGC. Role of acetaldehyde in tobacco smoke addiction. Eur Neuropsychopharmacol 2007; 17:627-36. [PMID: 17382522 DOI: 10.1016/j.euroneuro.2007.02.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/26/2007] [Accepted: 02/13/2007] [Indexed: 11/21/2022]
Abstract
This review evaluates the presumed contribution of acetaldehyde to tobacco smoke addiction. In rodents, acetaldehyde induces reinforcing effects, and acts in concert with nicotine. Harman and salsolinol, condensation products of acetaldehyde and biogenic amines, may be responsible for the observed reinforcing effect of acetaldehyde. Harman and salsolinol inhibit monoamine oxidase (MAO), and some MAO-inhibitors are known to increase nicotine self-administration and maintain behavioural sensitization to nicotine. Harman is formed in cigarette smoke, and blood harman levels appear to be 2-10 times higher compared to non-smokers. Since harman readily passes the blood-brain barrier and has sufficient MAO-inhibiting potency, it may contribute to the lower MAO-activity observed in the brain of smokers. In contrast, the minor amounts of salsolinol that can be formed in vivo most likely do not contribute to tobacco addiction. Thus, acetaldehyde may increase the addictive potential of tobacco products via the formation of acetaldehyde-biogenic amine adducts in cigarette smoke and/or in vivo, but further research is necessary to substantiate this hypothesis.
Collapse
Affiliation(s)
- Reinskje Talhout
- Laboratory for Toxicology, Pathology and Genetics, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | |
Collapse
|
21
|
O'Dell DK, Rimmerman N, Pickens SR, Walker JM. Fatty acyl amides of endogenous tetrahydroisoquinolines are active at the recombinant human TRPV1 receptor. Bioorg Med Chem 2007; 15:6164-9. [PMID: 17616464 DOI: 10.1016/j.bmc.2007.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 06/05/2007] [Accepted: 06/13/2007] [Indexed: 11/17/2022]
Abstract
The SAR of capsazepine revealed that tetrahydroisoquinoline (TIQ) moiety is a core pharmacophore of TRPV1 activity. This implied that conjugates of endogenous TIQs with fatty acids would be active at TRPV1 receptors. Six such compounds were synthesized and tested for calcium mobilization at recombinant TRPV1 receptors overexpressed in HEK293 cells. Three compounds showed partial TRPV1 agonism with EC(50) values in the low micromolar range and maximal efficacies between 25% and 55% of capsaicin.
Collapse
Affiliation(s)
- David K O'Dell
- The Gill Center for Biomolecular Science, 1101 East Tenth Street, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
22
|
Wang W, Ameno K, Jamal M, Kumihashi M, Uekita I, Ameno S, Ijiri I. Effect of direct infusion of acetaldehyde on dopamine and dopamine-derived salsolinol in the striatum of free-moving rats using a reverse microdialysis technique. Arch Toxicol 2006; 81:121-6. [PMID: 16847670 DOI: 10.1007/s00204-006-0131-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 06/26/2006] [Indexed: 12/31/2022]
Abstract
The effects of acetaldehyde (ACD) on dopamine (DA) and DA-derived salsolinol (SAL) levels were investigated in the striatum of freely moving rats. Dialysate levels of DA and SAL were determined using in vivo reverse microdialysis coupled with high-performance liquid chromatography with an electrochemical detector. Perfusion with 1,000 microM ACD decreased DA levels significantly, as compared to baseline value, whereas 250 and 500 microM ACD perfusion did not result in any significant alteration of the DA levels in the striatal dialysates. SAL levels in the dialysates were determined first at 30 or 40 min after ACD perfusion, reached a peak at 150 min, followed by no alterations for 240 min with doses of 250, 500, and 1,000 microM ACD. Our in vivo study suggested that 1,000 microM ACD led to significant decreases in DA levels in the striatum with greater SAL formation, and the examined ACD concentrations induced a dose-dependent elevation in SAL levels in the striatum of freely moving rats.
Collapse
Affiliation(s)
- Weihuan Wang
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | |
Collapse
|