1
|
Yang J, Wu J, Lu H, Wang J, Hou Z. Hotspot Analysis and Frontier Exploration of Stem Cell Research in Intervertebral Disc Regeneration and Repair: A Bibliometric and Visualization Study. World Neurosurg 2024; 184:e613-e632. [PMID: 38367857 DOI: 10.1016/j.wneu.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Stem cells have shown tremendous potential and vast prospects in the research of intervertebral disc (IVD) regeneration and repair, attracting considerable attention in recent years. In this study, a bibliometric analysis and visualization techniques were employed to probe and analyze the hotspots and frontiers of stem cell research in IVD regeneration and repair, aiming to provide valuable references and insights for further investigations. METHODS This study utilized the Science Citation Index Expanded from the Web of Science Core Collection database to retrieve and extract relevant literature records as research samples. Visual analysis tools such as VOSviewer 1.6.19, CiteSpace 6.2.R4, and bibliometric online analysis platforms were employed to construct scientific knowledge maps, providing a comprehensive and systematic exposition from various perspectives including collaboration networks, cocitation networks, and co-occurrence networks. RESULTS A total of 1075 relevant studies have been published in 303 journals by 4181 authors from 1198 institutions across 54 countries/regions. Over the past 20 years, the field of research has witnessed a significant growth in annual publications and citations. China and the United States have emerged as the primary participants and contributors, with the AO Research Institute Davos, Zhejiang University, and Tokai University being the top 3 leading research institutions. The most productive and highly cited author is Sakai D, who is regarded as a key leader in this research field. The journals with the highest number of publications and citations are Spine and Biomaterials, which are considered to be high-quality and authoritative core journals in this field. The current research focuses primarily on the sources and selection of stem cells, optimization of transplantation strategies, mechanisms of IVD regeneration, and the combined application of stem cells and biomaterials. However, there are still some challenges that need to be addressed, including posttransplantation stability, assessment of regenerative effects, and translation into clinical applications. Future research will concentrate on the diversity of stem cell sources, the application of novel biomaterials, personalized treatments, and the development of gene editing technologies, among other cutting-edge directions. CONCLUSIONS This study utilized bibliometric analysis and visualization techniques to unveil the hotspots and frontiers in the research on stem cells for IVD regeneration and repair. These research findings provide essential guidance and references for further experimental design and clinical applications. However, additional experiments and clinical studies are still needed to address the challenges and difficulties faced in the field of IVD regeneration and repair, thus offering novel strategies and approaches for the treatment of IVD diseases.
Collapse
Affiliation(s)
- Jiali Yang
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China; Department of Orthopedics and Traumatology, Yancheng TCM Hospital, Yancheng, China
| | - Jiaojiao Wu
- Xiangyu Pharmaceutical Co., Ltd., Linyi, China
| | - Hua Lu
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China; Department of Orthopedics and Traumatology, Yancheng TCM Hospital, Yancheng, China
| | - Jing Wang
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China; Department of Orthopedics and Traumatology, Yancheng TCM Hospital, Yancheng, China
| | - Zhaomeng Hou
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China; Department of Orthopedics and Traumatology, Yancheng TCM Hospital, Yancheng, China.
| |
Collapse
|
2
|
Soydan Z, Bayramoglu E, Urut DU, Iplikcioglu AC, Sen C. Tracing the disc: The novel qualitative morphometric MRI based disc degeneration classification system. JOR Spine 2024; 7:e1321. [PMID: 38500784 PMCID: PMC10945309 DOI: 10.1002/jsp2.1321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024] Open
Abstract
Background This study aimed to develop a classification system for lumbar disc degeneration using routine magnetic resonance images (MRIs) that is easily applicable and unaffected by existing classifications' limitations, and to compare its reliability, reproducibility, and discriminative power to the widely used Pfirrmann classification. Methods Five features were graded. This new classification system has eight grades, with at least one of these five features altering each grade. The T2-weighted sagittal images were acquired using a rapid spin-echo sequence with a repetition time of 2680 to 4900 milliseconds, an echo time of 100 to 109 milliseconds, and an echo train length of 17. Slice thick was 4 mm and the display field of view was 32 × 32 cm. The new classification system used five features: signal intensity, disc height, disc boundary regularity, and nucleus annulus separation. Increased signal intensity, decreased height, decreased regularity, and decreased nucleus-annulus separation indicated degeneration. Four raters classified 400 discs from 80 patients using the Pfirrmann and Novel systems. Statistical analyses were conducted to investigate reliability and correlation. Results The overall ICC and kappa values were found to be higher in the novel classification. (0.988 indicating excellent agreement for ICC and 0.76/0.94 indicating good-very good agreement for kappa). The Kendall tau c value, which shows the correlation between the two classifications and indicates the validity of the new classification, was 0.872, which is very strong. Through the use of cross-tabulations, the discriminatory power of the two newly added classification criteria was determined. Conclusions This study demonstrates the intra-rater and inter-rater reliability of an easy-to-use, discriminative novel morphometric MRI based classification system for lumbar disc degeneration. The differentiation of grades based on five distinct criteria may generate novel hypotheses regarding treatment selection and response monitoring, as well as new insights into the study of disc degeneration.
Collapse
Affiliation(s)
- Zafer Soydan
- BHT Clinic İstanbul Tema Hospital, Department of Orthopedics and TraumatologyNisantası UniversityIstanbulTurkey
| | - Emru Bayramoglu
- Department of Orthopedics and TraumatologyBursa City HospitalBursaTurkey
| | - Devrim Ulas Urut
- BHT Clinic İstanbul Tema HospitalDepartment of RadiologyIstanbulTurkey
| | | | - Cengiz Sen
- İstanbul UniversityDepartment of Orthopedics And TraumatologyIstanbulTurkey
| |
Collapse
|
3
|
Xue P, Wang Y, Lv L, Wang D, Wang Y. Roles of Chemokines in Intervertebral Disk Degeneration. Curr Pain Headache Rep 2024; 28:95-108. [PMID: 37976014 DOI: 10.1007/s11916-023-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration is the primary etiology of low back pain and radicular pain. This review examines the roles of crucial chemokines in different stages of degenerative disc disease, along with interventions targeting chemokine function to mitigate disc degeneration. RECENT FINDINGS The release of chemokines from degenerated discs facilitates the infiltration and activation of immune cells, thereby intensifying the inflammatory cascade response. The migration of immune cells into the venous lumen is concomitant with the emergence of microvascular tissue and nerve fibers. Furthermore, the presence of neurogenic factors secreted by disc cells and immune cells stimulates the activation of pain-related cation channels in the dorsal root ganglion, potentially exacerbating discogenic and neurogenic pain and intensifying the degenerative cascade response mediated by chemokines. Gaining a deeper comprehension of the functions of chemokines and immune cells in these processes involving catabolism, angiogenesis, and injury detection could offer novel therapeutic avenues for managing symptomatic disc disease.
Collapse
Affiliation(s)
- Pengfei Xue
- Medical School of Southeast University, Nanjing, Jiangsu, 210009, China
- Central Laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu, 211300, China
| | - Yi Wang
- Department of Orthopaedics, Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, Jiangxi, 332000, China
| | - Long Lv
- Central Laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu, 211300, China
| | - Dongming Wang
- Central Laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu, 211300, China.
| | - Yuntao Wang
- Medical School of Southeast University, Nanjing, Jiangsu, 210009, China.
- Department of Spine Center, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
4
|
Soufi KH, Castillo JA, Rogdriguez FY, DeMesa CJ, Ebinu JO. Potential Role for Stem Cell Regenerative Therapy as a Treatment for Degenerative Disc Disease and Low Back Pain: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108893. [PMID: 37240236 DOI: 10.3390/ijms24108893] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Back pain is the single leading cause of disability worldwide. Despite the prevalence and morbidity of lower back pain, we still lack a gold-standard treatment that restores the physiological function of degenerated intervertebral discs. Recently, stem cells have emerged as a promising strategy for regenerative therapy for degenerative disc disease. In this study, we review the etiology, pathogenesis, and developing treatment strategies for disc degeneration in low back pain with a focus on regenerative stem cell therapies. A systematic search of PubMed/MEDLINE/Embase/Clinical Trials.gov databases was conducted for all human subject abstracts or studies. There was a total of 10 abstracts and 11 clinical studies (1 RCT) that met the inclusion criteria. The molecular mechanism, approach, and progress of the different stem cell strategies in all studies are discussed, including allogenic bone marrow, allogenic discogenic cells, autologous bone marrow, adipose mesenchymal stem cells (MSCs), human umbilical cord MSC, adult juvenile chondrocytes, autologous disc derived chondrocytes, and withdrawn studies. Clinical success with animal model studies is promising; however, the clinical outcomes of stem cell regenerative therapy remain poorly understood. In this systematic review, we found no evidence to support its use in humans. Further studies on efficacy, safety, and optimal patient selection will establish whether this becomes a viable, non-invasive therapeutic option for back pain.
Collapse
Affiliation(s)
- Khadija H Soufi
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Jose A Castillo
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Freddie Y Rogdriguez
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Charles J DeMesa
- Department of Anesthesia and Pain Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Julius O Ebinu
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Su QS, Zhuang DL, Nasser MI, Sai X, Deng G, Li G, Zhu P. Stem Cell Therapies for Restorative Treatments of Central Nervous System Ischemia-Reperfusion Injury. Cell Mol Neurobiol 2023; 43:491-510. [PMID: 35129759 DOI: 10.1007/s10571-022-01204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
Abstract
Ischemic damage to the central nervous system (CNS) is a catastrophic postoperative complication of aortic occlusion subsequent to cardiovascular surgery that can cause brain impairment and sometimes even paraplegia. Over recent years, numerous studies have investigated techniques for protecting and revascularizing the nervous system during intraoperative ischemia; however, owing to a lack of knowledge of the physiological distinctions between the brain and spinal cord, as well as the limited availability of testing techniques and treatments for ischemia-reperfusion injury, the cause of brain and spinal cord ischemia-reperfusion injury remains poorly understood, and no adequate response steps are currently available in the clinic. Given the limited ability of the CNS to repair itself, it is of great clinical value to make full use of the proliferative and differentiation potential of stem cells to repair nerves in degenerated and necrotic regions by stem cell transplantation or mobilization, thereby introducing a novel concept for the treatment of severe CNS ischemia-reperfusion injury. This review summarizes the most recent advances in stem cell therapy for ischemia-reperfusion injury in the brain and spinal cord, aiming to advance basic research and the clinical use of stem cell therapy as a promising treatment for this condition.
Collapse
Affiliation(s)
- Qi-Song Su
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510080, Guangdong, China
| | - Dong-Lin Zhuang
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.,College of Medicine, Shantou University, Shantou, 515063, Guangdong, China
| | - Moussa Ide Nasser
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
| | - Xiyalatu Sai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao City, 028000, Inner Mongolia, China
| | - Gang Deng
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ge Li
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China. .,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510080, Guangdong, China.
| | - Ping Zhu
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China. .,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510080, Guangdong, China. .,College of Medicine, Shantou University, Shantou, 515063, Guangdong, China. .,Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, 510100, Guangdong, China. .,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao City, 028000, Inner Mongolia, China.
| |
Collapse
|
6
|
Hechavarria ME, Richard SA. Elucidating the Focal Immunomodulatory Clues Influencing Mesenchymal Stem Cells in the Milieu of Intervertebral Disc Degeneration. Curr Stem Cell Res Ther 2023; 18:62-75. [PMID: 35450531 DOI: 10.2174/1574888x17666220420134619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
The intervertebral discs (IVDs) are a relatively mobile joint that interconnects vertebrae of the spine. Intervertebral disc degeneration (IVDD) is one of the leading causes of low back pain, which is most often related to patient morbidity as well as high medical costs. Patients with chronic IVDD often need surgery that may sometimes lead to biomechanical complications as well as augmented degeneration of the adjacent segments. Moreover, treatment modalities like rigid intervertebral fusion, dynamic instrumentation, as well as other surgical interventions are still controversial. Mesenchymal stem cells (MSCs) have exhibited to have immunomodulatory functions and the ability to differentiate into cartilage, making these cells possibly an epitome for IVD regeneration. Transplanted MSCs were able to repair IVDD back to the normal disc milieu via the activation of the generation of extracellular matrix (ECM) proteins such as aggrecan, proteoglycans and collagen types I and II. IVD milieu clues like, periostin, cluster of differentiation, tumor necrosis factor alpha, interleukins, chemokines, transforming growth factor beta, reactive oxygen species, toll-like receptors, tyrosine protein kinase receptor and disialoganglioside, exosomes are capable of influencing the MSCs during treatment of IVDD. ECM microenvironment clues above have potentials as biomarkers as well as accurate molecular targets for therapeutic intervention in IVDD.
