1
|
Srinivasan MP, Bhopale KK, Caracheo AA, Kaphalia L, Loganathan G, Balamurugan AN, Rastellini C, Kaphalia BS. Differential cytotoxicity, ER/oxidative stress, dysregulated AMPKα signaling, and mitochondrial stress by ethanol and its metabolites in human pancreatic acinar cells. Alcohol Clin Exp Res 2021; 45:961-978. [PMID: 33690904 DOI: 10.1111/acer.14595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disorder of the exocrine pancreatic gland. A previous study from this laboratory showed that ethanol (EtOH) causes cytotoxicity, dysregulates AMPKα and ER/oxidative stress signaling, and induces inflammatory responses in primary human pancreatic acinar cells (hPACs). Here we examined the differential cytotoxicity of EtOH and its oxidative (acetaldehyde) and nonoxidative (fatty acid ethyl esters; FAEEs) metabolites in hPACs was examined to understand the metabolic basis and mechanism of ACP. METHODS We evaluated concentration-dependent cytotoxicity, AMPKα inactivation, ER/oxidative stress, and inflammatory responses in hPACs by incubating them for 6 h with EtOH, acetaldehyde, or FAEEs at clinically relevant concentrations reported in alcoholic subjects using conventional methods. Cellular bioenergetics (mitochondrial stress and a real-time ATP production rate) were determined using Seahorse XFp Extracellular Flux Analyzer in AR42J cells treated with acetaldehyde or FAEEs. RESULTS We observed concentration-dependent increases in LDH release, inactivation of AMPKα along with upregulation of ACC1 and FAS (key lipogenic proteins), downregulation of p-LKB1 (an oxidative stress-sensitive upstream kinase regulating AMPKα) and CPT1A (involved in β-oxidation of fatty acids) in hPACs treated with EtOH, acetaldehyde, or FAEEs. Concentration-dependent increases in oxidative stress and ER stress as measured by GRP78, unspliced XBP1, p-eIF2α, and CHOP along with activation of p-JNK1/2, p-ERK1/2, and p-P38MAPK were present in cells treated with EtOH, acetaldehyde, or FAEEs, respectively. Furthermore, a significant decrease was observed in the total ATP production rate with subsequent mitochondrial stress in AR42J cells treated with acetaldehyde and FAEEs. CONCLUSIONS EtOH and its metabolites, acetaldehyde and FAEEs, caused cytotoxicity, ER/oxidative and mitochondrial stress, and dysregulated AMPKα signaling, suggesting a key role of EtOH metabolism in the etiopathogenesis of ACP. Because oxidative EtOH metabolism is negligible in the exocrine pancreas, the pathogenesis of ACP could be attributable to the formation of FAEEs and related pancreatic acinar cell injury.
