1
|
Ariansen I, Degerud E, Gjesdal K, Tell GS, Næss Ø. Examining the lower range of the association between alcohol intake and risk of incident hospitalization with atrial fibrillation. IJC HEART & VASCULATURE 2020; 31:100679. [PMID: 34095445 PMCID: PMC8164130 DOI: 10.1016/j.ijcha.2020.100679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 01/19/2023]
Abstract
Background Evidence is sparse on the association between alcohol intakes in the lower range and risk of atrial fibrillation (AF). We aimed to investigate self-reported low and moderate alcohol intakes and subsequent risk of incident AF among current drinkers. Methods Norwegian population-based health examination surveys assessing self-reported daily alcohol intake (mean grams per day) were linked to health and population registers. Hazard ratios (HR) (95% confidence interval) for time to incident (first) hospitalization with AF by alcohol intake level were assessed by Cox regression, with adjustment for educational level and cardiovascular risk factors except blood pressure. Results The study population included 234,392 participants (49% men). Incident hospitalization with AF was identified in 5043 (2.2%) persons during a mean follow-up of 9 years. Compared to a very low alcohol intake of <1 unit weekly, a moderate consumption in the range of 1 to <2 units daily increased the risk of incident AF by 18% (HR 1.18 [1.06-1.32]). The average risk of incident AF increased by 9% per daily alcohol unit of 12 g (HR 1.09 [1.03, 1.14]). In sex-stratified analyses significant associations were found in men only. Conclusions We found that less than two alcohol units/day significantly increased the risk of incident AF, however, in men only. Reduction of even a moderate alcohol intake may thus reduce the risk of AF at the population level.
Collapse
Affiliation(s)
- Inger Ariansen
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Eirik Degerud
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Occupational Health Surveillance, National Institute of Occupational Health, Oslo, Norway
| | - Knut Gjesdal
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway.,Institute of Clinical Medicine, Oslo University, Oslo, Norway
| | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Norway.,Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Øyvind Næss
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway.,Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
2
|
Pacheco-Liñán PJ, Bravo I, Nueda ML, Albaladejo J, Garzón-Ruiz A. Functionalized CdSe/ZnS Quantum Dots for Intracellular pH Measurements by Fluorescence Lifetime Imaging Microscopy. ACS Sens 2020; 5:2106-2117. [PMID: 32551511 DOI: 10.1021/acssensors.0c00719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
pH is an important biomarker for many human diseases and great efforts are being made to develop new pH probes for bioimaging and biomedical applications. Here, the use of three different CdSe/ZnS QDs, functionalized with d-penicillamine and small peptides, as pH probes for fluorescence lifetime imaging microscopy (FLIM) is investigated. The fluorescence pH sensitivity of the nanoparticles is analyzed in different experimental media: aqueous solution, synthetic intracellular medium, and mesenchymal C3H10T1/2 and tumoral SK-MEL-2 cell lines. Different experiments along with theoretical calculations are conducted to unravel the mechanisms causing pH sensitivity of the nanoparticles and the effect of the length and composition of the peripheral branches on their photophysical properties. Absolute intracellular pH values measured in live cells with FLIM using a fluorescent probe based on a QD are reported here for the first time (intracellular pH values of 7.0 and 7.1 for C3H10T1/2 and SK-MEL-2 cells, respectively). These fluorescent nanoprobes can also be used to distinguish between different types of cells in cocultures on the basis of their different fluorescence lifetimes in dissimilar intracellular environments.
Collapse
Affiliation(s)
- Pedro J. Pacheco-Liñán
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
- Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), C/ Almansa, 14, 02008 Albacete, Spain
| | - María L. Nueda
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
- Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), C/ Almansa, 14, 02008 Albacete, Spain
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| |
Collapse
|
3
|
Chao SC, Wu GJ, Huang SF, Dai NT, Huang HK, Chou MF, Tsai YT, Lee SP, Loh SH. Functional and molecular mechanism of intracellular pH regulation in human inducible pluripotent stem cells. World J Stem Cells 2018; 10:196-211. [PMID: 30613313 PMCID: PMC6306555 DOI: 10.4252/wjsc.v10.i12.196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a functional and molecular model of the intracellular pH (pHi) regulatory mechanism in human induced pluripotent stem cells (hiPSCs).