Collapse
Affiliation(s)
| | - Seidu A Richard
- Department of Medicine, Princefield University, P. O. Box MA 128, Ho-Volta Region, Ghana, West Africa
| |
Collapse
|
7
|
Brown LL. Adipose-Derived Stromal Stem Cells. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
8
|
Mesenchymal Stem Cells May Alleviate the Intervertebral Disc Degeneration by Reducing the Oxidative Stress in Nucleus Pulposus Cells. Stem Cells Int 2022; 2022:6082377. [PMID: 36238530 PMCID: PMC9551678 DOI: 10.1155/2022/6082377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Stem cell therapy is a promising therapeutic modality for intervertebral disc degeneration (IDD). Oxidative stress is a vital contributor to the IDD; however, the definite role of oxidative stress in stem cell therapy for IDD remains obscure. The aim of this study was to determine the vital role of oxidative stress-related differentially expressed genes (OSRDEGs) in degenerative NPCs cocultured with mesenchymal stem cells (MSCs). Methods A series of bioinformatic methods were used to calculate the oxidative stress score and autophagy score, identify the OSRDEGs, conduct the function enrichment analysis and protein-protein interaction (PPI) analysis, build the relevant competing endogenous RNA (ceRNA) regulatory networks, and explore the potential association between oxidative stress and autophagy in degenerative NPCs cocultured with MSCs. Results There was a significantly different oxidative stress score between NPC/MSC samples and NPC samples (p < 0.05). Forty-one OSRDEGs were selected for the function enrichment and PPI analyses. Ten hub OSRDEGs were obtained according to the PPI score, including JUN, CAT, PTGS2, TLR4, FOS, APOE, EDN1, TXNRD1, LRRK2, and KLF2. The ceRNA regulatory network, which contained 17 DElncRNAs, 240 miRNAs, and 10 hub OSRDEGs, was constructed. Moreover, a significant relationship between the oxidative stress score and autophagy score was observed (p < 0.05), and 125 significantly related gene pairs were obtained (|r| > 0.90, p < 0.05). Conclusion Stem cell therapy might repair the degenerative IVD via reducing the oxidative stress through the ceRNA regulatory work and restoration of autophagy in degenerative NPCs. This research could provide new insights into the mechanism research of stem cell therapy for IDD and potential therapeutic targets in the IDD treatment.
Collapse
|
9
|
Researches on Stem and Progenitor Cells in Intervertebral Discs: An Analysis of the Scientific Landscape. Stem Cells Int 2022; 2022:1274580. [PMID: 36093440 PMCID: PMC9458398 DOI: 10.1155/2022/1274580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Low back pain (LBP) is a common clinical symptom, and the prevalence is ranged from 60% to 70%. With the deepening of basic research, the development of intervertebral disc regeneration-oriented cell therapy, especially stem and progenitor cells therapy, showed good research prospects and was expected to become new methods of treatment for LBP. Our study is aimed at analyzing the scientific output of stem and progenitor cells in intervertebral discs and at driving future research into new publications. Researches focused on this file were searched from the Science Citation Index Expanded (SCI-E) of the Web of Science (WOS) core collection database and were screened according to inclusion criteria. We evaluated and visualized the results, including annual publications, citations, authors, organizations, countries, research directions, funds, and journals by bibliometric website, VOSviewer, and Citespace softwares on May 27, 2022. A total of 450 original articles and reviews were included, and the overall trend of the number of publications rapidly increased. In worldwide, China and the USA were the leading countries for research production. The retrieved 450 publications received 14322 citations, with an average of 31.83 citations and an H-index of 62. The most high-yield author, organization, country, research directions, funds, and journals were Chen QX from Zhejiang University, Zhejiang University, China, Cell Biology, National Natural Science Foundation of China, and Spine, respectively. Keywords cluster analysis showed the research hotspots in the future, including “human intervertebral disc”, “adipose-derived mesenchymal stem cell”, “intervertebral disc degeneration”, “degenerative disc model”, “nucleus pulposus regeneration”, “human cartilage”, “3d culture”, “shrinkage-free preparation”, and “polylactide disc”. Furthermore, with accumulating evidence demonstrating the role of stem and progenitor cells in intervertebral discs, “microenvironment”, “activation”, “intervertebral disc degeneration”, and “oxidative stress” are becoming the research frontiers and trends.
Collapse
|
10
|
Wang N, Chen S, Zhang X, Xi Z, Fang X, Xue C, Li J, Xie L. Global research status and hot trends in stem cells therapy for Intervertebral disc degeneration: A bibliometric and clinical study analysis. Front Pharmacol 2022; 13:873177. [PMID: 36003512 PMCID: PMC9393636 DOI: 10.3389/fphar.2022.873177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Stem cells (SCs) therapy for intervertebral disc degeneration (IDD) has been studied for nearly 20 years and it is an important part of regenerative medicine and tissue engineering research, as well as a current research hotspot and challenge. Although the volume of literature has shown an annual growth trend, there is no literature available for bibliometric and clinical analysis of the content of multiple databases in this field.Methods: The articles were obtained from the WOSCC, Scopus, Pubmed, and ClinicalTrials on 27 December 2021. Three scientometric software (VOSviewer 1.6.17, CiteSpace 5.8.R.1 and Scimago Graphica) were used to perform bibliometric and knowledge-map analysis.Results: We included 867 articles from WOSCC, 716 articles from Scopus and 6 clinical studies from ClinicalTrials for literature analysis. Our results showed that China was the country with the highest number of publications, with the United States (US) being the leader in terms of international collaborations and the number of citations. Sakai D, Grad S and Hoyland JA had made outstanding contributions for their high productivity and the quality articles. Spine was the most published and most cited journal, in addition to Spine Journal and Biomaterials, which were also more authoritative journals and had received high citations. All of them had received high citations. Keyword co-occurrence studies suggested that the current hotspots were in mechanistic studies, including inflammation, apoptosis, exosome, autophagy, and others. Some studies had also investigated tissue-engineered scaffolds of SCs to better repair degenerated discs. Clinical studies were relatively scarce. Direct injection of Mesenchymal Stem Cells (MSCs) into degenerated discs for the treatment of Degenerative disc disease (DDD) was the current direction of research.Conclusion: This study demonstrates the global research hotspots, trends and clinical use of SCs in the treatment of IDD. It can help scholars to quickly understand the current status and hotspots of research in this field, and also provide some guidance and reference for those who are currently researching in this area.
Collapse
|
11
|
Liu Y, Gao GM, Yang KY, Nong LM. Construction of tissue-engineered nucleus pulposus by stimulation with periodic mechanical stress and BMP-2. iScience 2022; 25:104405. [PMID: 35633940 PMCID: PMC9136668 DOI: 10.1016/j.isci.2022.104405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Intervertebral disc (IVD) degeneration, which is common among elderly individuals, mainly manifests as low back pain and is caused by structural deterioration of the nucleus pulposus (NP) due to physiological mechanical stress. NP mesenchymal stem cells (NPMSCs) around the IVD endplate have multidirectional differentiation potential and can be used for tissue repair. To define favorable conditions for NPMSC proliferation and differentiation into chondroid cells for NP repair, the present study simulated periodic mechanical stress (PMS) of the NP under physiological conditions using MSC chondrogenic differentiation medium and recombinant human BMP-2 (rhBMP-2). rhBMP-2 effectively promoted NPMSC proliferation and differentiation. To clarify the mechanism of action of rhBMP-2, integrin alpha 1 (ITG A1) and BMP-2 were inhibited. PMS regulated the BMP-2/Smad1/RUNX2 pathway through ITG A1 and promoted NPMSC proliferation and differentiation. During tissue-engineered NP construction, PMS can effectively reduce osteogenic differentiation and promote extracellular matrix protein synthesis to enhance structural NP recovery. Extraction of NPMSCs from degenerated nucleus pulposus NPMSCs cultured in vitro by simulating physiological mechanical stress ITG A1 to promote proliferation and differentiation of NPMSCs through BMP-2/Smad1/RUNX2 Injectable tissue-engineered nucleus pulposus
Collapse
|
12
|
Direct Reprogramming and Induction of Human Dermal Fibroblasts to Differentiate into iPS-Derived Nucleus Pulposus-like Cells in 3D Culture. Int J Mol Sci 2022; 23:ijms23074059. [PMID: 35409417 PMCID: PMC8999916 DOI: 10.3390/ijms23074059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc (IVD) diseases are common spinal disorders that cause neck or back pain in the presence or absence of an underlying neurological disorder. IVD diseases develop on the basis of degeneration, and there are no established treatments for degeneration. IVD diseases may therefore represent a candidate for the application of regenerative medicine, potentially employing normal human dermal fibroblasts (NHDFs) induced to differentiate into nucleus pulposus (NP) cells. Here, we used a three-dimensional culture system to demonstrate that ectopic expression of MYC, KLF4, NOTO, SOX5, SOX6, and SOX9 in NHDFs generated NP-like cells, detected using Safranin-O staining. Quantitative PCR, microarray analysis, and fluorescence-activated cell sorting revealed that the induced NP cells exhibited a fully differentiated phenotype. These findings may significantly contribute to the development of effective strategies for treating IVD diseases.
Collapse
|
13
|
Widjaja G, Jalil AT, Budi HS, Abdelbasset WK, Efendi S, Suksatan W, Rita RS, Satria AP, Aravindhan S, Saleh MM, Shalaby MN, Yumashev AV. Mesenchymal stromal/stem cells and their exosomes application in the treatment of intervertebral disc disease: A promising frontier. Int Immunopharmacol 2022. [DOI: https://doi.org/10.1016/j.intimp.2022.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Widjaja G, Jalil AT, Budi HS, Abdelbasset WK, Efendi S, Suksatan W, Rita RS, Satria AP, Aravindhan S, Saleh MM, Shalaby MN, Yumashev AV. Mesenchymal stromal/stem cells and their exosomes application in the treatment of intervertebral disc disease: A promising frontier. Int Immunopharmacol 2022; 105:108537. [PMID: 35101851 DOI: 10.1016/j.intimp.2022.108537] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Today, the application of mesenchymal stromal/stem cells (MSCs) and their exosomes to treat degenerative diseases has received attention. Due to the characteristics of these cells, such as self-renewability, differentiative and immunomodulatory effects, their use in laboratory and clinical studies shows promising results. However, the allogeneic transplantation problems of MSCs limit the use of these cells in the clinic. Scientists propose the application of exosomes to use from the therapeutic effect of MSCs and overcome their defects. These vesicles change the target cell behaviour and transcription profile by transferring various cargo such as proteins, mi-RNAs, and lipids. One of the degenerative tissue diseases in which MSCs and their exosomes are used in their treatment is intervertebral disc disease (IDD). Different factors such as genetics, nutrition, ageing, and environmental factors play a significant role in the onset and progression of this disease. These factors affect the cellular and molecular properties of the disc, leading to tissue destruction. Nucleus pulposus cells (NPCs) are among the most important cells involved in the pathogenesis of disc degeneration. MSCs exert their therapeutic effects by differentiating, reducing apoptosis, increasing proliferation, and decreasing senescence in NPCs. In addition, the use of MSCs and their exosomes also affects the annulus fibrosus and cartilaginous endplate cells in disc tissue and prevents disc degeneration progression.
Collapse
Affiliation(s)
- Gunawan Widjaja
- Postgraduate Study, Universitas Krisnadwipayana, Bekasi, Indonesia; Faculty of Public Health, Universitas Indonesia, Depok, Indonesia
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, 230023 Grodno, Belarus; College of Technical Engineering, The Islamic University, Najaf, Iraq; Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq
| | - Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Syahril Efendi
- Fasilkom-TI, Universitas Sumatera Utara, Medan, Indonesia.