Collapse
Affiliation(s)
- Mukund P Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Kamlesh K Bhopale
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Anna A Caracheo
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Lata Kaphalia
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Appakalai N Balamurugan
- Department of Surgery, University of Louisville, Louisville, KY, USA.,Islet Biology Laboratory, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Cristiana Rastellini
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Huang SS, Chen CL, Huang FW, Johnson FE, Huang JS. Ethanol Enhances TGF-β Activity by Recruiting TGF-β Receptors From Intracellular Vesicles/Lipid Rafts/Caveolae to Non-Lipid Raft Microdomains. J Cell Biochem 2015; 117:860-71. [PMID: 26419316 DOI: 10.1002/jcb.25389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022]
Abstract
Regular consumption of moderate amounts of ethanol has important health benefits on atherosclerotic cardiovascular disease (ASCVD). Overindulgence can cause many diseases, particularly alcoholic liver disease (ALD). The mechanisms by which ethanol causes both beneficial and harmful effects on human health are poorly understood. Here we demonstrate that ethanol enhances TGF-β-stimulated luciferase activity with a maximum of 0.5-1% (v/v) in Mv1Lu cells stably expressing a luciferase reporter gene containing Smad2-dependent elements. In Mv1Lu cells, 0.5% ethanol increases the level of P-Smad2, a canonical TGF-β signaling sensor, by ∼ 2-3-fold. Ethanol (0.5%) increases cell-surface expression of the type II TGF-β receptor (TβR-II) by ∼ 2-3-fold from its intracellular pool, as determined by I(125) -TGF-β-cross-linking/Western blot analysis. Sucrose density gradient ultracentrifugation and indirect immunofluorescence staining analyses reveal that ethanol (0.5% and 1%) also displaces cell-surface TβR-I and TβR-II from lipid rafts/caveolae and facilitates translocation of these receptors to non-lipid raft microdomains where canonical signaling occurs. These results suggest that ethanol enhances canonical TGF-β signaling by increasing non-lipid raft microdomain localization of the TGF-β receptors. Since TGF-β plays a protective role in ASCVD but can also cause ALD, the TGF-β enhancer activity of ethanol at low and high doses appears to be responsible for both beneficial and harmful effects. Ethanol also disrupts the location of lipid raft/caveolae of other membrane proteins (e.g., neurotransmitter, growth factor/cytokine, and G protein-coupled receptors) which utilize lipid rafts/caveolae as signaling platforms. Displacement of these membrane proteins induced by ethanol may result in a variety of pathologies in nerve, heart and other tissues.
Collapse
Affiliation(s)
| | - Chun-Lin Chen
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, 804, Taiwan
| | - Franklin W Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115.,Harvard Medical School, Boston, Massachusetts, 02115
| | - Frank E Johnson
- Department of Surgery, Saint Louis University School of Medicine, St. Louis, Missouri, 63104
| | - Jung San Huang
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, 63104
| |
Collapse
|
3
|
Ippolito JA, Curtis BJ, Choudhry MA, Kovacs EJ. Alcohol and immunology: Summary of the 2012 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2013; 47:589-93. [PMID: 24169087 DOI: 10.1016/j.alcohol.2013.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 02/08/2023]
Abstract
On October 27, 2012, the 17th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the Grand Wailea Hotel in Maui, Hawaii as a satellite meeting to the 2012 Society of Leukocyte Biology conference. This year's meeting focused on the influence of alcohol on signal transduction pathways in various disease and injury models. Three plenary sessions were held where invited speakers shared their research on alcohol-mediated alterations of cell signaling components, immune cell subsets, and inflammation. These studies suggested alcohol has a negative effect on cell signaling machinery and immune cell homeostasis, resulting in disease, disease progression, and increased mortality. Researchers also identified tissue-specific alcohol-linked elevations in markers of inflammation, including cold-shock proteins and microRNAs. Additionally, one study revealed the effects of alcohol on immune cell subsets in a model of allergic asthma.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The data indicating that alcohol is an important factor increasing the risk to develop gastrointestinal cancer are consolidating. The purpose of this review is to summarize current evidence. RECENT FINDINGS Acetaldehyde is the first metabolite of ethanol metabolism and has direct carcinogenic and mutagenic effects by modifying DNA via generation of DNA adducts. Oxidative stress has a prominent role in triggering chronic inflammation and carcinogenesis through formation of reactive oxygen species. Recently published large prospective cohort studies with sufficient statistical power and meta-analyses could refine the knowledge regarding the impact of alcohol on gastrointestinal cancer. Functional genetic variants of alcohol-metabolizing enzymes proved to be associated with increased risk for esophageal and gastric cancer.The highest risk increase for malignancy was observed in the upper aerodigestive tract (oral cavity, pharynx, larynx) and esophagus (squamous cell carcinoma), weaker correlations were established regarding gastric, pancreatic, and colorectal neoplasias. SUMMARY Alcohol overconsumption is a serious avoidable risk factor for the development of gastrointestinal tract cancer, both alone but even more in combination with other risk factors such as tobacco and obesity.
