1
|
TMEM33 regulates intracellular calcium homeostasis in renal tubular epithelial cells. Nat Commun 2019; 10:2024. [PMID: 31048699 PMCID: PMC6497644 DOI: 10.1038/s41467-019-10045-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in the polycystins cause autosomal dominant polycystic kidney disease (ADPKD). Here we show that transmembrane protein 33 (TMEM33) interacts with the ion channel polycystin-2 (PC2) at the endoplasmic reticulum (ER) membrane, enhancing its opening over the whole physiological calcium range in ER liposomes fused to planar bilayers. Consequently, TMEM33 reduces intracellular calcium content in a PC2-dependent manner, impairs lysosomal calcium refilling, causes cathepsins translocation, inhibition of autophagic flux upon ER stress, as well as sensitization to apoptosis. Invalidation of TMEM33 in the mouse exerts a potent protection against renal ER stress. By contrast, TMEM33 does not influence pkd2-dependent renal cystogenesis in the zebrafish. Together, our results identify a key role for TMEM33 in the regulation of intracellular calcium homeostasis of renal proximal convoluted tubule cells and establish a causal link between TMEM33 and acute kidney injury.
Collapse
|
2
|
Kurbegovic A, Trudel M. Acute kidney injury induces hallmarks of polycystic kidney disease. Am J Physiol Renal Physiol 2016; 311:F740-F751. [DOI: 10.1152/ajprenal.00167.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) and autosomal dominant polycystic kidney disease (ADPKD) are considered separate entities that both frequently cause renal failure. Since ADPKD appears to depend on a polycystin-1 (Pc1) or Pc2 dosage mechanism, we investigated whether slow progression of cystogenesis in two Pkd1 transgenic mouse models can be accelerated with moderate ischemia-reperfusion injury (IRI). Transient unilateral left ischemic kidneys in both nontransgenic and transgenic mice reproducibly develop tubular dilatations, cysts, and typical PKD cellular defects within 3 mo post-IRI. Similar onset and severity of IRI induced-cystogenesis independently of genotype revealed that IRI is sufficient to promote renal cyst formation; however, this response was not further amplified by the transgene in Pkd1 mouse models. The IRI nontransgenic and transgenic kidneys showed from 16 days post-IRI strikingly increased and sustained Pkd1/Pc1 (>3-fold) and Pc2 (>8-fold) expression that can individually be cystogenic in mice. In parallel, long-term and important stimulation of hypoxia-inducible factor 1α expression was induced as in polycystic kidney disease. While mammalian target of rapamycin signaling is activated, stimulation of the Wnt pathway, with markedly increased active β-catenin and c-Myc expression in IRI renal epithelium, uncovered a similar regulatory cystogenic response shared by IRI and ADPKD. Our study demonstrates that long-term AKI induces cystogenesis and cross talk with ADPKD Pc1/Pc2 pathogenic signaling.
Collapse
Affiliation(s)
- Almira Kurbegovic
- Molecular Genetics and Development, Institut de Recherches Cliniques de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Trudel
- Molecular Genetics and Development, Institut de Recherches Cliniques de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Wang Q, Zheng W, Wang Z, Yang J, Hussein S, Tang J, Chen XZ. Filamin-a increases the stability and plasma membrane expression of polycystin-2. PLoS One 2015; 10:e0123018. [PMID: 25861040 PMCID: PMC4393133 DOI: 10.1371/journal.pone.0123018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/26/2015] [Indexed: 12/13/2022] Open
Abstract
Polycystin-2 (PC2), encoded by the PKD2 gene, is mutated in ~15% of autosomal dominant polycystic kidney disease. Filamins are actin-binding proteins implicated in scaffolding and membrane stabilization. Here we studied the effects of filamin on PC2 stability using filamin-deficient human melanoma M2, filamin-A (FLNA)-replete A7, HEK293 and IMCD cells together with FLNA siRNA/shRNA knockdown (KD). We found that the presence of FLNA is associated with higher total and plasma membrane PC2 protein expression. Western blotting analysis in combination with FLNA KD showed that FLNA in A7 cells represses PC2 degradation, prolonging the half-life from 2.3 to 4.4 hours. By co-immunoprecipitation and Far Western blotting we found that the FLNA C-terminus (FLNAC) reduces the FLNA-PC2 binding and PC2 expression, presumably through competing with FLNA for binding PC2. We further found that FLNA mediates PC2 binding with actin through forming complex PC2-FLNA-actin. FLNAC acted as a blocking peptide and disrupted the link of PC2 with actin through disrupting the PC2-FLNA-actin complex. Finally, we demonstrated that the physical interaction of PC2-FLNA is Ca-dependent. Taken together, our current study indicates that FLNA anchors PC2 to the actin cytoskeleton through complex PC2-FLNA-actin to reduce degradation and increase stability, and possibly regulate PC2 function in a Ca-dependent manner.