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Rauza Sukma Rita
- Department of Biochemistry, Faculty of Medicine, Universitas Andalas, Indonesia
| | - Andri Praja Satria
- Faculty of Nursing, Universitas Muhammadiyah Kalimantan Timur, Samarinda 75124, Indonesia
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Iraq
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt
| | | |
Collapse
|
15
|
Edifying the Focal Factors Influencing Mesenchymal Stem Cells by the Microenvironment of Intervertebral Disc Degeneration in Low Back Pain. Pain Res Manag 2022; 2022:6235400. [PMID: 35386857 PMCID: PMC8977320 DOI: 10.1155/2022/6235400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IVDD) is one of the main triggers of low back pain, which is most often associated with patient morbidity and high medical costs. IVDD triggers a wide range of pathologies and clinical syndromes like paresthesia, weakness of extremities, and intermittent/chronic back pain. Mesenchymal stem cells (MSCs) have demonstrated to possess immunomodulatory functions as well as the capability of differentiating into chondrocytes under appropriate microenvironment conditions, which makes them potentially epitome for intervertebral disc (IVD) regeneration. The IVD microenvironment is composed by niche of cells, and their chemical and physical milieus have been exhibited to have robust influence on MSC behavior as well as differentiation. Nevertheless, the contribution of MSCs to the IVD milieu conditions in healthy as well as degeneration situations is still a matter of debate. It is still not clear which factors, if any, are essential for effective and efficient MSC survival, proliferation, and differentiation. IVD microenvironment clues such as nucleopulpocytes, potential of hydrogen (pH), osmotic changes, glucose, hypoxia, apoptosis, pyroptosis, and hydrogels are capable of influencing the MSCs aimed for the treatment of IVDD. Therefore, clinical usage of MSCs ought to take into consideration these microenvironment clues during treatment. Alteration in these factors could function as prognostic indicators during the treatment of patients with IVDD using MSCs. Thus, standardized valves for these microenvironment clues are warranted.
Collapse
|
16
|
Application of stem cells in the repair of intervertebral disc degeneration. Stem Cell Res Ther 2022; 13:70. [PMID: 35148808 PMCID: PMC8832693 DOI: 10.1186/s13287-022-02745-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a common disease that increases with age, and its occurrence is stressful both psychologically and financially. Stem cell therapy for IDD is emerging. For this therapy, stem cells from different sources have been proven in vitro, in vivo, and in clinical trials to relieve pain and symptoms, reverse the degeneration cascade, delay the aging process, maintain the spine shape, and retain mechanical function. However, further research is needed to explain how stem cells play these roles and what effects they produce in IDD treatment. This review aims to summarize and objectively analyse the current evidence on stem cell therapy for IDD.
Collapse
|
17
|
Yamada K, Iwasaki N, Sudo H. Biomaterials and Cell-Based Regenerative Therapies for Intervertebral Disc Degeneration with a Focus on Biological and Biomechanical Functional Repair: Targeting Treatments for Disc Herniation. Cells 2022; 11:602. [PMID: 35203253 PMCID: PMC8870062 DOI: 10.3390/cells11040602] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain and most spinal disorders. As IVD degeneration is a major obstacle to the healthy life of so many individuals, it is a major issue that needs to be overcome. Currently, there is no clinical treatment for the regeneration of degenerated IVDs. However, recent advances in regenerative medicine and tissue engineering suggest the potential of cell-based and/or biomaterial-based IVD regeneration therapies. These treatments may be indicated for patients with IVDs in the intermediate degenerative stage, a point where the number of viable cells decreases, and the structural integrity of the disc begins to collapse. However, there are many biological, biomechanical, and clinical challenges that must be overcome before the clinical application of these IVD regeneration therapies can be realized. This review summarizes the basic research and clinical trials literature on cell-based and biomaterial-based IVD regenerative therapies and outlines the important role of these strategies in regenerative treatment for IVD degenerative diseases, especially disc herniation.
Collapse
Affiliation(s)
- Katsuhisa Yamada
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
18
|
Combination of ultra-purified stem cells with an in situ-forming bioresorbable gel enhances intervertebral disc regeneration. EBioMedicine 2022; 76:103845. [PMID: 35085848 PMCID: PMC8801983 DOI: 10.1016/j.ebiom.2022.103845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Background Lumbar intervertebral disc (IVD) herniations are associated with significant disability. Discectomy is the conventional treatment option for IVD herniations but causes a defect in the IVD, which has low self-repair ability, thereby representing a risk of further IVD degeneration. An acellular, bioresorbable, and good manufacturing practice (GMP)-compliant in situ-forming gel, which corrects discectomy-associated IVD defects and prevents further IVD degeneration had been developed. However, this acellular matrix-based strategy has certain limitations, particularly in elderly patients, whose tissues have low self-repair ability. The aim of this study was to investigate the therapeutic efficacy of using a combination of newly-developed, ultra-purified, GMP-compliant, human bone marrow mesenchymal stem cells (rapidly expanding clones; RECs) and the gel for IVD regeneration after discectomy in a sheep model of severe IVD degeneration. Methods RECs and nucleus pulposus cells (NPCs) were co-cultured in the gel. In addition, RECs combined with the gel were implanted into IVDs following discectomy in sheep with degenerated IVDs. Findings Gene expression of NPC markers, growth factors, and extracellular matrix increased significantly in the co-culture compared to that in each mono-culture. The REC and gel combination enhanced IVD regeneration after discectomy (up to 24 weeks) in the severe IVD degeneration sheep model. Interpretation These findings demonstrate the translational potential of the combination of RECs with an in situ-forming gel for the treatment of herniations in degenerative human IVDs. Funding Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Agency for Medical Research and Development, and the Mochida Pharmaceutical Co., Ltd.
Collapse
|
19
|
Lu L, Xu A, Gao F, Tian C, Wang H, Zhang J, Xie Y, Liu P, Liu S, Yang C, Ye Z, Wu X. Mesenchymal Stem Cell-Derived Exosomes as a Novel Strategy for the Treatment of Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:770510. [PMID: 35141231 PMCID: PMC8818990 DOI: 10.3389/fcell.2021.770510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) has been reported to be the most prevalent contributor to low back pain, posing a significant strain on the healthcare systems on a global scale. Currently, there are no approved therapies available for the prevention of the progressive degeneration of intervertebral disc (IVD); however, emerging regenerative strategies that aim to restore the normal structure of the disc have been fundamentally promising. In the last decade, mesenchymal stem cells (MSCs) have received a significant deal of interest for the treatment of IVDD due to their differentiation potential, immunoregulatory capabilities, and capability to be cultured and regulated in a favorable environment. Recent investigations show that the pleiotropic impacts of MSCs are regulated by the production of soluble paracrine factors. Exosomes play an important role in regulating such effects. In this review, we have summarized the current treatments for disc degenerative diseases and their limitations and highlighted the therapeutic role and its underlying mechanism of MSC-derived exosomes in IVDD, as well as the possible future developments for exosomes.
Collapse
Affiliation(s)
- Lin Lu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjun Tian
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Honglin Wang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayao Zhang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengran Liu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songxiang Liu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewei Ye
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhewei Ye, ; Xinghuo Wu,
| | - Xinghuo Wu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhewei Ye, ; Xinghuo Wu,
| |
Collapse
|
20
|
KRAUS P, SAMANTA A, LUFKIN S, LUFKIN T. Stem cells in intervertebral disc regeneration-more talk than action? BIOCELL 2021; 46:893-898. [PMID: 34966192 PMCID: PMC8713956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pain and lifestyle changes are common consequences of intervertebral disc degeneration (IVDD) and affect a large part of the aging population. The stemness of cells is exploited in the field of regenerative medicine as key to treat degenerative diseases. Transplanted cells however often face delivery and survival challenges, especially in tissues with a naturally harsh microniche environment such as the intervertebral disc. Recent interest in the secretome of stem cells, especially cargo protected from microniche-related decay as frequently present in degenerating tissues, provides new means of rejuvenating ailing cells and tissues. Exosomes, a type of extracellular vesicles with purposeful cargo gained particular interest in conveying stem cell related attributes of rejuvenation, which will be discussed here in the context of IVDD.
Collapse
Affiliation(s)
- Petra KRAUS
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA, Address correspondence to: Petra Kraus,
| | - Ankita SAMANTA
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Sina LUFKIN
- The Clarkson School, Clarkson University, Potsdam, NY 13699, USA
| | - Thomas LUFKIN
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
21
|
Baldia M, Mani S, Walter N, Kumar S, Srivastava A, Prabhu K. Bone Marrow-Derived Mesenchymal Stem Cells Augment Regeneration of Intervertebral Disc in a Reproducible and Validated Mouse Intervertebral Disc Degeneration Model. Neurol India 2021; 69:1565-1570. [PMID: 34979644 DOI: 10.4103/0028-3886.333531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Back pain and radicular pain due to disc degeneration are probably the most common problems encountered in neurosurgical practice. The experience and results of stem cell therapy in animal disc degeneration model will help us while doing clinical trials. OBJECTIVE To study the effect of bone marrow-derived mesenchymal stem cells in an established mouse disc degeneration model. METHODS An easily reproducible mouse coccygeal (Co) 4-5 disc degenerated model by CT-guided percutaneous needle injury was established. The mesenchymal stem cells (MSCs) were cultured from mouse bone marrow and validated. By an established technique, 24 mice disc degenerative models were generated and divided equally into 3 groups (test, placebo, and control). The test group received MSCs with fibrin glue scaffold and placebo group received only scaffold after 6 weeks of degeneration. The control group did not receive any injection. The effects of MSCs were analyzed 8 weeks post injection. RESULTS The test group showed a significant change in disc height index (%) in micro CT, whereas in the placebo and control groups, there was no change. The Safranin O staining showed an increase in glycosaminoglycan content and the polarized imaging of picrosirius red staining showed restoration of the collagen fibers in annulus fibrosus, which was statistically significant. CONCLUSION Intradiscal MSC injection restored disc height and promoted regeneration in the discs at the end of 8 weeks. MSC's niche depends on the microenvironment of the host tissue. These findings will be helpful for clinical trials.
Collapse
Affiliation(s)
- Manish Baldia
- Department of Neurological Sciences, Christian Medical College, Bagayam, Tamil Nadu, India
| | - Sunithi Mani
- Department of Radiodiagnosis, Christian Medical College, Bagayam, Tamil Nadu, India
| | - Noel Walter
- Department of Pathology, Christian Medical College, Bagayam, Tamil Nadu, India
| | - Sanjay Kumar
- Centre for Stem Cell Research, Christian Medical College, Bagayam, Tamil Nadu, India
| | - Alok Srivastava
- Centre for Stem Cell Research, Christian Medical College, Bagayam, Tamil Nadu, India
| | - Krishna Prabhu
- Department of Neurological Sciences, Christian Medical College, Bagayam, Tamil Nadu, India
| |
Collapse
|
22
|
Lee S, Chae DS, Song BW, Lim S, Kim SW, Kim IK, Hwang KC. ADSC-Based Cell Therapies for Musculoskeletal Disorders: A Review of Recent Clinical Trials. Int J Mol Sci 2021; 22:ijms221910586. [PMID: 34638927 PMCID: PMC8508846 DOI: 10.3390/ijms221910586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/04/2023] Open
Abstract
Recently published clinical trials involving the use of adipose-derived stem cells (ADSCs) indicated that approximately one-third of the studies were conducted on musculoskeletal disorders (MSD). MSD refers to a wide range of degenerative conditions of joints, bones, and muscles, and these conditions are the most common causes of chronic disability worldwide, being a major burden to the society. Conventional treatment modalities for MSD are not sufficient to correct the underlying structural abnormalities. Hence, ADSC-based cell therapies are being tested as a form of alternative, yet more effective, therapies in the management of MSDs. Therefore, in this review, MSDs subjected to the ADSC-based therapy were further categorized as arthritis, craniomaxillofacial defects, tendon/ligament related disorders, and spine disorders, and their brief characterization as well as the corresponding conventional therapeutic approaches with possible mechanisms with which ADSCs produce regenerative effects in disease-specific microenvironments were discussed to provide an overview of under which circumstances and on what bases the ADSC-based cell therapy was implemented. Providing an overview of the current status of ADSC-based cell therapy on MSDs can help to develop better and optimized strategies of ADSC-based therapeutics for MSDs as well as help to find novel clinical applications of ADSCs in the near future.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, Catholic Kwandong University, Gangneung 210-701, Korea;
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
- Correspondence: (I.-K.K.); (K.-C.H.); Fax: +82-32-290-2774 (K.-C.H.)
