1
|
[Biomechanical evaluation of effects of percutaneous cement discoplasty and percutaneous cement interbody fusion on spinal stability]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1407-1412. [PMID: 36382460 PMCID: PMC9681586 DOI: 10.7507/1002-1892.202206052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To investigate the effects of percutaneous cement discoplasty (PCD) and percutaneous cement interbody fusion (PCIF) on spinal stability by in vitro biomechanical tests. METHODS Biomechanical test was divided into intact (INT) group, percutaneous lumbar discectomy (PLD) group, PCD group, and PCIF group. Six specimens of L 4, 5 (including vertebral bodies and intervertebral discs) from fresh male cadavers were taken to prepare PLD, PCD, and PCIF specimens, respectively. Before treatment and after the above treatments, the MTS multi-degree-of-freedom simulation test system was used to conduct the biomechanical test. The intervertebral height of the specimen was measured before and after the axial loading of 300 N, and the difference was calculated. The range of motion (ROM) and stiffness of the spine in flexion, extension, left/right bending, and left/right rotation under a torque of 7.5 Nm were calculated. RESULTS After axial loading, the change of intervertebral height in PLD group was more significant than that in other three groups ( P<0.05). Compared with INT group, the ROM in all directions significantly increased and the stiffness significantly decreased in PLD group ( P<0.05). Compared with INT group, the ROM of flexion, extension, and left/right rotation in PCD group significantly increased and the stiffness significantly decreased ( P<0.05); compared with PLD group, the ROM of flexion, extension, and left/right bending in PCD group significantly decreased and the stiffness significantly increased ( P<0.05). Compared with INT group, ROM of left/right bending in PCIF group significantly decreased and stiffness significantly increased ( P<0.05); compared with PLD group, the ROM in all directions significantly decreased and the stiffness significantly increased ( P<0.05); compared with PCD group, the ROM of flexion, left/right bending, and left/right rotation significantly decreased and stiffness significantly increased ( P<0.05). CONCLUSION Both PCD and PCIF can provide good biomechanical stability. The former mainly affects the stiffness in flexion, extension, and bending, while the latter is more restrictive on lumbar ROM in all directions, especially in bending and rotation.
Collapse
|
2
|
Huang S, Min S, Wang S, Jin A. Biomechanical effects of an oblique lumbar interbody fusion combined with posterior augmentation: a finite element analysis. BMC Musculoskelet Disord 2022; 23:611. [PMID: 35761228 PMCID: PMC9235194 DOI: 10.1186/s12891-022-05553-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background Oblique lateral interbody fusion (OLIF) is widely used to treat lumbar degenerative disc disease. This study aimed to evaluate the biomechanical stability of OLIF, OLIF including posterior pedicle screw and rod (PSR), and OLIF including cortical screw and rod (CSR) instrumentation through finite element analysis. Methods A complete L2-L5 finite element model of the lumbar spine was constructed. Surgical models of OLIF, such as stand-alone, OLIF combined with PSR, and OLIF combined with CSR were created in the L3-L4 surgical segments. Range of motion (ROM), end plate stress, and internal fixation peak stress were compared between different models under the same loading conditions. Results Compared to the intact model, ROM was reduced in the OLIF model under all loading conditions. The surgical models in order of increasing ROM were PSR, CSR, and stand-alone; however, the difference in ROM between BPS and CSR was less than 0.4° and was not significant under any loading conditions. The stand-alone model had the highest stress on the superior L4 vertebral body endplate under all loading conditions, whereas the end plate stress was relatively low in the BPS and CSR models. The CSR model had the highest internal fixation stress, concentrated primarily at the end of the screw. Conclusions OLIF alone significantly reduces ROM but does not provide sufficient stability. Addition of posterior PSR or CSR internal fixation instrumentation to OLIF surgery can significantly improve biomechanical stability of the segment undergoing surgery.