Collapse
Affiliation(s)
- Qian Wang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wang Zheng
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zuocheng Wang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - JungWoo Yang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shaimaa Hussein
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jingfeng Tang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Membrane Protein Disease and Cancer Research Center, Hubei University of Technology, Wuhan, China
- * E-mail: (XZC); (JFT)
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Membrane Protein Disease and Cancer Research Center, Hubei University of Technology, Wuhan, China
- * E-mail: (XZC); (JFT)
| |
Collapse
|
4
|
Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 2010; 47:297-314. [PMID: 20189643 DOI: 10.1016/j.ceca.2010.02.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/17/2022]
Abstract
Homeostatic control of the endoplasmic reticulum (ER) both as the site for protein handling (synthesis, folding, trafficking, disaggregation and degradation) and as a Ca2+ store is of crucial importance for correct functioning of the cell. Disturbance of the homeostatic control mechanisms leads to a vast array of severe pathologies. The Ca2+ content of the ER is a dynamic equilibrium between active uptake via Ca2+ pumps and Ca2+ release by a number of highly regulated Ca2+-release channels. Regulation of the Ca2+-release channels is very complex and several mechanisms are still poorly understood or controversial. There is increasing evidence that a number of unrelated proteins, either by themselves or in association with other Ca2+ channels, can provide additional Ca2+-leak pathways. The ER is a dynamic organelle and changes in its size and components have been described, either as a result of (de)differentiation processes affecting the secretory capacity of cells, or as a result of adaptation mechanisms to diverse stress conditions such as the unfolded protein response and autophagy. In this review we want to give an overview of the current knowledge of the (short-term) regulatory mechanisms that affect Ca2+-release and Ca2+-leak pathways and of the (long-term) adaptations in ER size and capacity. Understanding of the consequences of these mechanisms for cellular Ca2+ signaling could provide a huge therapeutic potential.
Collapse
|
5
|
Bastos AP, Piontek K, Silva AM, Martini D, Menezes LF, Fonseca JM, Fonseca II, Germino GG, Onuchic LF. Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion. J Am Soc Nephrol 2009; 20:2389-402. [PMID: 19833899 DOI: 10.1681/asn.2008040435] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutations in PKD1 cause the majority of cases of autosomal dominant polycystic kidney disease (ADPKD). Because polycystin 1 modulates cell proliferation, cell differentiation, and apoptosis, its lower biologic activity observed in ADPKD might influence the degree of injury after renal ischemia/reperfusion. We induced renal ischemia/reperfusion in 10- to 12-wk-old male noncystic Pkd1(+/-) and wild-type mice. Compared with wild-type mice, heterozygous mice had higher fractional excretions of sodium and potassium and higher serum creatinine after 48 h. In addition, in heterozygous mice, also cortical damage, rates of apoptosis, and inflammatory infiltration into the interstitium at time points out to 14 d after injury all increased, as well as cell proliferation at 48 h and 7 d. The mRNA and protein expression of p21 was lower in heterozygous mice than wild-type mice at 48 h. After 6 wk, we observed dilated tubules, microcysts, and increased renal fibrosis in heterozygotes. The early mortality of heterozygotes was significantly higher than that of wild-type mice when we extended the duration of ischemia from 32 to 35 min. In conclusion, ischemia/reperfusion induces a more severe injury in kidneys of Pkd1-haploinsufficient mice, a process that apparently depends on a relative deficiency of p21 activity, tubular dilation, and microcyst formation. These data suggest the possibility that humans with ADPKD from PKD1 mutations may be at greater risk for damage from renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ana P Bastos