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
- Correspondence: (I.-K.K.); (K.-C.H.); Fax: +82-32-290-2774 (K.-C.H.)
| |
Collapse
|
23
|
Injectable nanostructured colloidal gels resembling native nucleus pulposus as carriers of mesenchymal stem cells for the repair of degenerated intervertebral discs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112343. [DOI: 10.1016/j.msec.2021.112343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/06/2023]
|
24
|
Wang Y, Wu Y, Deng M, Kong Q. Establishment of a Rabbit Intervertebral Disc Degeneration Model by Percutaneous Posterolateral Puncturing of Lumbar Discs Under Local Anesthesia. World Neurosurg 2021; 154:e830-e837. [PMID: 34403799 DOI: 10.1016/j.wneu.2021.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE An anterior approach is applied to establish the majority of rabbit intervertebral disc degeneration (IDD) models in current studies. However, for research on disc repair via biomaterial implantation and tissue engineering, this traditional model establishment method has many shortcomings, such as the risk of general anesthesia, unnecessary tissue damage, and the influence of scar formation on the visual field for secondary implantation surgery. The aim of this study was to report a modified method of establishing an IDD model by applying percutaneous posterolateral puncturing for rabbit lumbar disc surgery under local anesthesia. METHODS We built a rabbit model of IDD by percutaneous posterolateral annulus fibrosus puncturing (AFP) (with or without nucleus pulposus aspiration [NPA]) under local anesthesia. Then, we analyzed the outcome after 12 weeks via magnetic resonance images, disc height changes, and disc histologic grades determined from morphologic observation and histologic analyses (hematoxylin and eosin and safranin-O staining and type II collagen expression analysis). RESULTS The IDD model was successfully built based on both AFP and AFP/NPA, as demonstrated by the results of magnetic resonance imaging index, morphologic, and histologic analyses. Both methods can successfully produce an IDD model after 12 weeks. However, we found that the addition of NPA significantly enhanced the modeling results. CONCLUSIONS Our results show that percutaneous posterolateral AFP/NPA of rabbit lumbar discs under local anesthesia is a minimally invasive, safe and reproducible method of establishing an IDD model. The posterolateral surgical approach is especially suitable for disc regeneration studies that require secondary biomaterial implantation via an anterior approach after the IDD model is established.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Joint Research Institute of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ye Wu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingyan Deng
- WestChina-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qingquan Kong
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Joint Research Institute of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Med-X Center for Materials, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Wu X, Liu Y, Du J, Li X, Lin J, Ni L, Zhu P, Zhou H, Kong F, Yang H, Geng D, Mao H. Melatonin Attenuates Intervertebral Disk Degeneration via Maintaining Cartilaginous Endplate Integrity in Rats. Front Physiol 2021; 12:672572. [PMID: 34220535 PMCID: PMC8248798 DOI: 10.3389/fphys.2021.672572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Objective The aim of this study is to verify whether melatonin (Mel) could mitigate intervertebral disk degeneration (IVDD) in rats and to investigate the potential mechanism of it. Method A rat acupuncture model of IVDD was established with intraperitoneal injection of Mel. The effect of Mel on IVDD was analyzed via radiologic and histological evaluations. The specific Mel receptors were investigated in both the nucleus pulposus (NP) and cartilaginous endplates (EPs). In vitro, EP cartilaginous cells (EPCs) were treated by different concentrations of Mel under lipopolysaccharide (LPS) and Luzindole conditions. In addition, LPS-induced inflammatory response and matrix degradation following nuclear factor kappa-B (NF-κB) pathway activation were investigated to confirm the potential mechanism of Mel on EPCs. Results The percent disk height index (%DHI) and MRI signal decreased after initial puncture in the degeneration group compared with the control group, while Mel treatment protected disk height from decline and prevented the loss of water during the degeneration process. In the meantime, the histological staining of the Mel groups showed more integrity and well-ordered construction of the NP and EPs in both low and high concentration than that of the degeneration group. In addition, more deep-brown staining of type II collagen (Coll-II) was shown in the Mel groups compared with the degeneration group. Furthermore, in rat samples, immunohistochemical staining showed more positive cells of Mel receptors 1a and 1b in the EPs, instead of in the NP. Moreover, evident osteochondral lacuna formation was observed in rat EPs in the degeneration group; after Mel treatment, the osteochondral destruction alleviated accompanying fewer receptor activator for nuclear factor-κB ligand (RANKL) and tartrate-resistant acid phosphatase (TRAP)-stained positive cells expressed in the EPs. In vitro, Mel could promote the proliferation of EPCs, which protected EPCs from degeneration under LPS treatment. What is more, Mel downregulated the inflammatory response and matrix degradation of EPCs activated by NF-κB pathway through binding to its specific receptors. Conclusion These results indicate that Mel protects the integrity of the EPs and attenuates IVDD by binding to the Mel receptors in the EPs. It may alleviate the inflammatory response and matrix degradation of EPCs activated by NF-κB pathway.
Collapse
Affiliation(s)
- Xiexing Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yijie Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiacheng Du
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Li
- Department of Clinical Education, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayi Lin
- Department of Orthopedics Center, Ningbo No. 2 Hospital, Ningbo, China
| | - Li Ni
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fanchen Kong
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiqing Mao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Vadalà G, Ambrosio L, Russo F, Papalia R, Denaro V. Stem Cells and Intervertebral Disc Regeneration Overview-What They Can and Can't Do. Int J Spine Surg 2021; 15:40-53. [PMID: 34376495 DOI: 10.14444/8054] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Low back pain (LPB) is the main cause of disability worldwide with enormous socioeconomic burdens. A major cause of LBP is intervertebral disc degeneration (IDD): a chronic, progressive process associated with exhaustion of the resident cell population, tissue inflammation, degradation of the extracellular matrix and dehydration of the nucleus pulposus. Eventually, IDD may lead to serious sequelae including chronic LBP, disc herniation, segmental instability, and spinal stenosis, which may require invasive surgical interventions. However, no treatment is actually able to directly tackle IDD and hamper the degenerative process. In the last decade, the intradiscal injection of stem cells is raising as a promising approach to regenerate the intervertebral disc. This review aims to describe the rationale behind a regenerative stem cell therapy for IDD as well as the effect of stem cells following their implantation in the disc environment according to preclinical studies. Furthermore, actual clinical evidence and ongoing trials will be discussed, taking into account the future perspective and current limitations of this cutting-edge therapy. METHODS A literature analysis was performed for this narrative review. A database search of PubMed, Scopus and ClinicalTrials.gov was conducted using "stem cells" combined with "intervertebral disc", "degeneration" and "regeneration" without exclusion based on publication date. Articles were firstly screened on a title-abstract basis and, subsequently, full-text were reviewed. Both preclinical and clinical studies have been included. RESULTS The database search yielded recent publications from which the narrative review was completed. CONCLUSIONS Based on available evidence, intradiscal stem cell therapy has provided encouraging results in terms of regenerative effects and reduction of LBP. However, multicenter, prospective randomized trials are needed in order confirm the safety, efficacy and applicability of such a promising treatment.
Collapse
Affiliation(s)
- Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Luca Ambrosio
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
27
|
Han Z, Wang Q, Wu X, Wang J, Gao L, Guo R, Wu J. Comprehensive RNA expression profile of therapeutic adipose‑derived mesenchymal stem cells co‑cultured with degenerative nucleus pulposus cells. Mol Med Rep 2021; 23:185. [PMID: 33398382 PMCID: PMC7809910 DOI: 10.3892/mmr.2021.11824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
Stem cell-based therapy is a promising alternative to conventional approaches to treating intervertebral disc degeneration (IDD). However, comprehensive understanding of stem cell-based therapy at the gene level is still lacking. In the present study, we identified the expression profiles of messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) expressed within a co-culture system of adipose-derived mesenchymal stem cells (ASCs) and degenerative nucleus pulposus cells (NPCs) and explored the signaling pathways involved and their regulatory networks. Microarray analysis was used to compare ASCs co-cultured with degenerative NPCs to ASCs cultured alone, and the underlying regulatory pattern, including the signaling pathways and competing endogenous RNA (ceRNA) network, was analyzed with robust bioinformatics methods. The results showed that 360 lncRNAs and 1757 mRNAs were differentially expressed by ASCs, and the microarray results were confirmed by quantitative PCR. Moreover, 589 Gene Ontology terms were upregulated, whereas 661 terms were downregulated. A total of 299 signaling pathways were significantly altered. A Path-net and a Signal-net were built to show interactions among differentially expressed genes. An mRNA-lncRNA co-expression network was constructed to reveal the interplay among differentially expressed mRNAs and lncRNAs, whereas a ceRNA network was built to investigate their connections with microRNAs involved in IDD. To the best of our knowledge, this original and comprehensive exploration reveals differentially expressed lncRNAs and mRNAs of ASCs stimulated by degenerative NPCs, underscoring the regulation pattern within the co-culture system at the gene level. These data may further understanding of NPC-directed differentiation of ASCs and facilitate the application of ASCs in future treatments for IDD.