Collapse
|
3
|
Kiapour A, Massaad E, Joukar A, Hadzipasic M, Shankar GM, Goel VK, Shin JH. Biomechanical analysis of stand-alone lumbar interbody cages versus 360° constructs: an in vitro and finite element investigation. J Neurosurg Spine 2021:1-9. [PMID: 34952510 DOI: 10.3171/2021.9.spine21558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Low fusion rates and cage subsidence are limitations of lumbar fixation with stand-alone interbody cages. Various approaches to interbody cage placement exist, yet the need for supplemental posterior fixation is not clear from clinical studies. Therefore, as prospective clinical studies are lacking, a comparison of segmental kinematics, cage properties, and load sharing on vertebral endplates is needed. This laboratory investigation evaluates the mechanical stability and biomechanical properties of various interbody fixation techniques by performing cadaveric and finite element (FE) modeling studies. METHODS An in vitro experiment using 7 fresh-frozen human cadavers was designed to test intact spines with 1) stand-alone lateral interbody cage constructs (lateral interbody fusion, LIF) and 2) LIF supplemented with posterior pedicle screw-rod fixation (360° constructs). FE and kinematic data were used to validate a ligamentous FE model of the lumbopelvic spine. The validated model was then used to evaluate the stability of stand-alone LIF, transforaminal lumbar interbody fusion (TLIF), and anterior lumbar interbody fusion (ALIF) cages with and without supplemental posterior fixation at the L4-5 level. The FE models of intact and instrumented cases were subjected to a 400-N compressive preload followed by an 8-Nm bending moment to simulate physiological flexion, extension, bending, and axial rotation. Segmental kinematics and load sharing at the inferior endplate were compared. RESULTS The FE kinematic predictions were consistent with cadaveric data. The range of motion (ROM) in LIF was significantly lower than intact spines for both stand-alone and 360° constructs. The calculated reduction in motion with respect to intact spines for stand-alone constructs ranged from 43% to 66% for TLIF, 67%-82% for LIF, and 69%-86% for ALIF in flexion, extension, lateral bending, and axial rotation. In flexion and extension, the maximum reduction in motion was 70% for ALIF versus 81% in LIF for stand-alone cases. When supplemented with posterior fixation, the corresponding reduction in ROM was 76%-87% for TLIF, 86%-91% for LIF, and 90%-92% for ALIF. The addition of posterior instrumentation resulted in a significant reduction in peak stress at the superior endplate of the inferior segment in all scenarios. CONCLUSIONS Stand-alone ALIF and LIF cages are most effective in providing stability in lateral bending and axial rotation and less so in flexion and extension. Supplemental posterior instrumentation improves stability for all interbody techniques. Comparative clinical data are needed to further define the indications for stand-alone cages in lumbar fusion surgery.
Collapse
Affiliation(s)
- Ali Kiapour
- 1Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elie Massaad
- 1Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amin Joukar
- 2Engineering Center for Orthopedic Research Excellence (E-CORE), Department of Bioengineering Engineering, The University of Toledo, Ohio; and.,3School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Muhamed Hadzipasic
- 1Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ganesh M Shankar
- 1Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vijay K Goel
- 2Engineering Center for Orthopedic Research Excellence (E-CORE), Department of Bioengineering Engineering, The University of Toledo, Ohio; and
| | - John H Shin
- 1Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Soriano-Baron H, Newcomb AGUS, Malhotra D, Martinez Del Campo E, Palma AE, Theodore N, Crawford NR, Kelly BP, Kaibara T. Biomechanical Effects of an Oblique Lumbar PEEK Cage and Posterior Augmentation. World Neurosurg 2019; 126:e975-e981. [PMID: 30876999 DOI: 10.1016/j.wneu.2019.02.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Lumbar interbody spacers are widely used in lumbar spinal fusion. The goal of this study is to analyze the biomechanics of a lumbar interbody spacer (Clydesdale Spinal System, Medtronic Sofamor Danek, Memphis, Tennessee, USA) inserted via oblique lumbar interbody fusion (OLIF) or direct lateral interbody fusion (DLIF) approaches, with and without posterior cortical screw and rod (CSR) or pedicle screw and rod (PSR) instrumentation. METHODS Lumbar human cadaveric specimens (L2-L5) underwent nondestructive flexibility testing in intact and instrumented conditions at L3-L4, including OLIF or DLIF, with and without CSR or PSR. RESULTS OLIF alone significantly reduced range of motion (ROM) in flexion-extension (P = 0.005) but not during lateral bending or axial rotation (P ≥ 0.63). OLIF alone reduced laxity in the lax zone (LZ) during flexion-extension (P < 0.001) but did not affect the LZ during lateral bending or axial rotation (P ≥ 0.14). The stiff zone (SZ) was unaffected in all directions (P ≥ 0.88). OLIF plus posterior instrumentation (cortical, pedicle, or hybrid) reduced the mean ROM in all directions of loading but only significantly so with PSR during lateral bending (P = 0.004), without affecting the compressive stiffness (P > 0.20). The compressive stiffness with the OLIF device without any posterior instrumentation did not differ from that of the intact condition (P = 0.97). In terms of ROM, LZ, or SZ, there were no differences between OLIF and DLIF as standalone devices or OLIF and DLIF with posterior instrumentation (CSR or PSR) (P > 0.5). CONCLUSIONS OLIF alone significantly reduced mobility during flexion-extension while maintaining axial compressive stiffness compared with the intact condition. Adding posterior instrumentation to the interbody spacer increased the construct stability significantly, regardless of cage insertion trajectory or screw type.