METHODS hiPSCs (HPS0077) were kindly provided by Dr. Dai from the Tri-Service General Hospital (IRB No. B-106-09). Changes in the pHi were detected either by microspectrofluorimetry or by a multimode reader with a pH-sensitive fluorescent probe, BCECF, and the fluorescent ratio was calibrated by the high K+/nigericin method. NH4Cl and Na-acetate prepulse techniques were used to induce rapid intracellular acidosis and alkalization, respectively. The buffering power (β) was calculated from the ΔpHi induced by perfusing different concentrations of (NH4)2SO4. Western blot techniques and immunocytochemistry staining were used to detect the protein expression of pHi regulators and pluripotency markers.
RESULTS In this study, our results indicated that (1) the steady-state pHi value was found to be 7.5 ± 0.01 (n = 20) and 7.68 ± 0.01 (n =20) in HEPES and 5% CO2/HCO3--buffered systems, respectively, which were much greater than that in normal adult cells (7.2); (2) in a CO2/HCO3--buffered system, the values of total intracellular buffering power (β) can be described by the following equation: βtot = 107.79 (pHi)2 - 1522.2 (pHi) + 5396.9 (correlation coefficient R2 = 0.85), in the estimated pHi range of 7.1-8.0; (3) the Na+/H+ exchanger (NHE) and the Na+/HCO3- cotransporter (NBC) were found to be functionally activated for acid extrusion for pHi values less than 7.5 and 7.68, respectively; (4) V-ATPase and some other unknown Na+-independent acid extruder(s) could only be functionally detected for pHi values less than 7.1; (5) the Cl-/ OH- exchanger (CHE) and the Cl-/HCO3- anion exchanger (AE) were found to be responsible for the weakening of intracellular proton loading; (6) besides the CHE and the AE, a Cl--independent acid loading mechanism was functionally identified; and (7) in hiPSCs, a strong positive correlation was observed between the loss of pluripotency and the weakening of the intracellular acid extrusion mechanism, which included a decrease in the steady-state pHi value and diminished the functional activity and protein expression of the NHE and the NBC.
CONCLUSION For the first time, we established a functional and molecular model of a pHi regulatory mechanism and demonstrated its strong positive correlation with hiPSC pluripotency.
Collapse
Affiliation(s)
- Shih-Chi Chao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Gwo-Jang Wu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shu-Fu Huang
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsu-Kai Huang
- Division of Chest Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Mei-Fang Chou
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Ting Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shiao-Pieng Lee
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan
| | - Shih-Hurng Loh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
4
|
Hung CL, Lai YJ, Chi PC, Chen LC, Tseng YM, Kuo JY, Lin CI, Chen YC, Lin SJ, Yeh HI. Dose-related ethanol intake, Cx43 and Nav1.5 remodeling: Exploring insights of altered ventricular conduction and QRS fragmentation in excessive alcohol users. J Mol Cell Cardiol 2017; 114:150-160. [PMID: 29097069 DOI: 10.1016/j.yjmcc.2017.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/05/2017] [Accepted: 10/27/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Chronic, excessive ethanol intake has been linked with various electrical instabilities, conduction disturbances, and even sudden cardiac death, but the underlying cause for the latter is insufficiently delineated. METHODS We studied surface electrocardiography (ECG) in a community-dwelling cohort with moderate-to-heavy daily alcohol intake (grouped as >90g/day, ≤90g/day, and nonintake). RESULTS Compared with nonintake, heavier alcohol users showed markedly widened QRS duration and higher prevalence of QRS fragmentation (64.3%, 50.9%, and 33.7%, respectively, χ2 12.0, both p<0.05) on surface ECG across the 3 groups. These findings were successfully recapitulated in 14-week-old C57BL/6 mice that were chronically given a 4% or 6% alcohol diet and showed dose-related slower action potential upstroke, reduced resting membrane potential, and disorganized or decreased intraventricular conduction (all p<0.05). Immunodetection further revealed increased ventricular collagen I depots with Cx43 downregulation and remodeling, together with clustered and diminished membrane Nav1.5 distribution. Administration of Cx43 blocker (heptanol) and Nav1.5 inhibitor (tetrodotoxin) in the mice each attenuated the suppression ventricular conduction compared with nonintake mice (p<0.05). CONCLUSIONS Chronic excessive alcohol ingestion is associated with dose-related phenotypic intraventricular conduction disturbances and QRS fragmentation that can be recapitulated in mice. The mechanisms may involve suppressed gap junction and sodium channel functions, together with enhanced cardiac fibrosis that may contribute to arrhythmogenesis.