Collapse
Affiliation(s)
- Zhihua Han
- Trauma Centre, Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - Qiugen Wang
- Trauma Centre, Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - Xiaoming Wu
- Trauma Centre, Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - Jiandong Wang
- Trauma Centre, Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - Liang Gao
- Sino Euro Orthopaedics Network, Hamburg D-66421, Germany
| | - Ruipeng Guo
- Sino Euro Orthopaedics Network, Hamburg D-66421, Germany
| | - Jianhong Wu
- Trauma Centre, Department of Trauma and Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| |
Collapse
|
28
|
Che YJ, Hou JJ, Guo JB, Liang T, Zhang W, Lu Y, Yang HL, Hao YF, Luo ZP. Low energy extracorporeal shock wave therapy combined with low tension traction can better reshape the microenvironment in degenerated intervertebral disc regeneration and repair. Spine J 2021; 21:160-177. [PMID: 32800896 DOI: 10.1016/j.spinee.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Low-tension traction is more effective than high-tension traction in restoring the height and rehydration of a degenerated disc and to some extent the bony endplate. This might better reshape the microenvironment for disc regeneration and repair. However, the repair of the combination of endplate sclerosis, osteophyte formation, and even collapse leading to partial or nearly complete occlusion of the nutrient channel is greatly limited. PURPOSE To evaluate the effectiveness of low-intensity extracorporeal shock wave therapy (ESWT) combined with low tension traction for regeneration and repair of moderately and severely degenerated discs; to explore the possible mechanism of action. STUDY DESIGN Animal study of a rat model of degenerated discs. METHODS A total of thirty-five 6-month old male Sprague-Dawley rats were randomly assigned to one of five groups (n=7, each group). In Group A (model group), caudal vertebrae were immobilized using a custom-made external device to fix four caudal vertebrae (Co7-Co10) whereas Co8-Co9 underwent 4 weeks of compression to induce moderate disc degeneration. In Group B (experimental control group), as in Group A, disc degeneration was successfully induced after which the fixed device was removed for 8 weeks of self-recovery. The remaining three groups of rats represented the intervention Groups (C-E): after successful generation of disc degeneration in Group C (com - 4w/tra - 4w) and Group D (com - 4w/ESWT), as described for group A, low-tension traction (in-situ traction) or low-energy ESWT was administered for 4 weeks (ESWT parameters: intensity: 0.15 Mpa; frequency: 1 Hz; impact: 1,000 each time; once/week, 4 times in total); Group E (com - 4w/tra - 4w/ESWT): disc degeneration as described for group A, low-tension traction combined with low-energy ESWT was conducted (ESWT parameters as Group D). After experimentation, caudal vertebrae were harvested and disc height, T2 signal intensity, disc morphology, total glycosaminoglycan (GAG) content, gene expression, structure of the Co8-Co9 bony endplates and elastic moduli of the discs were measured. RESULTS After continuous low-tension traction, low energy ESWT intervention or combined intervention, the degenerated discs effectively recovered their height and became rehydrated. However, the response in Group D was weaker than in the other intervention groups in terms of restoration of intervertebral disc (IVD) height, whereas Group E was superior in disc rehydration. Tissue regeneration was evident in Groups C to E using different interventions. No apparent tissue regeneration was observed in the experimental control group (Group B). The histological scores of the three intervention groups (Groups C-E) were lower than those of Groups A or B (p<.0001), and the scores of Groups C and E were significantly lower than those of Group D (p<.05), but not Group C versus Group E (p>.05). Compared with the intervention groups (Groups C-E), total GAG content of the nucleus pulposus (NP) in Group B did not increase significantly (p>.05). There was also no significant difference in the total GAG content between Groups A and B (p>.05). Of the three intervention groups, the recovery of NP GAG content was greatest in Group E. The expression of collagen I and II, and aggrecan in the annulus fibrosus (AF) was up-regulated (p<.05), whereas the expression of MMP-3, MMP-13, and ADAMTS-4 was down-regulated (p<.05). Of the groups, Group E displayed the greatest degree of regulation. The trend in regulation of gene expression in the NP was essentially consistent with that of the AF, of which Group E was the greatest. In the intervention groups (Groups C-E), compared with Group A, the pore structure of the bony endplate displayed clear changes. The number of pores in the endplate in Groups C to E was significantly higher than in Group A (p<.0001), among which Group C versus Group D (p=.9724), and Group C versus Group E (p=.0116). There was no significant difference between Groups A and B (p=.5261). In addition, the pore diameter also increased, the trend essentially the same as that of pore density. There was no significant difference between the three intervention groups (p=.7213). It is worth noting that, compared with Groups A and B, peripheral pore density and size in Groups D and E of the three intervention groups recovered significantly. The elastic modulus and diameter of collagen fibers in the AF and NP varied with the type of intervention. Low tension traction combined with ESWT resulted in the greatest impact on the diameter and modulus of collagen fibers. CONCLUSIONS Low energy ESWT combined with low tension traction provided a more stable intervertebral environment for the regeneration and repair of moderate and severe degenerative discs. Low energy ESWT promoted the regeneration of disc matrix by reducing MMP-3, MMP-13, and ADAMTS-4 resulting in inhibition of collagen degradation. Although axial traction promoted the recovery of height and rehydration of the IVD, combined with low energy ESWT, the micro-nano structure of the bony endplate underwent positive reconstruction, tension in the annulus of the AF and nuclear stress of the NP declined, and the biomechanical microenvironment required for IVD regeneration and repair was reshaped.
Collapse
Affiliation(s)
- Yan-Jun Che
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China; Department of Orthopedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, People's Republic of China
| | - Jun-Jun Hou
- Department of Geriatrics, Xinghu Hospital, SuZhou industrial park, Suzhou, Jiangsu, People's Republic of China; Department of Endocrinology, The First Affiliated Hospital of SooChow University, Suzhou, Jiangsu, People's Republic of China
| | - Jiang-Bo Guo
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China
| | - Ting Liang
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China
| | - Wen Zhang
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China
| | - Yan Lu
- Department of Endocrinology, The First Affiliated Hospital of SooChow University, Suzhou, Jiangsu, People's Republic of China
| | - Hui-Lin Yang
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China
| | - Yue Feng Hao
- Orthopedics and Sports medicine center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, Jiangsu, People's Republic of China
| | - Zong-Ping Luo
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China.
| |
Collapse
|
29
|
Baldia M, Mani S, Walter N, Kumar S, Srivastava A, Prabhu K. Development of a Unique Mouse Intervertebral Disc Degeneration Model Using a Simple Novel Tool. Asian Spine J 2020; 15:415-423. [PMID: 33355845 PMCID: PMC8377218 DOI: 10.31616/asj.2020.0366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 01/08/2023] Open
Abstract
Study Design Animal case control study. Purpose To create a simple, reproducible disc degeneration model for mouse coccygeal vertebrae. Overview of Literature Back pain due to disc degeneration is probably the most common problem encountered in neurosurgical practice. An easily reproducible animal model for disc degeneration will help in understanding its pathophysiology, and serve as a platform for examining various therapeutic options. Methods A total of 18 mice were divided into injured (n=12) and non-injured (n=6) groups. The disc height index (DHI%) at coccygeal 4–5 level was measured by computed tomography (CT) scan for all mice. Coccygeal 4–5 discs of the injury group were injured using a 32G needle fixed to a novel tool and confirmed by CT. The non-injury group underwent no procedure. DHI% was measured by CT at 2-, 4-, and 6-week post-injury, and all mice tails were sectioned for histopathology grading of disc degeneration at the respective time intervals. Results The injured group showed significant variation in DHI% at 2, 4, and 6 weeks, whereas there was no change in the non-injured group. Histopathologic evaluation with Safranin O stain showed a worsening of the disc degeneration score at 2, 4, and 6 weeks in the injured group, but in the non-injured group there was no change. Percutaneous needle injury technique with our novel tool provided 100% accuracy and uniform degeneration. Conclusions A simple, easily reproducible mouse model for disc degeneration was created using a simple, cost-effective, novel tool and technique, its advantage being high precision and user friendly.
Collapse
Affiliation(s)
- Manish Baldia
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Sunithi Mani
- Department of Radiodiagnosis, Christian Medical College, Vellore, India
| | - Noel Walter
- Department of Pathology, Christian Medical College, Vellore, India
| | - Sanjay Kumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Alok Srivastava
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Krishna Prabhu
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| |
Collapse
|
30
|
Mern DS, Walsen T, Beierfuß A, Thomé C. Animal models of regenerative medicine for biological treatment approaches of degenerative disc diseases. Exp Biol Med (Maywood) 2020; 246:483-512. [PMID: 33175609 DOI: 10.1177/1535370220969123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Degenerative disc disease (DDD) is a painful, chronic and progressive disease, which is characterized by inflammation, structural and biological deterioration of the intervertebral disc (IVD) tissues. DDD is specified as cell-, age-, and genetic-dependent degenerative process that can be accelerated by environmental factors. It is one of the major causes of chronic back pain and disability affecting millions of people globally. Current treatment options, such as physical rehabilitation, pain management, and surgical intervention, can provide only temporary pain relief. Different animal models have been used to study the process of IVD degeneration and develop therapeutic options that may restore the structure and function of degenerative discs. Several research works have depicted considerable progress in understanding the biological basis of disc degeneration and the therapeutic potentials of cell transplantation, gene therapy, applications of supporting biomaterials and bioactive factors, or a combination thereof. Since animal models play increasingly significant roles in treatment approaches of DDD, we conducted an electronic database search on Medline through June 2020 to identify, compare, and discuss publications regarding biological therapeutic approaches of DDD that based on intradiscal treatment strategies. We provide an up-to-date overview of biological treatment strategies in animal models including mouse, rat, rabbit, porcine, bovine, ovine, caprine, canine, and primate models. Although no animal model could profoundly reproduce the clinical conditions in humans; animal models have played important roles in specifying our knowledge about the pathophysiology of DDD. They are crucial for developing new therapy approaches for clinical applications.
Collapse
Affiliation(s)
| | - Tanja Walsen
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Anja Beierfuß
- Laboratory Animal Facility, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
31
|
Yoon SH, Kim DH, Cho S, Kim KJ. Evaluation of Bone Marrow-derived Stem Cells and Adipose-derived Stem Cells Co-cultured on Human Nucleus Pulposus Cells: A Pilot Study. Korean J Neurotrauma 2020; 16:138-146. [PMID: 33163421 PMCID: PMC7607015 DOI: 10.13004/kjnt.2020.16.e36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/15/2022] Open
Abstract
Objective We aimed to determine whether bone marrow-derived mesenchymal stem cells (BDMSCs) effectively attenuate the degeneration of human nucleus pulposus cells (NPCs). Methods Four NPC lines were obtained from 3 subjects who underwent spinal surgery for cervical disc herniation (n=1) or lumbar disc herniation (n=2). For co-culture wells without contact, BDMSCs and adipose-derived mesenchymal stem cells (ADMSCs) were seeded on tissue culture plates and maintained for 3 days. Senescence-associated β-gal (SA-β-gal) staining was represented as a percentage of the total number of stained cells (%). The cells with intracellular lipid droplets (LDs) were represented as the percentage of the number of cells with LDs. Glycosaminoglycan (GAG) secretion was measured at 450 nm, using a commercial kit, to analyze optical density. Results The ratio of cells stained with SA-β-gal to the total number of cells reduced significantly when co-cultured with BDMSCs and ADMSCs (p<0.001 vs. p<0.001). The proportion of NPCs containing LDs was lower when co-cultured with BDMSCs than with ADMSCs (p<0.001). The optical density related to GAG secretion was lower in BDMSCs and ADMSCs co-cultured with NPCs than in the controls (p<0.001 vs. p<0.001). Conclusion SA-β-gal staining showed significant attenuation of degenerative changes in NPCs co-cultured with BDMSCs. Moreover, the unexpected increase in LDs was significantly higher in NPCs co-cultured with ADMSCs than in those co-cultured with BDMSCs. However, GAG secretion was significantly decreased in NPCs co-cultured with MSCs.
Collapse
Affiliation(s)
- Sang Hoon Yoon
- Department of Neurosurgery, Armed Forces Capital Hospital, Seongnam, Korea
- Department of Neurosurgery & Spine Care, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dae Hee Kim
- Department of Neurosurgery, Armed Forces Capital Hospital, Seongnam, Korea
- Department of Neurosurgery & Spine Care, Seoul National University Bundang Hospital, Seongnam, Korea
- Neurosurgical Laboratory, Seoul National University Bundang Hospital, Seongnam, Korea
- Research Institute, Sociotech Co. Ltd., Seongnam, Korea
| | - Sam Cho
- Department of Neurosurgery, Armed Forces Capital Hospital, Seongnam, Korea
- Department of Neurosurgery & Spine Care, Seoul National University Bundang Hospital, Seongnam, Korea
- Research Institute, Sociotech Co. Ltd., Seongnam, Korea
| | - Ki-Jeong Kim
- Department of Neurosurgery & Spine Care, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
32
|
Harmon MD, Ramos DM, Nithyadevi D, Bordett R, Rudraiah S, Nukavarapu SP, Moss IL, Kumbar SG. Growing a backbone - functional biomaterials and structures for intervertebral disc (IVD) repair and regeneration: challenges, innovations, and future directions. Biomater Sci 2020; 8:1216-1239. [PMID: 31957773 DOI: 10.1039/c9bm01288e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Back pain and associated maladies can account for an immense amount of healthcare cost and loss of productivity in the workplace. In particular, spine related injuries in the US affect upwards of 5.7 million people each year. The degenerative disc disease treatment almost always arises due to a clinical presentation of pain and/or discomfort. Preferred conservative treatment modalities include the use of non-steroidal anti-inflammatory medications, physical therapy, massage, acupuncture, chiropractic work, and dietary supplements like glucosamine and chondroitin. Artificial disc replacement, also known as total disc replacement, is a treatment alternative to spinal fusion. The goal of artificial disc prostheses is to replicate the normal biomechanics of the spine segment, thereby preventing further damage to neighboring sections. Artificial functional disc replacement through permanent metal and polymer-based components continues to evolve, but is far from recapitulating native disc structure and function, and suffers from the risk of unsuccessful tissue integration and device failure. Tissue engineering and regenerative medicine strategies combine novel material structures, bioactive factors and stem cells alone or in combination to repair and regenerate the IVD. These efforts are at very early stages and a more in-depth understanding of IVD metabolism and cellular environment will also lead to a clearer understanding of the native environment which the tissue engineering scaffold should mimic. The current review focusses on the strategies for a successful regenerative scaffold for IVD regeneration and the need for defining new materials, environments, and factors that are so finely tuned in the healthy human intervertebral disc in hopes of treating such a prevalent degenerative process.