Collapse
Affiliation(s)
- Hector Soriano-Baron
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Anna G U S Newcomb
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Devika Malhotra
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Eduardo Martinez Del Campo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Atilio E Palma
- Department of Neurosurgery, Wake Forest Baptist Hospital, Winston Salem, North Carolina, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | - Brian P Kelly
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Taro Kaibara
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
5
|
Soriano-Baron H, Newcomb AG, Malhotra D, Palma AE, Martinez-del-Campo E, Crawford NR, Theodore N, Kelly BP, Kaibara T. Biomechanical Analysis of an Expandable Lumbar Interbody Spacer. World Neurosurg 2018; 114:e616-e623. [DOI: 10.1016/j.wneu.2018.03.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
|
6
|
Zindl C, Litsky AS, Fitzpatrick N, Allen MJ. Kinematic behavior of a novel pedicle screw-rod fixation system for the canine lumbosacral joint. Vet Surg 2017; 47:114-124. [DOI: 10.1111/vsu.12742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Claudia Zindl
- Department of Veterinary Medicine; The Ohio State University; Columbus Ohio
| | - Alan S. Litsky
- Department of Biomedical Engineering; The Ohio State University; Columbus Ohio
| | | | - Matthew J. Allen
- Department of Veterinary Medicine; The Ohio State University; Columbus Ohio
| |
Collapse
|
7
|
Nagaraja S, Palepu V. Integrated Fixation Cage Loosening Under Fatigue Loading. Int J Spine Surg 2017; 11:20. [PMID: 28765804 DOI: 10.14444/4020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Screw loosening is a well-known adverse event in traditional spinal fusion instrumentation. This phenomenon may hinder segmental stability of the spine leading to bony non-union. In recent years numerous lumbar integrated fixation cages (IFC) have been introduced that offer a low profile alternative to a standard cage with an anterior plate (AP+C). The fixation approach for IFCs is different than a traditional anterior approach; therefore, it is unclear whether IFCs may loosen from the surrounding bone over time. The purpose of this study was to quantify screw loosening of IFC devices compared to AP+C implants under fatigue loading using micro-CT and image processing techniques. METHODS L2-3 and L4-5 functional spinal units (FSUs) were obtained from nine human lumbar spines. These FSUs were then reconstructed with either AP+C or IFC implants designed to attach to vertebral bodies using four screws (two top and two bottom for AP+C; two medial and two lateral for IFC). The reconstructed specimens were fatigued in flexion-extension load of ±3 Nm at 1Hz for first 5,000 cycles and it was increased to ±5 Nm until 20,000 cycles. After removing screws to prevent image artifact, micro-CT scans were performed on all FSUs post-fatigue. These images were post-processed to calculate three-dimensional volumes around screw holes created due to damage at the screw-implant interface. RESULTS IFC screws had significantly greater (p=0.008) screw hole volumes compared to AP+C screws after fatigue testing. This increased screw hole volume for IFC devices was mainly due to loosening in medial screws. Medial screws had significantly greater (p<0.003) screw hole volumes compared to lateral IFC screws and all AP+C screws. There was no difference (p>0.888) between the screw hole volumes of lateral IFC, top AP+C, and bottom AP+C screws. CONCLUSIONS This study elucidated screw-loosening mechanisms in integrated fixation cages under simulated physiological loading. In particular, spatial differences in fixation was observed for IFC screws across the vertebra where medial screws loosened at a greater frequency compared to lateral screws post-fatigue. This novel technique may also be used to quantitatively investigate screw fixation post-fatigue testing in a variety of spinal devices.