- Department of Medicine, Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Happé H, Leonhard WN, van der Wal A, van de Water B, Lantinga-van Leeuwen IS, Breuning MH, de Heer E, Peters DJM. Toxic tubular injury in kidneys from Pkd1-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways. Hum Mol Genet 2009; 18:2532-42. [PMID: 19401297 DOI: 10.1093/hmg/ddp190] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by large fluid-filled cysts and progressive deterioration of renal function necessitating renal replacement therapy. Previously, we generated a tamoxifen-inducible, kidney epithelium-specific Pkd1-deletion mouse model and showed that inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Therefore, we hypothesized that injury-induced tubular epithelial cell proliferation may accelerate cyst formation in the kidneys of adult Pkd1-deletion mice. Mice were treated with the nephrotoxicant 1,2-dichlorovinyl-cysteine (DCVC) after Pkd1-gene inactivation, which indeed accelerated cyst formation significantly. After the increased proliferation during tissue regeneration, proliferation decreased to basal levels in Pkd1-deletion mice just as in DCVC-treated controls. However, in severe cystic kidneys, 10-14 weeks after injury, proliferation increased again. This biphasic response suggests that unrestricted cell proliferation after injury is not the underlying mechanism for cyst formation. Aberrant planar cell polarity (PCP) signaling and increased canonical Wnt signaling are suggested to be involved in cyst formation. Indeed, we show here that in Pkd1 conditional deletion mice expression of the PCP component Four-jointed (Fjx1) is decreased while its expression is required during tissue regeneration. In addition, we show that altered centrosome position and the activation of canonical Wnt signaling are early effects of Pkd1-gene disruption. This suggests that additional stimuli or events are required to trigger the process of cyst formation. We propose that during tissue repair, the integrity of the newly formed Pkd1-deficient cells is modified rendering them susceptible to subsequent cyst formation.
Collapse
Affiliation(s)
- Hester Happé
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Dedoussis GVZ, Luo Y, Starremans P, Rossetti S, Ramos AJ, Cantiello HF, Katsareli E, Ziroyannis P, Lamnissou K, Harris PC, Zhou J. Co-inheritance of a PKD1 mutation and homozygous PKD2 variant: a potential modifier in autosomal dominant polycystic kidney disease. Eur J Clin Invest 2008; 38:180-90. [PMID: 18257781 DOI: 10.1111/j.1365-2362.2007.01913.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD), which is caused by mutations in polycystins 1 (PC1) and 2 (PC2), is one of the most commonly inherited renal diseases, affecting ~1 : 1000 Caucasians. MATERIALS AND METHODS We screened Greek ADPKD patients with the denaturing gradient gel electrophoresis (DGGE) assay and direct sequencing. RESULTS We identified a patient homozygous for a nucleotide change c.1445T > G, resulting in a novel homozygous substitution of the non-polar hydrophobic phenylalanine to the polar hydrophilic cysteine in exon 6 at codon 482 (p.F482C) of the PKD2 gene and a de-novo PKD1 splice-site variant IVS21-2delAG. We did not find this PKD2 variant in a screen of 280 chromosomes of healthy subjects, supporting its pathogenicity. The proband's parents did not have the PKD1 mutation. Real-time PCR of the PKD2 transcript from a skin biopsy revealed 20-fold higher expression in the patient than in a healthy subject and was higher in the patient's peripheral blood mononuclear cells (PBMCs) than in those of her heterozygote daughter and a healthy subject. The greater gene expression was also supported by Western blotting. Inner medullar collecting duct (IMCD) cells transfected with the mutant PKD2 mouse gene presented a perinuclear and diffuse cytoplasmic localization compared with the wild type ER localization. Patch-clamping of PBMCs from the p.F482C homozygous and heterozygous subjects revealed lower polycystin-2 channel function than in controls. CONCLUSIONS We report for the first time a patient with ADPKD who is heterozygous for a de novo PKD1 variant and homozygous for a novel PKD2 mutation.