Collapse
Affiliation(s)
- Matthew D Harmon
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Daisy M Ramos
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - D Nithyadevi
- Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Rosalie Bordett
- Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT, USA
| | - Syam P Nukavarapu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA and Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Isaac L Moss
- Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Sangamesh G Kumbar
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. and Department of Orthopedics Surgery, University of Connecticut Health, Farmington, CT, USA and Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
33
|
Kim DH, Martin JT, Gullbrand SE, Elliott DM, Smith LJ, Smith HE, Mauck RL. Fabrication, maturation, and implantation of composite tissue-engineered total discs formed from native and mesenchymal stem cell combinations. Acta Biomater 2020; 114:53-62. [PMID: 32505801 DOI: 10.1016/j.actbio.2020.05.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Low back pain arising from disc degeneration is one of the most common causes of limited function in adults. A number of tissue engineering strategies have been used to develop composite tissue engineered total disc replacements to restore native tissue structure and function. In this study we fabricated a composite engineered disc based on the combination of a porous polycaprolactone (PCL) foam annulus fibrosus (AF) and a hyaluronic acid (HA) hydrogel nucleus pulposus (NP). To evaluate whether native tissue cells or mesenchymal stem cells (MSCs) would perform better, constructs were seeded with native AF/NP cells or with MSCs in the foam and/or gel region. Maturation of these composite engineered discs was evaluated for 9 weeks in vitro culture by biochemical content, histological analysis and mechanical properties. To evaluate the performance of these constructs in the in vivo space, engineered discs were implanted into the caudal spines of athymic rats for 5 weeks. Our findings show that engineered discs comprised of AF/NP cells and MSCs performed similarly and maintained their structure after 5 weeks in vivo. However, for both cell types, loss of proteoglycan was evident in the NP region. These data support the continued development of the more clinically relevant MSCs population for disc replacement applications. STATEMENT OF SIGNIFICANCE: A number of tissue engineering strategies have emerged that are focused on the creation of a composite disc replacement. We fabricated a composite engineered disc based on the combination of a porous foam AF and a HA gel NP. We used these constructs to determine whether the combination of AF/NP cells or MSCs would mature to a greater extent in vitro and which cell type would best retain their phenotype after implantation. Engineered discs comprised of AF/NP cells and MSCs performed similarly, maintaining their structure after 5 weeks in vivo. These data support the successful fabrication and in vivo function of an engineered disc composed of a PCL foam AF and a hydrogel NP using either disc cells or MSCs.
Collapse
|
34
|
Mujawar S, Iyengar K, Nadkarni S, Mulherkar R. Expansion and characterization of cells from surgically removed intervertebral disc fragments in xenogen-free medium. J Biosci 2020. [DOI: 10.1007/s12038-020-00091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Hirase T, Jack RA, Sochacki KR, Harris JD, Weiner BK. Systematic Review: Is Intradiscal Injection of Bone Marrow Concentrate for Lumbar Disc Degeneration Effective? Cureus 2020; 12:e9045. [PMID: 32782864 PMCID: PMC7410505 DOI: 10.7759/cureus.9045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current studies evaluating the outcomes of an intradiscal injection of bone marrow concentrate (BMC) for lumbar disc degeneration are limited. The purpose of this review was to determine if an intradiscal injection of BMC for lumbar disc degeneration results in a statistically significant improvement in clinical outcomes. A systematic review was performed using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Levels I-IV investigations of intradiscal BMC injections in symptomatic lumbar disc degeneration were included in the analysis. Modified Coleman Methodology Scores (MCMS) were used to analyze study methodological quality. Only outcome measurements used by more than 50% of included studies, with a minimum follow-up of 12 months, were eligible for final data analysis. Pre-injection and post-injection visual analog scale (VAS) and Oswestry disability index (ODI) were compared using two-sample Z-tests. Seven articles (97 subjects (47 males, 38 females, 12 unspecified), mean age 33.9 ± 14.3 years, mean follow-up 44.4 ± 25.4 months) were analyzed. Six articles were level IV evidence and one article was level II. Mean MCMS was 56.6 ± 9.1. All subjects received single injections into the nucleus pulposus of one or more affected discs. VAS (66.0 mm to 20.9 mm; p<0.001) and ODI (44.4 to 19.1; p<0.001) significantly improved following the intradiscal BMC injection. One patient (1.0%) experienced herniated nucleus pulposus (HNP) following treatment. No other complications or re-injections were reported. In conclusion, despite our skepticism regarding the efficacy of the procedure, intradiscal injection of BMC for lumbar disc degeneration resulted in statistically significant improvement in VAS and ODI with low re-injection and complication rates in the studies assessed. Given that this study is limited to level IV evidence, the findings suggest that further randomized controlled studies may be worthwhile to evaluate the true efficacy of this treatment.
Collapse
Affiliation(s)
- Takashi Hirase
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, USA
| | - Robert A Jack
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, USA
| | - Kyle R Sochacki
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, USA
| | - Joshua D Harris
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, USA
| | - Bradley K Weiner
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, USA
| |
Collapse
|
36
|
Yolcu YU, Moinuddin FM, Wahood W, Alvi MA, Qu W, Bydon M. Use of regenerative treatments in treatment of lumbar Degenerative Disc Disease: A systematic review. Clin Neurol Neurosurg 2020; 195:105916. [PMID: 32442808 DOI: 10.1016/j.clineuro.2020.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
Low back pain due to lumbar Degenerative Disc Disease (DDD) is one of the most common causes of disability and morbidity, particularly among older adults. Current research efforts in lumbar DDD management are shifting towards identifying and correcting the pathology in intervertebral discs without any external manipulation. Herein, we present a systematic review of current literature regarding regenerative treatments for lumbar DDD. An electronic search of databases including PubMed, Ovid/MEDLINE, Cochrane and Scopus was conducted for articles in all available years. Studies that investigated treatment for discogenic pain in lumbar DDD, including any type of stem cell or bone marrow concentrate as the treatment agent and studies that report both baseline and follow-up pain and Oswestry Disability Index (ODI) scores were included in the review. Changes in pain and ODI scores were calculated for 3-month, 6-month and 12-month periods. Six studies with a total of 93 patients were evaluated. Mean (SD) age of the pooled sample was 40.0(8.1) and 39.5% (32/81) of patients were female. Pain improvement was reported in 38.8% of patients at 3-month, 40.8% at 6-month and 44.1% at 12-month follow-up. Average improvement in ODI score for 3-month, 6-month and 12-month follow-ups was calculated to be 24.0, 26.5 and 25.7, respectively. Regenerative treatments are being increasingly employed across all spectrums of medicine. Review of six single arm studies revealed a potential positive impact in the preliminary results. However, these promising 'preliminary' results should not be interpreted as the definite treatment and should be validated with further prospective studies.
Collapse
Affiliation(s)
- Yagiz Ugur Yolcu
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - F M Moinuddin
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Waseem Wahood
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL, USA
| | - Mohammed Ali Alvi
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Wenchun Qu
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Mohamad Bydon
- Mayo Clinic Neuro-Informatics Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
37
|
Chen Y, Tang L. Stem Cell Senescence: the Obstacle of the Treatment of Degenerative Disk Disease. Curr Stem Cell Res Ther 2020; 14:654-668. [PMID: 31490764 DOI: 10.2174/1574888x14666190906163253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/05/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022]
Abstract
Intervertebral disc (IVD) has a pivotal role in the maintenance of flexible motion. IVD degeneration is one of the primary causes of low back pain and disability, which seriously influences patients' health, and increases the family and social economic burden. Recently, stem cell therapy has been proven to be more effective on IVD degeneration disease. However, stem cell senescence is the limiting factor in the IVD degeneration treatment. Senescent stem cells have a negative effect on the self-repair on IVD degeneration. In this review, we delineate that the factors such as telomerase shortening, DNA damage, oxidative stress, microenvironment and exosomes will induce stem cell aging. Recent studies tried to delay the aging of stem cells by regulating the expression of aging-related genes and proteins, changing the activity of telomerase, improving the survival microenvironment of stem cells and drug treatment. Understanding the mechanism of stem cell aging and exploring new approaches to delay or reverse stem cell aging asks for research on the repair of the degenerated disc.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400044, China
| |
Collapse
|
38
|
Hussain I, Sloan SR, Wipplinger C, Navarro-Ramirez R, Zubkov M, Kim E, Kirnaz S, Bonassar LJ, Härtl R. Mesenchymal Stem Cell-Seeded High-Density Collagen Gel for Annular Repair: 6-Week Results From In Vivo Sheep Models. Neurosurgery 2020; 85:E350-E359. [PMID: 30476218 DOI: 10.1093/neuros/nyy523] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Our group has previously demonstrated in vivo annulus fibrosus repair in animal models using an acellular, riboflavin crosslinked, high-density collagen (HDC) gel. OBJECTIVE To assess if seeding allogenic mesenchymal stem cells (MSCs) into this gel yields improved histological and radiographic benefits in an in vivo sheep model of annular injury. METHODS Fifteen lumbar intervertebral discs (IVDs) were randomized into 4 groups: intact, injury only, injury + acellular gel treatment, or injury + MSC-seeded gel treatment. Sheep were sacrificed at 6 wk. Disc height index (DHI), Pfirrmann grade, nucleus pulposus area, and T2 relaxation time (T2-RT) were calculated for each IVD and standardized to healthy controls from the same sheep. Quantitative histological assessment was also performed using the Han scoring system. RESULTS All treated IVDs retained gel plugs on gross assessment and there were no adverse perioperative complications. The MSC-seeded gel treatment group demonstrated statistically significant improvement over other experimental groups in DHI (P = .002), Pfirrmann grade (P < .001), and T2-RT (P = .015). There was a trend for greater Han scores in the MSC-seeded gel-treated discs compared with injury only and acellular gel-treated IVDs (P = .246). CONCLUSION MSC-seeded HDC gel can be delivered into injured IVDs and maintained safely in live sheep to 6 wk. Compared with no treatment and acellular HDC gel, our data show that MSC-seeded HDC gel improves outcomes in DHI, Pfirrmann grade, and T2-RT. Histological analysis shows improved annulus fibrosus and nucleus pulposus reconstitution and organization over other experimental groups as well.
Collapse
Affiliation(s)
- Ibrahim Hussain
- Department of Neurological Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - Stephen R Sloan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Christoph Wipplinger
- Department of Neurological Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - Rodrigo Navarro-Ramirez
- Department of Neurological Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - Micaella Zubkov
- Department of Neurological Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - Eliana Kim
- Department of Neurological Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - Sertac Kirnaz
- Department of Neurological Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Roger Härtl
- Department of Neurological Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| |
Collapse
|
39
|
Ukeba D, Sudo H, Tsujimoto T, Ura K, Yamada K, Iwasaki N. Bone marrow mesenchymal stem cells combined with ultra-purified alginate gel as a regenerative therapeutic strategy after discectomy for degenerated intervertebral discs. EBioMedicine 2020; 53:102698. [PMID: 32143180 PMCID: PMC7057222 DOI: 10.1016/j.ebiom.2020.102698] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Because the regenerative ability of intervertebral discs (IVDs) is restricted, defects caused by discectomy may induce insufficient tissue repair leading to further IVD degeneration. An acellular bioresorbable biomaterial based on ultra-purified alginate (UPAL) gel was developed to fill the IVD cavity and prevent IVD degeneration. However, an acellular matrix-based strategy may have limitations, particularly in the elderly population, who exhibit low self-repair capability. Therefore, further translational studies involving product combinations, such as UPAL gel plus bone marrow-derived mesenchymal stem cells (BMSCs), are required to evaluate the regenerative effects of BMSCs embedded in UPAL gel on degenerated IVDs. METHODS Rabbit BMSCs and nucleus pulposus cells (NPCs) were co-cultured in a three-dimensional (3D) system in UPAL gel. In addition, rabbit or human BMSCs combined with UPAL gel were implanted into IVDs following partial discectomy in rabbits with degenerated IVDs. FINDINGS Gene expression of NPC markers, growth factors, and extracellular matrix was significantly increased in the NPC and BMSC 3D co-culture compared to that in each 3D mono-culture. In vivo, whereas UPAL gel alone suppressed IVD degeneration as compared to discectomy, the combination of BMSCs and UPAL gel exerted a more potent effect to induce IVD regeneration. Similar IVD regeneration was observed using human BMSCs. INTERPRETATION These findings demonstrate the therapeutic potential of BMSCs combined with UPAL gel as a regenerative strategy following discectomy for degenerated IVDs. FUNDING Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Agency for Medical Research and Development, and the Mochida Pharmaceutical Co., Ltd.