Collapse
Affiliation(s)
- Chung-Lieh Hung
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Jun Lai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Ching Chi
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Liang-Chia Chen
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ya-Ming Tseng
- Division of Cardiology, Department of Internal Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jen-Yuan Kuo
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-I Lin
- Institute of Physiology, National Defense Medical Center, Taipei, Taiwan; Department of Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Chang Chen
- Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine, and, Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hung-I Yeh
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
5
|
Bébarová M, Horáková Z, Kula R. Addictive drugs, arrhythmias, and cardiac inward rectifiers. Europace 2017; 19:346-355. [PMID: 27302393 DOI: 10.1093/europace/euw071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/20/2016] [Indexed: 12/30/2022] Open
Abstract
In many addictive drugs including alcohol and nicotine, proarrhythmic effects were reported. This review provides an overview of the current knowledge in this field (with a focus on the inward rectifier potassium currents) to promote the lacking data and appeal for their completion, thus, to improve understanding of the proarrhythmic potential of addictive drugs.
Collapse
|
6
|
Loh SH, Lee CY, Chen GS, Wu CH, Tsao CJ, Shih SJ, Chou CC, Tsai CS, Tsai YT. The Effect and Underlying Mechanism of Ethanol on Intracellular H(+) -Equivalent Membrane Transporters in Human Aorta Smooth Muscle Cells. Alcohol Clin Exp Res 2015; 39:2302-12. [PMID: 26577834 DOI: 10.1111/acer.12892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/31/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND The presence of intracellular pH (pHi ) regulators, including Na(+) -H(+) exchanger (NHE), Na(+) -HCO3- co-transporter (NBC), Cl(-) /OH(-) exchanger (CHE), and Cl(-) /HCO3- exchanger (AE), have been confirmed in many mammalian cells. Alcohol consumption is associated with increased risk of cardiovascular disorder. The aims of the study were to identify the possible transmembrane pHi regulators and to explore the effects of ethanol (EtOH) (10 to 300 mM) on the resting pHi and pHi regulators in human aorta smooth muscle cells (HASMCs). METHODS HASMCs were obtained from patients undergoing heart transplant. The pHi was measured by microspectrofluorimetry with the pH-sensitive dye, BCECF-AM. RESULTS The following results are obtained. (i) In cultured HASMCs, the resting pHi was 7.19 ± 0.04 and 7.13 ± 0.02 for HEPES- and CO2 /HCO3--buffered solution, respectively. (ii) Two different Na(+) -dependent acid-equivalent extruders, including NHE and Na(+) -coupled HCO3- transporter, functionally coexisted. (iii) Two different Cl(-) -dependent acid loaders (CHE and AE) were functionally identified. (iv) EtOH induced a biphasic, concentration-dependent change in resting pHi (+0.25 pH unit at 100 mM but only +0.05 pH unit at 300 mM) in bicarbonate-buffered solution, while caused a concentration-dependent decrease in resting pHi (-0.06 pH unit at 300 mM) in HEPES-buffered solution. (v) The effect of EtOH on NHE activity was also biphasic: increase of 40% at lower concentration of 10 mM, followed by decrease of 30% at higher concentration of 300 mM. (vi) The increase in Na(+) -coupled HCO3- transporter activity by EtOH was concentration dependent. (vii) The effect of EtOH on CHE and AE activities was both biphasic: increase of ~25% at 30 mM, followed by decrease of 10 to 25% at 100 mM, and finally increase of 15 to 20% at 300 mM. CONCLUSIONS This study demonstrated that 2 acid extruders and 2 acid loaders coexisted functionally in HASMCs and that EtOH induced a biphasic, concentration-dependent change in resting pHi by altering the activity of the 2 acid extruders, NHE and Na(+) -coupled HCO3- transporter, and the 2 acid loaders, CHE and AE.