Collapse
Affiliation(s)
- G V Z Dedoussis
- Department of Science Dietetics-Nutrition, Harokopio University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Xu C, Rossetti S, Jiang L, Harris PC, Brown-Glaberman U, Wandinger-Ness A, Bacallao R, Alper SL. Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am J Physiol Renal Physiol 2007; 292:F930-45. [PMID: 17090781 PMCID: PMC3586432 DOI: 10.1152/ajprenal.00285.2006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) gene products polycystin-1 (PC1) and polycystin-2 (PC2) colocalize in the apical monocilia of renal epithelial cells. Mouse and human renal cells without PC1 protein show impaired ciliary mechanosensation, and this impairment has been proposed to promote cystogenesis. However, most cyst epithelia of human ADPKD kidneys appear to express full-length PC1 and PC2 in normal or increased abundance. We show that confluent primary ADPKD cyst cells with the novel PC1 mutation DeltaL2433 and with normal abundance of PC1 and PC2 polypeptides lack ciliary PC1 and often lack ciliary PC2, whereas PC1 and PC2 are both present in cilia of confluent normal human kidney (NK) epithelial cells in primary culture. Confluent NK cells respond to shear stress with transient increases in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), dependent on both extracellular Ca(2+) and release from intracellular stores. In contrast, ADPKD cyst cells lack flow-sensitive [Ca(2+)](i) signaling and exhibit reduced endoplasmic reticulum Ca(2+) stores and store-depletion-operated Ca(2+) entry but retain near-normal [Ca(2+)](i) responses to ANG II and to vasopressin. Expression of wild-type and mutant CD16.7-PKD1(115-226) fusion proteins reveals within the COOH-terminal 112 amino acids of PC1 a coiled-coil domain-independent ciliary localization signal. However, the coiled-coil domain is required for CD16.7-PKD1(115-226) expression to accelerate decay of the flow-induced Ca(2+) signal in NK cells. These data provide evidence for ciliary dysfunction and polycystin mislocalization in human ADPKD cells with normal levels of PC1.
Collapse
Affiliation(s)
- Chang Xu
- Molecular and Vascular Medicine Unit and Renal Division, Beth Israel Deaconess Medical Center
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Sandro Rossetti
- Departments of Medicine and Biochemistry, Mayo Medical School, Rochester, MN
| | - Lianwei Jiang
- Molecular and Vascular Medicine Unit and Renal Division, Beth Israel Deaconess Medical Center
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Peter C. Harris
- Departments of Medicine and Biochemistry, Mayo Medical School, Rochester, MN
| | - Ursa Brown-Glaberman
- Department of Pathology, Univ. of New Mexico School of Medicine, Albuquerque, NM
| | | | - Robert Bacallao
- Department of Medicine, Univ. of Indiana School of Medicine, Indianapolis, IN
| | - Seth L. Alper
- Molecular and Vascular Medicine Unit and Renal Division, Beth Israel Deaconess Medical Center
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Obermüller N, Gassler N, Gretz N, Kränzlin B, Hoffmann S, Geiger H, Gauer S. Distinct immunohistochemical expression of osteopontin in the adult rat major salivary glands. J Mol Histol 2006; 37:53-60. [PMID: 16817053 DOI: 10.1007/s10735-006-9031-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
Osteopontin is a multifunctional protein secreted by epithelial cells of various tissues. Its expression in the adult rat major salivary glands has not yet been studied. We examined osteopontin expression by immunohistochemistry using a well characterized monoclonal antibody. Submandibular glands of young adult male rats (70-100 days old) showed specific expression in secretion granules of granular duct cells but also in cells of the striated ducts and excretory duct. In the major sublingual as well as the parotid gland expression was found solely in the duct system. In addition, a few interstitial-like cells exhibiting very strong immunostaining for osteopontin could be found in either organ. Expression could neither be seen in acinar cells nor in cells of the intercalated ducts. Moreover, in submandibular glands of more aged rats (6- to 7-month old) which show well developed granular convoluted tubules, there was almost exclusive expression of osteopontin in granular duct cells as well as in some interstitial-like cells, but barely in the striated/excretory duct system. Western blot analysis of the submandibular gland showed a specific band migrating at approximately 74 kDa, detectable at both age stages. Osteopontin secreted fom granular duct cells may influence the composition of the saliva, e.g. thereby modulating pathways affecting sialolithiasis. Its expression in striated duct cells may also hint to roles such as cell-cell attachment or cell differentiation. The cell-specific expression detected in the rat major salivary glands differs in part from that reported in mice, human and monkey.