Collapse
Affiliation(s)
- Daisuke Ukeba
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideki Sudo
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan; Faculty of Medicine and Graduate of Medicine, Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Takeru Tsujimoto
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Katsuro Ura
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Katsuhisa Yamada
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan; Faculty of Medicine and Graduate of Medicine, Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norimasa Iwasaki
- Faculty of Medicine and Graduate of Medicine, Department of Orthopedic Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
40
|
Wolff M, Shillington JM, Rathbone C, Piasecki SK, Barnes B. Injections of concentrated bone marrow aspirate as treatment for Discogenic pain: a retrospective analysis. BMC Musculoskelet Disord 2020; 21:135. [PMID: 32111220 PMCID: PMC7049206 DOI: 10.1186/s12891-020-3126-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/10/2020] [Indexed: 01/07/2023] Open
Abstract
Background There are an overwhelming number of patients suffering from low back pain (LBP) resulting from disc pathology. Although several strategies are being developed pre-clinically, simple strategies to treat the large number of patients currently affected is still needed. One option is to use concentrated bone marrow aspirate (cBMA), which may be effective due to its intrinsic stem cells and growth factors. Methods Thirty-three patients who received intradiscal injections of cBMA to relieve LBP were followed up based on Numeric Rating Scale (NRS), Oswestry Low Back Pain Disability Index (ODI), and Short Form-36 Health Survey (SF-36) scores. Patients were also subdivided into those with a pre-injection NRS > 5 and pre-injection NRS ≤ 5. The proportion of patients demonstrating at least 50% improvement (and 95% confidence intervals) from baseline at five follow-up visits for each outcome was evaluated. Results At least 50% improvement in NRS was observed for 13.8, 45.8, 41.1, 23.5, and 38.9% of patients across five follow-up visits, out to 1 year. When stratified by high (> 5) versus low (≤ 5) baseline NRS scores, the values were 14.3, 45.5, 71.4, 22.2, and 44.4% among those with high baseline pain, and 13.3, 46.2, 20.0, 25.0, and 33.3% among those with low baseline pain. The 50% improvement rates across visits were 4.3, 28.6, 30.0, 22.2, and 30.8% for SF-36, and 4.2, 26.7, 36.4, 55.6, and 30.8% for ODI. Conclusions Intradiscal cBMA injections may be effective to reduce pain and improve function. Patients with relatively higher initial pain may have potential for greatest improvement.
Collapse
Affiliation(s)
- Michael Wolff
- Southwest Spine and Sports, 9913 N. 95th St, Scottsdale, AZ, 85258, USA.
| | | | | | | | | |
Collapse
|
41
|
Binch ALA, Richardson SM, Hoyland JA, Barry FP. Combinatorial conditioning of adipose derived-mesenchymal stem cells enhances their neurovascular potential: Implications for intervertebral disc degeneration. JOR Spine 2019; 2:e1072. [PMID: 31891121 PMCID: PMC6920684 DOI: 10.1002/jsp2.1072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are becoming an increasingly attractive option for regenerative therapies due to their availability, self-renewal capacity, multilineage potential, and anti-inflammatory properties. Clinical trials are underway to test the efficacy of stem cell-based therapies for the repair and regeneration of the degenerate intervertebral disc (IVD), a major cause of back pain. Recently, both bone marrow-derived MSCs and adipose-derived stem cells (ASCs) have been assessed for IVD therapy but there is a lack of knowledge surrounding the optimal cell source and the response of transplanted cells to the low oxygen, pro-inflammatory niche of the degenerate disc. Here, we investigated several neurovascular factors from donor-matched MSCs and ASCs that may potentiate the survival and persistence of sensory nerve fibers and blood vessels present within painful degenerate discs and their regulation by oxygen tensions and inflammatory cytokines. METHODS Donor-matched ASCs and MSCs were conditioned with either IL-1β or TNFα under normoxic (21% O2) or hypoxic (5% O2) conditions. Expression and secretion of several potent neurovascular factors were assessed using qRT-PCR and human magnetic Luminex assay. RESULTS ASCs and MSCs expressed constitutive levels of key neurotrophic factors; and stimulation of ASCs with hypoxia triggered increased secretion of both angiogenic factors (Ang-2 and VEGF-A) and neurotrophic (NGF and NT-3) compared to MSCs. We also report increased transcriptional regulation of pain-associated neuropeptides in hypoxia stimulated ASCs compared to those in normoxic conditions. We demonstrate transcriptional and translational upregulation of NGF, NT-3, Ang-1, and FGF-2 in response to cytokines in ASCs in 21% and 5% O2. CONCLUSIONS This work highlights fundamental differences between the neurovascular secretome of donor-matched ASCs and MSCs, demonstrating the importance of cell-selection for tissue specific regeneration to reduce ectopic sensory nerve and blood vessel survival and improve patient outcomes.
Collapse
Affiliation(s)
- Abbie. L. A. Binch
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Sciences Centre, University of ManchesterManchesterUK
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Sciences Centre, University of ManchesterManchesterUK
- NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| | - Frank P. Barry
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway)GalwayIreland
| |
Collapse
|
42
|
Injectable Hydrogel Combined with Nucleus Pulposus-Derived Mesenchymal Stem Cells for the Treatment of Degenerative Intervertebral Disc in Rats. Stem Cells Int 2019; 2019:8496025. [PMID: 31737077 PMCID: PMC6815539 DOI: 10.1155/2019/8496025] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cell-based tissue engineering in treating intervertebral disc (IVD) degeneration is promising. An appropriate cell scaffold can maintain the viability and function of transplanted cells. Injectable hydrogel has the potential to be an appropriate cell scaffold as it can mimic the condition of the natural extracellular matrix (ECM) of nucleus pulposus (NP) and provide binding sites for cells. This study was aimed at investigating the effect of injectable hydrogel-loaded NP-derived mesenchymal stem cells (NPMSC) for the treatment of IVD degeneration (IDD) in rats. In this study, we selected injectable 3D-RGD peptide-modified polysaccharide hydrogel as a cell transplantation scaffold. In vitro, the biocompatibility, microstructure, and induced differentiation effect on NPMSC of the hydrogel were studied. In vivo, the regenerative effect of hydrogel-loaded NPMSC on degenerated NP in a rat model was evaluated. The results showed that NPMSC was biocompatible and able to induce differentiation in hydrogel in vivo. The disc height index (almost 87%) and MRI index (3313.83 ± 227.79) of the hydrogel-loaded NPMSC group were significantly higher than those of other groups at 8 weeks after injection. Histological staining and immunofluorescence showed that the hydrogel-loaded NPMSC also partly restored the structure and ECM content of degenerated NP after 8 weeks. Moreover, the hydrogel could support long-term NPMSC survival and decrease cell apoptosis rate of the rat IVD. In conclusion, injectable hydrogel-loaded NPMSC transplantation can delay the level of IDD and promote the regeneration of the degenerative IVD in the rat model.
Collapse
|
43
|
Intervertebral Disc Nucleus Repair: Hype or Hope? Int J Mol Sci 2019; 20:ijms20153622. [PMID: 31344903 PMCID: PMC6696292 DOI: 10.3390/ijms20153622] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic back pain is a common disability, which is often accredited to intervertebral disc degeneration. Gold standard interventions such as spinal fusion, which are mainly designed to mechanically seal the defect, frequently fail to restore the native biomechanics. Moreover, artificial implants have limited success as a repair strategy, as they do not alter the underlying disease and fail to promote tissue integration and subsequent native biomechanics. The reported high rates of spinal fusion and artificial disc implant failure have pushed intervertebral disc degeneration research in recent years towards repair strategies. Intervertebral disc repair utilizing principles of tissue engineering should theoretically be successful, overcoming the inadequacies of artificial implants. For instance, advances in the development of scaffolds aided with cells and growth factors have opened up new possibilities for repair strategies. However, none has reached the stage of clinical trials in humans. In this review, we describe the hitches encountered in the musculoskeletal field and summarize recent advances in designing tissue-engineered constructs for promoting nucleus pulposus repair. Additionally, the review focuses on the effect of biomaterial aided with cells and growth factors on achieving effective functional reparative potency, highlighting the ways to enhance the efficacy of these treatments.
Collapse
|
44
|
Liu Y, Li Y, Huang ZN, Wang ZY, Nan LP, Wang F, Zhou SF, Wang JC, Feng XM, Zhang L. The effect of intervertebral disc degenerative change on biological characteristics of nucleus pulposus mesenchymal stem cell: an in vitro study in rats. Connect Tissue Res 2019; 60:376-388. [PMID: 31119993 DOI: 10.1080/03008207.2019.1570168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: To evaluate the change on biological characteristics of mesenchymal stem cell (MSC) derived from normal and degenerative intervertebral disc (IVD). Methods: MSC was isolated from normal and degenerative IVD rat model. Immunophenotype detected by flow cytometric analysis, expression of stemness genes determined by reverse-transcription polymerase chain reaction (RT-PCR) and osteogenic, adipogenic and chondrogenic differentiation were compared between MSC derived from normal IVD (N-NPMSC) and degenerative IVD (D-NPMSC). The biological characteristics including cell proliferation, colony formation, apoptosis, caspase-3 activity and mRNA and protein expressions of hypoxia inducible factor-1α (HIF-1α), glucose transporter 1 (GLUT-1), vascular endothelial growth factor (VEGF), silent information regulator protein 1 (SIRT1) and silent information regulator protein 6 (SIRT6) were compared between N-NPMSC and D-NPMSC. Results: Both of N-NPMSC and D-NPMSC highly expressed CD105, CD90 and CD73, and lower expressed CD34 and CD45. There was no significant difference in cell morphology and multipotent differentiation ability between N-NPMSC and D-NPMSC. D-NPMSC showed significantly lower expressions of stemness genes, cell proliferation and colony formation ability. D-NPMSC also exhibited increased cell apoptosis rate and caspase-3 expression, and significantly lower expressions of HIF-1α, GLUT-1, VEGF, SIRT1 and SIRT6 in mRNA and protein levels compared with N-NPMSC. Conclusions: N-NPMSC showed significantly higher proliferation rate, better colony forming and stemness maintenance ability, whereas reduced cell apoptosis rate compared with D-NPMSC. HIF-1α-mediated signal pathway may be involved in the regulation of NPMSC proliferation. These findings indicated that degenerative change of IVD should be taken into account when selecting a source of NPMSC for clinical application.
Collapse
Affiliation(s)
- Yang Liu
- a Department of Orthopedics , Dalian Medical University , Dalian , Liaoning , China
| | - Yan Li
- b Department of Internal Medicine , Dalian Medical University , Dalian , Liaoning , China
| | - Ze-Nan Huang
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Ze-Yu Wang
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Li-Ping Nan
- a Department of Orthopedics , Dalian Medical University , Dalian , Liaoning , China
| | - Feng Wang
- a Department of Orthopedics , Dalian Medical University , Dalian , Liaoning , China
| | - Shi-Feng Zhou
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Jing-Cheng Wang
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Xin-Min Feng
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Liang Zhang
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| |
Collapse
|
45
|
Christiani TR, Baroncini E, Stanzione J, Vernengo AJ. In vitro evaluation of 3D printed polycaprolactone scaffolds with angle-ply architecture for annulus fibrosus tissue engineering. Regen Biomater 2019; 6:175-184. [PMID: 31198585 PMCID: PMC6547313 DOI: 10.1093/rb/rbz011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering of the annulus fibrosus (AF) is currently being investigated as a treatment for intervertebral disc degeneration, a condition frequently associated with low back pain. The objective of this work was to use 3D printing to generate a novel scaffold for AF repair that mimics the structural and biomechanical properties of the native tissue. Multi-layer scaffolds were fabricated by depositing polycaprolactone struts in opposing angular orientations, replicating the angle-ply arrangement of the native AF tissue. Scaffolds were printed with varied strut diameter and spacing. The constructs were characterized morphologically and by static and dynamic mechanical analyses. Scaffold surfaces were etched with unidirectional grooves and the influence on bovine AF cell metabolic activity, alignment, morphology and protein expression was studied in vitro. Overall, the axial compressive and circumferential tensile properties of the scaffolds were found to be in a similar range to the native AF tissue. Confocal microscopy images indicated that cells were able to attach and spread on the smooth polycaprolactone scaffolds, but the surface texture induced cellular alignment and proliferation. Furthermore, immunofluorescence analysis demonstrated the aligned deposition of collagen type I, aggrecan and the AF-specific protein marker tenomodulin on the etched scaffolds. Overall, results demonstrated the potential for using the scaffolds as a template for AF regeneration.