Collapse
Affiliation(s)
- Shih-Hurng Loh
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Yi Lee
- Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Gunng-Shinng Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Division of Orthodontics & Dentofacial Orthopedics and Pedodontics, Tri-Service General Hospital, Taipei, Taiwan.,School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Hsia Wu
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Chan-Jun Tsao
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Shou-Jou Shih
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Chung Chou
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Sung Tsai
- Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ting Tsai
- Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
7
|
Acute effects of ethanol on action potential and intracellular Ca(2+) transient in cardiac ventricular cells: a simulation study. Med Biol Eng Comput 2015; 54:753-62. [PMID: 26280513 DOI: 10.1007/s11517-015-1366-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/03/2015] [Indexed: 01/08/2023]
Abstract
Alcohol consumption may result in electrocardiographic changes and arrhythmias, at least partly due to effects of ethanol on cardiac ionic currents. Contractility and intracellular Ca(2+) dynamics seem to be altered as well. In this study, we integrated the available (mostly animal) experimental data into previously published models of the rat and human ventricular myocytes to assess the share of ionic current components in ethanol-induced changes in AP configuration and cytosolic Ca(2+) transient in ventricular cardiomyocytes. The rat model reproduced well the experimentally observed changes in AP duration (APD) under ethanol (slight prolongation at 0.8 mM and shortening at ≥8 mM). These changes were almost exclusively caused by the ethanol-induced alterations of I K1. The cytosolic Ca(2+) transient decreased gradually with the increasing ethanol concentration as a result of the ethanol-induced inhibition of I Ca. In the human model, ethanol produced a dose-dependent APD lengthening, dominated by ethanol effect on I Kr, the key repolarising current in human ventricles. This effect might contribute to the clinically observed proarrhythmic effects of ethanol in predisposed individuals.
Collapse
|
8
|
|
9
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
10
|
Rosenberg MA, Mukamal KJ. The Estimated Risk of Atrial Fibrillation Related to Alcohol Consumption. J Atr Fibrillation 2012; 5:424. [PMID: 28496744 DOI: 10.4022/jafib.424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/23/2011] [Accepted: 12/25/2011] [Indexed: 01/19/2023]
Abstract
The risk of acute heavy alcohol intake on the development of atrial fibrillation (AF), aka ?holiday heart syndrome?, has been well-described. However, whether chronic alcohol intake is also associated with increased risk of AF, or might even be protective as has been observed with other cardiac conditions, is more uncertain. A number of studies, from basic science to large cohort studies have been performed to analyze the association between alcohol and AF. Basic-level studies have found that alcohol causes changes in tissue electrophysiology, ion channels, and circulating hormones, which might promote development and maintenance of AF. Clinical studies have generally shown groups with the highest regular intake of alcohol to be at increased risk, with no association with more moderate use. However, these studies have not always accounted for other AF risk factors, been inconsistent in the assessment and validation of the quantity of alcohol consumed across populations, and been unable to completely separate drinking patterns from overall health of participants. As a result, solid conclusions about a threshold level for ?safe? chronic alcohol intake cannot be made with regard to AF risk, but it appears to be safe within currently recommended limits of 1 drink daily for women and 2 for men. In this review, we discuss these findings, limitations, and conclusions.
Collapse
Affiliation(s)
- Michael A Rosenberg
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kenneth J Mukamal
- Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
11
|
Functional Characterization of Transmembrane Intracellular pH Regulators and Mechanism of Alcohol-induced Intracellular Acidosis in Human Umbilical Cord Blood Stem Cell–Like Cells. J Cardiovasc Pharmacol 2011; 58:589-601. [DOI: 10.1097/fjc.0b013e3182300228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Coffee, alcohol, smoking, physical activity and QT interval duration: results from the Third National Health and Nutrition Examination Survey. PLoS One 2011; 6:e17584. [PMID: 21386989 PMCID: PMC3046251 DOI: 10.1371/journal.pone.0017584] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/07/2011] [Indexed: 12/31/2022] Open
Abstract
Background Abnormalities in the electrocardiographic QT interval duration have been associated with an increased risk of ventricular arrhythmias and sudden cardiac death. However, there is substantial uncertainty about the effect of modifiable factors such as coffee intake, cigarette smoking, alcohol consumption, and physical activity on QT interval duration. Methods We studied 7795 men and women from the Third National Health and Nutrition Survey (NHANES III, 1988–1994). Baseline QT interval was measured from the standard 12-lead electrocardiogram. Coffee and tea intake, alcohol consumption, leisure-time physical activities over the past month, and lifetime smoking habits were determined using validated questionnaires during the home interview. Results In the fully adjusted model, the average differences in QT interval comparing participants drinking ≥6 cups/day to those who did not drink any were −1.2 ms (95% CI −4.4 to 2.0) for coffee, and −2.0 ms (−11.2 to 7.3) for tea, respectively. The average differences in QT interval duration comparing current to never smokers was 1.2 ms (−0.6 to 2.9) while the average difference in QT interval duration comparing participants drinking ≥7 drinks/week to non-drinkers was 1.8 ms (−0.5 to 4.0). The age, race/ethnicity, and RR-interval adjusted differences in average QT interval duration comparing men with binge drinking episodes to non-drinkers or drinkers without binge drinking were 2.8 ms (0.4 to 5.3) and 4.0 ms (1.6 to 6.4), respectively. The corresponding differences in women were 1.1 (−2.9 to 5.2) and 1.7 ms (−2.3 to 5.7). Finally, the average differences in QT interval comparing the highest vs. the lowest categories of total physical activity was −0.8 ms (−3.0 to 1.4). Conclusion Binge drinking was associated with longer QT interval in men but not in women. QT interval duration was not associated with other modifiable factors including coffee and tea intake, smoking, and physical activity.