Collapse
Affiliation(s)
- Stephan L Haas
- Gastrocentrum, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
5
|
D'Souza El-Guindy NB, Kovacs EJ, De Witte P, Spies C, Littleton JM, de Villiers WJS, Lott AJ, Plackett TP, Lanzke N, Meadows GG. Laboratory models available to study alcohol-induced organ damage and immune variations: choosing the appropriate model. Alcohol Clin Exp Res 2010; 34:1489-511. [PMID: 20586763 PMCID: PMC2929290 DOI: 10.1111/j.1530-0277.2010.01234.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The morbidity and mortality resulting from alcohol-related diseases globally impose a substantive cost to society. To minimize the financial burden on society and improve the quality of life for individuals suffering from the ill effects of alcohol abuse, substantial research in the alcohol field is focused on understanding the mechanisms by which alcohol-related diseases develop and progress. Since ethical concerns and inherent difficulties limit the amount of alcohol abuse research that can be performed in humans, most studies are performed in laboratory animals. This article summarizes the various laboratory models of alcohol abuse that are currently available and are used to study the mechanisms by which alcohol abuse induces organ damage and immune defects. The strengths and weaknesses of each of the models are discussed. Integrated into the review are the presentations that were made in the symposium "Methods of Ethanol Application in Alcohol Model-How Long is Long Enough" at the joint 2008 Research Society on Alcoholism (RSA) and International Society for Biomedical Research on Alcoholism (ISBRA) meeting, Washington, DC, emphasizing the importance not only of selecting the most appropriate laboratory alcohol model to address the specific goals of a project but also of ensuring that the findings can be extrapolated to alcohol-induced diseases in humans.
Collapse
Affiliation(s)
- Nympha B D'Souza El-Guindy
- Department of Internal Medicine, Division of Digestive Diseases, University of Kentucky and Veterans Affairs Medical Center, Lexington, Kentucky, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yasuda M, Ito T, Oono T, Kawabe K, Kaku T, Igarashi H, Nakamura T, Takayanagi R. Fractalkine and TGF-β1 levels reflect the severity of chronic pancreatitis in humans. World J Gastroenterol 2008; 14:6488-95. [PMID: 19030200 PMCID: PMC2773334 DOI: 10.3748/wjg.14.6488] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To clarify whether serum chemokine and cytokine levels can become useful biological and functional markers to assess the severity of chronic pancreatitis (CP). This study aimed at clarifying whether serum chemokine and cytokine levels can become useful biological and functional markers to assess the severity of CP.
METHODS: Serum monocyte chemoattractant protein-1 (MCP-1), transforming growth factor beta-1 (TGF-β1), and soluble type fractalkine (s-fractalkine) concentrations were examined in patients with CP (n = 109) and healthy controls (n = 116). Severity of disease was classified in patients with CP by a staging system. Relationships between stage-specific various clinical factors and serum MCP-1, TGF-β1, and s-fractalkine levels were investigated. Furthermore, 57 patients with non-alcoholic CP were similarly evaluated in order to exclude influence of alcohol intake.
RESULTS: Patients with CP showed significant higher levels of serum TGF-β1 and s-fractalkine, but not MCP-1, compared to the controls. Serum TGF-β1 in the severe stage and s-fractalkine in the mild and the severe stage of CP significantly increased compared to those of controls. However, it was observed that both TGF-β1 and s-fractalkine levels were affected by alcohol intake. In patients with non-alcoholic CP, serum TGF-β1 showed significant increase in the moderate stage of CP, and serum s-fractalkine revealed significant increase in the early stage of CP.
CONCLUSION: It is suggested that the measurement of serum F-fractalkine is useful to diagnose early-stage CP. Moreover, the combined determination of both, s-fractalkine and TGF-β1, in human sera may be helpful in evaluating the severity status of CP.
Collapse
|