Collapse
Affiliation(s)
- Nicholas Obermüller
- Division of Nephrology, Medical Clinic III, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/M, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Scheffers MS, van der Bent P, van de Wal A, van Eendenburg J, Breuning MH, de Heer E, Peters DJM. Altered distribution and co-localization of polycystin-2 with polycystin-1 in MDCK cells after wounding stress. Exp Cell Res 2004; 292:219-30. [PMID: 14720521 DOI: 10.1016/j.yexcr.2003.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polycystin-1 and -2 are integral membrane glycoproteins defective in autosomal dominant polycystic kidney disease (ADPKD). Recent studies showed a coupled polycystin-1 and -2 action in cell signaling and channel activation suggesting an important biological role for the two proteins at the plasma membrane. To gain a better understanding about the (co)-distribution and dynamics of the polycystin-1 and -2 complex under stress conditions, we used a wound-healing model of Madine Darby canine kidney (MDCK) renal epithelial cells. In this model, cells near the wound edge undergo a process of reorganization to active migration, while cells further from the edge are unaffected and remain confluent. For the first time, endogenous polycystin-1 and -2 were found to partly co-localize in the plasma membrane of confluent monolayers, and both proteins co-localized in the primary cilium. Upon wound healing, the association of polycystin-2 to the membrane was greatly reduced at the wound edge and the submarginal cells. Polycystin-1 remained incorporated to the membrane at the edge of the cell sheet at all time points, although strongly reduced in lamellipodia-forming cells. Adherens junctions and desmosomes, and respective connected actin and keratin cytoskeleton were also disturbed in lamellipodia-forming cells. We propose that altered subcellular localization of polycystin-1 and -2 as a result of stress will affect signaling and other cellular processes mediated by these proteins.
Collapse
Affiliation(s)
- Martijn S Scheffers
- Department of Human Genetics, Leiden University Medical Center, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Kriz W, Hähnel B, Hosser H, Ostendorf T, Gaertner S, Kränzlin B, Gretz N, Shimizu F, Floege J. Pathways to recovery and loss of nephrons in anti-Thy-1 nephritis. J Am Soc Nephrol 2003; 14:1904-26. [PMID: 12819253 DOI: 10.1097/01.asn.0000070073.79690.57] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The present histopathologic study of anti-Thy-1.1 models of mesangioproliferative glomerulonephritis in rats provides a structural analysis of damage development and of pathways to recovery and to nephron loss. As long as the disease remains confined to the endocapillary compartment, the damage may be resolved or recover with a mesangial scar. Irreversible lesions with loss of nephrons emerge from extracapillary processes with crucial involvement of podocytes, leading to tuft adhesions to Bowman's capsule (BC) and subsequent crescent formation. Two mechanisms appeared to be responsible: (1) Epithelial cell proliferation at BC and the urinary orifice and (2) misdirected filtration and filtrate spreading on the outer aspect of the nephron. Both may lead to obstruction of the tubule, disconnection from the glomerulus, and subsequent degeneration of the entire nephron. No evidence emerged to suggest that the kind of focal interstitial proliferation associated with the degeneration of injured nephrons was harmful to a neighboring healthy nephron.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|