Collapse
|
13
|
Bébarová M, Matejovič P, Pásek M, Ohlídalová D, Jansová D, Simurdová M, Simurda J. Effect of ethanol on action potential and ionic membrane currents in rat ventricular myocytes. Acta Physiol (Oxf) 2010; 200:301-14. [PMID: 20618172 DOI: 10.1111/j.1748-1716.2010.02162.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Even though alcohol intoxication is often linked to arrhythmias, data describing ethanol effect on cardiac ionic channels are rare. In addition, ethanol is used as a solvent of hydrophobic compounds in experimental studies. We investigated changes of the action potential (AP) configuration and main ionic membrane currents in rat cardiomyocytes under 20-1500 m(M) ethanol. METHODS Experiments were performed on enzymatically isolated rat right ventricular myocytes using the whole cell patch-clamp technique at room temperature. RESULTS Ethanol reversibly decelerated the upstroke velocity and decreased AP amplitude and duration at 0.2 and 3 Hz. The fast sodium current I(Na) , l-type calcium current I(Ca) and transient outward potassium current I(to) were reversibly inhibited in a concentration-dependent manner (50% inhibition at 446 ± 12, 553 ± 49 and 1954 ± 234 m(M), respectively, with corresponding Hill coefficients 3.1 ± 0.3, 1.1 ± 0.2 and 0.9 ± 0.1). Suppression of I(Na) and I(Ca) magnitude was slightly voltage dependent. The effect on I(Ca) and I(to) was manifested mainly as an acceleration of their apparent inactivations with a decreased slow and fast time constant respectively. As a consequence of marked differences in n(H) , sensitivity of the currents to ethanol at 10% inhibition decreases in the following order: I(Ca) (75 mm, 3.5‰), I(to) (170 m(M), 7.8‰) and I(Na) (220 m(M), 10.1‰). CONCLUSION Our results suggest a slight inhibition of all the currents at ethanol concentrations relevant to deep alcohol intoxication. The concentration dependence measured over a wide range may serve as a guideline when using ethanol as a solvent.
Collapse
Affiliation(s)
- M Bébarová
- Department of Physiology, Masaryk University, Brno - Bohunice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
14
|
Cameli M, Ballo P, Garzia A, Lisi M, Palmerini E, Spinelli T, Bocelli A, Mondillo S. Acute Effects of Low Doses of Red Wine on Cardiac Conduction and Repolarization in Young Healthy Subjects. Alcohol Clin Exp Res 2009; 33:2141-6. [DOI: 10.1111/j.1530-0277.2009.01054.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Parkington HC, Coleman HA, Wintour EM, Tare M. Prenatal alcohol exposure: implications for cardiovascular function in the fetus and beyond. Clin Exp Pharmacol Physiol 2009; 37:e91-8. [PMID: 19930419 DOI: 10.1111/j.1440-1681.2009.05342.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The effects of heavy maternal alcohol consumption during pregnancy on cognitive and behavioural performance and craniofacial malformations in the offspring have been studied extensively. In contrast, the impact of maternal alcohol intake on the cardiovascular system of the offspring and the effects of more modest consumption have received very scant consideration. 2. Adverse conditions in the pre- and neonatal periods can have a profound legacy on offspring health, including the risk of cardiovascular disease. Prenatal alcohol exposure can modulate vascular reactivity, including endothelial and smooth muscle function. 3. Other effects of prenatal alcohol exposure are emerging, including impairment of nephrogenesis and kidney function and increased arterial stiffness. The impact of even modest prenatal alcohol exposure on cardiovascular health in the offspring remains to be determined. 4. It is envisaged that the culmination of reduced renal and vascular capacity will render the offspring more vulnerable to cardiovascular disease with ageing and exposure to additional insults and lifestyle factors.
Collapse
Affiliation(s)
- Helena C Parkington
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|