Collapse
Affiliation(s)
- T R Christiani
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, USA
| | - E Baroncini
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, USA
| | - J Stanzione
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, USA
| | - A J Vernengo
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, USA
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, USA
| |
Collapse
|
46
|
Clouet J, Fusellier M, Camus A, Le Visage C, Guicheux J. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev 2019; 146:306-324. [PMID: 29705378 DOI: 10.1016/j.addr.2018.04.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Low back pain (LBP), frequently associated with intervertebral disc (IVD) degeneration, is a major public health concern. LBP is currently managed by pharmacological treatments and, if unsuccessful, by invasive surgical procedures, which do not counteract the degenerative process. Considering that IVD cell depletion is critical in the degenerative process, the supplementation of IVD with reparative cells, associated or not with biomaterials, has been contemplated. Recently, the discovery of reparative stem/progenitor cells in the IVD has led to increased interest in the potential of endogenous repair strategies. Recruitment of these cells by specific signals might constitute an alternative strategy to cell transplantation. Here, we review the status of cell-based therapies for treating IVD degeneration and emphasize the current concept of endogenous repair as well as future perspectives. This review also highlights the challenges of the mobilization/differentiation of reparative progenitor cells through the delivery of biologics factors to stimulate IVD regeneration.
Collapse
Affiliation(s)
- Johann Clouet
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes F-44035, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Marion Fusellier
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Department of Diagnostic Imaging, CRIP, National Veterinary School (ONIRIS), Nantes F-44307, France
| | - Anne Camus
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Catherine Le Visage
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Jérôme Guicheux
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France.
| |
Collapse
|
47
|
Meisel HJ, Agarwal N, Hsieh PC, Skelly A, Park JB, Brodke D, Wang JC, Yoon ST, Buser Z. Cell Therapy for Treatment of Intervertebral Disc Degeneration: A Systematic Review. Global Spine J 2019; 9:39S-52S. [PMID: 31157145 PMCID: PMC6512192 DOI: 10.1177/2192568219829024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVE To review, critically appraise, and synthesize evidence on use of cell therapy for intervertebral disc repair. METHODS A systematic search of PubMed/MEDLINE was conducted for literature published through October 31, 2018 and EMBASE and ClinicalTrials.gov databases through April 13, 2018 comparing allogenic or autologous cell therapy for intervertebral disc (IVD) repair in the lumbar or cervical spine. In the absence of comparative studies, case series of ≥10 patients were considered. RESULTS From 1039 potentially relevant citations, 8 studies across 10 publications on IVD cell therapies in the lumbar spine met the inclusion criteria. All studies were small and primarily case series. For allogenic cell sources, no difference in function or pain between mesenchymal cell treatment and sham were reported in 1 small randomized controlled trial; 1 small case series reported improved function and pain relative to baseline but it was unclear if the change was clinically significant. Similarly for autologous cell sources, limited data across case series suggest pain and function may be improved relative to baseline; whether the changes were clinically significant was not clear. Safety data was sparse and poorly reported. The need for subsequent surgery was reported in 3 case-series studies ranging from 6% to 80%. CONCLUSIONS The overall strength of evidence for efficacy and safety of cell therapy for lumbar IVD repair was very low primarily due to substantial risk of bias, small sample sizes and lack of a comparator intervention. Methodologically sound studies comparing cell therapies to other treatments are needed.
Collapse
Affiliation(s)
| | | | | | | | - Jong-Beom Park
- Uijongbu St. Mary’s Hospital, The Catholic University of Korea, Uijongbu, Republic of Korea
| | | | | | | | - Zorica Buser
- University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
48
|
Shi P, Chee A, Liu W, Chou PH, Zhu J, An HS. Therapeutic effects of cell therapy with neonatal human dermal fibroblasts and rabbit dermal fibroblasts on disc degeneration and inflammation. Spine J 2019; 19:171-181. [PMID: 30142460 DOI: 10.1016/j.spinee.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND CONTEXT Increasing evidence suggests transplanting viable cells into the degenerating intervertebral disc (IVD) may be effective in treating disc degeneration and back pain. Clinical studies utilizing autologous or allogeneic mesenchymal stem cells to treat patients with back pain have reported some encouraging results. Animal studies have shown that cells injected into the disc can survive for months and have regenerative effects. Studies to determine the advantages and disadvantages of cell types and sources for therapy are needed. PURPOSE The objective of this study is to determine the impact of donor source on the therapeutic effects of dermal fibroblast treatment on disc degeneration and inflammation. STUDY DESIGN Using the rabbit disc degeneration model, we compared transplantation of neonatal human dermal fibroblasts (nHDFs) and rabbit dermal fibroblasts (RDFs) into rabbit degenerated discs on host immune response, disc height, and IVD composition. METHODS New Zealand white rabbits received an annular puncture using an 18-guage needle to induce disc degeneration. Four weeks after injury, rabbit IVDs were treated with 5 × 106 nHDFs, RDFs, or saline. At eight weeks post-treatment, animals were sacrificed. X-ray images were obtained. IVDs were isolated for inflammatory and collagen gene expression analysis using real-time polymerase chain reaction and biochemical analysis of proteoglycan contents using dimethylmethylene blue assay. These studies were funded by a research grant from SpinalCyte, LLC ($414,431). RESULTS Eight weeks after treatment, disc height indexes of discs treated with nHDF increased significantly by 7.8% (p<.01), whereas those treated with saline or RDF increased by 1.5% and 2.0%, respectively. Gene expression analysis showed that discs transplanted with nHDFs and RDFs displayed similar inflammatory responses (p=.2 to .8). Compared to intact discs, expression of both collagen types I and II increased significantly in nHDF-treated discs (p<.05), trending to significant in RDF-treated discs, and not significantly in saline treated discs. The ratio of collagen type II/collagen type I was higher in the IVDs treated with nHDFs (1.26) than those treated with RDFs (0.81) or saline (0.59) and intact discs (1.00). Last, proteoglycan contents increased significantly in discs treated with nHDF (p<.05) and were trending toward significance in the RDF-treated discs compared to those treated with saline. CONCLUSIONS This study showed that cell transplantation with nHDF into degenerated IVDs can significantly increase markers of disc regeneration (disc height, collagen type I and II gene expression, and proteoglycan contents). Transplantation with RDFs showed similar regenerative trends, but these trends were not significant. This study also showed that the human cells transplanted into the rabbit discs did not induce a higher immune response than the rabbit cells. These results support that the IVD is immune privileged and would tolerate allogeneic or xenogeneic grafts.
Collapse
Affiliation(s)
- Peng Shi
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA; Tufts University School of Dental Medicine, 1 Kneeland St, Boston, MA 02111, USA
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA
| | - Weijun Liu
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA; Department of Orthopedics, Wuhan Pu'Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 473 Hanzheng St, Wuhan 430033, China
| | - Po-Hsin Chou
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA; Department of Orthopaedic and Traumatology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, ROC; School of Medicine, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou District, Taipei City, Taiwan 112, ROC
| | - Jun Zhu
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA; The Minimally Invasive Department of Orthopedics, The First People's Hospital of Huaihua, The Research Center of Translational Medicine, Jishou University School of Medicine, 144 South Road Jinxi South Road, Huaihua City, Hunan 418000, China
| | - Howard S An
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA.
| |
Collapse
|
49
|
Giers MB, Bardonova L, Eyster K, Byvaltsev V, Preul MC. APOPTOSIS, NUTRITION, AND METABOLISM OF TRANSPLANTED INTERVERTEBRAL DISC CELLS. COLUNA/COLUMNA 2018. [DOI: 10.1590/s1808-185120181704191006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Apoptosis is a contributing factor to degenerating intervertebral disc (IVD). Disc regeneration has been attempted by transplanting cells into the disc, with some gains in disc height achieved in animal models. Here, we study whether the apoptotic microenvironment affects the transplanted disc cells. Methods: Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were grown in media then starved for 5 days in vitro by not changing the media. Three aspects of apoptotic cell influence on the transplanted cells were tested in a total of 32 samples: 1) the effect of apoptotic cytokines in the media, 2) reduced glucose in the media, and 3) apoptotic cell bodies in the flask. The Trypan Blue, AlamarBlue®, and 1,9-Dimethyl-Methylene Blue assays for sulfated glycosaminoglycan (sGAG) content were performed (n=4). Results: There were significant decreases in cell viability between the control, 25% conditioned media (CM) and starved control group. There were no significant differences in cell number, metabolic activity or sGAG production in cells grown in different conditioned media compared to cells grown in complete media. The cells of the control decreased in viability and number over the 5 days without feeding, then improved dramatically when feeding was resumed. Flasks that received transplanted cells in addition to renewed feeding did not recover as much as the cells in the re-fed group. Conclusions: Cytokines from starved cells negatively impact on the viability of healthy cells. Starving cells that receive new sources of nutrition have even higher viability than transplanted cells. This indicates that altering and improving the nutrient supply problem in the IVD could be a valuable option. Level of Evidence III; Case control studyg.
Collapse
Affiliation(s)
- Morgan B. Giers
- St. Joseph's Hospital and Medical Center, USA; Arizona State University, USA
| | - Liudmila Bardonova
- St. Joseph's Hospital and Medical Center, USA; Irkutsk Scientific Center of Surgery and Traumatology, Russia; Irkutsk State Medical University, Russia
| | | | - Vadim Byvaltsev
- Irkutsk Scientific Center of Surgery and Traumatology, Russia; Irkutsk State Medical University, Russia
| | | |
Collapse
|
50
|
Migliorini F, Rath B, Tingart M, Baroncini A, Quack V, Eschweiler J. Autogenic mesenchymal stem cells for intervertebral disc regeneration. INTERNATIONAL ORTHOPAEDICS 2018; 43:1027-1036. [PMID: 30415465 DOI: 10.1007/s00264-018-4218-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE A systematic review of the literature was conducted to clarify the outcomes of autologous mesenchymal stem cells (MSC) injections for the regeneration of the intervertebral disc (IVD). METHODS The following databases were accessed: PubMed, Medline, CINAHL, Cochrane, Embase and Google Scholar bibliographic databases. Articles including previous or planned surgical interventions were excluded. Only articles reporting percutaneous autologous MSC injection to regenerate IVD in humans were included. We referred to the Coleman Methodology Score for the methodological quality assessment. The statistical analysis was performed using Review Manager Software 5.3. RESULTS After the databases search and cross-references of the bibliographies, seven studies were included in the present work. The funnel plot detected low risk of publication bias. The Coleman Methodology Score reported a good result, scoring 61.07 points. A total of 98 patients were enrolled, with 122 treated levels. All the patients underwent conservative therapies prior to injection. A remarkable improvement in the quality of life were reported after the treatment. The average Oswestry Disability Index (ODI) improved from "severe disability" to "minimal disability" at one year follow-up. The visual analogue scale (VAS) showed an improvement of ca. 30% at one year follow-up. Only one case of herniated nucleus pulposus was reported. No other adverse events at the aspiration or injection site were observed. CONCLUSIONS This systematic review of the literature proved MSC injection to be a safe and feasible option for intervertebral disc regeneration in the early-degeneration stage patients. Irrespective of the source of the MSCs, an overall clinical and radiological improvement of the patients has been evidenced, as indeed a very low complication rate during the follow-up.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Björn Rath
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Alice Baroncini
- Department of Spine Surgery, Eifelklinik St. Brigida, Kammerbruchstraße 8, 52152, Simmerath, Germany
| | - Valentin Quack
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedics, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|