Collapse
Affiliation(s)
- Srinidhi Nagaraja
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, Maryland, USA
| | - Vivek Palepu
- US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, Maryland, USA
| |
Collapse
|
8
|
Palepu V, Peck JH, Simon DD, Helgeson MD, Nagaraja S. Biomechanical evaluation of an integrated fixation cage during fatigue loading: a human cadaver study. J Neurosurg Spine 2017; 26:524-531. [DOI: 10.3171/2016.9.spine16650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Lumbar cages with integrated fixation screws offer a low-profile alternative to a standard cage with anterior supplemental fixation. However, the mechanical stability of integrated fixation cages (IFCs) compared with a cage with anterior plate fixation under fatigue loading has not been investigated. The purpose of this study was to compare the biomechanical stability of a screw-based IFC with a standard cage coupled with that of an anterior plate under fatigue loading.
METHODS
Eighteen functional spinal units were implanted with either a 4-screw IFC or an anterior plate and cage (AP+C) without integrated fixation. Flexibility testing was conducted in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) on intact spines, immediately after device implantation, and post-fatigue up to 20,000 cycles of FE loading. Stability parameters such as range of motion (ROM) and lax zone (LZ) for each loading mode were compared between the 2 constructs at multiple stages of testing. In addition, construct loosening was quantified by subtracting post-instrumentation ROM from post-fatigue ROM.
RESULTS
IFC and AP+C configurations exhibited similar stability (ROM and LZ) at every stage of testing in FE (p ≥ 0.33) and LB (p ≥ 0.23) motions. In AR, however, IFCs had decreased ROM compared with AP+C constructs at pre-fatigue (p = 0.07) and at all post-fatigue time points (p ≤ 0.05). LZ followed a trend similar to that of ROM in AR. ROM increased toward intact motion during fatigue cycling for AP+C and IFC implants. IFC specimens remained significantly (p < 0.01) more rigid than specimens in the intact condition during fatigue for each loading mode, whereas AP+C construct motion did not differ significantly (p ≥ 0.37) in FE and LB and was significantly greater (p < 0.01) in AR motion compared with intact specimens after fatigue. Weak to moderate correlations (R2 ≤ 56%) were observed between T-scores and construct loosening, with lower T-scores leading to decreased stability after fatigue testing.
CONCLUSIONS
These data indicate that a 4-screw IFC design provides fixation similar to that provided by an AP+C construct in FE and LB during fatigue testing and better stability in AR motion.
Collapse
Affiliation(s)
- Vivek Palepu
- 1Division of Applied Mechanics, Office of Science and Engineering Laboratories, and
| | - Jonathan H. Peck
- 2Division of Orthopedic Devices, Office of Device Evaluation, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring; and
| | - David D. Simon
- 1Division of Applied Mechanics, Office of Science and Engineering Laboratories, and
| | - Melvin D. Helgeson
- 3Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Srinidhi Nagaraja
- 1Division of Applied Mechanics, Office of Science and Engineering Laboratories, and
| |
Collapse
|
9
|
Comer GC, Behn A, Ravi S, Cheng I. A Biomechanical Comparison of Shape Design and Positioning of Transforaminal Lumbar Interbody Fusion Cages. Global Spine J 2016; 6:432-8. [PMID: 27433426 PMCID: PMC4947403 DOI: 10.1055/s-0035-1564568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/12/2015] [Indexed: 10/24/2022] Open
Abstract
STUDY DESIGN Cadaveric biomechanical analysis. OBJECTIVE The aim of this study was to compare three interbody cage shapes and their position within the interbody space with regards to construct stability for transforaminal lumbar interbody fusion. METHODS Twenty L2-L3 and L4-L5 lumbar motion segments from fresh cadavers were potted in polymethyl methacrylate and subjected to testing with a materials testing machine before and after unilateral facetectomy, diskectomy, and interbody cage insertion. The three cage types were kidney-shaped, articulated, and straight bullet-shaped. Each cage type was placed in a common anatomic area within the interbody space before testing: kidney, center; kidney, anterior; articulated, center; articulated, anterior; bullet, center; bullet, lateral. Load-deformation curves were generated for axial compression, flexion, extension, right bending, left bending, right torsion, and left torsion. Finally, load to failure was tested. RESULTS For all applied loads, there was a statistically significant decrease in the slope of the load-displacement curves for instrumented specimens compared with the intact state (p < 0.05) with the exception of right axial torsion (p = 0.062). Among all instrumented groups, there was no statistically significant difference in stiffness for any of the loading conditions or load to failure. CONCLUSIONS Our results failed to show a clearly superior cage shape design or location within the interbody space for use in transforaminal lumbar interbody fusion.
Collapse
Affiliation(s)
- Garet C. Comer
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California, United States
| | - Anthony Behn
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California, United States
| | - Shashank Ravi
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Ivan Cheng
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California, United States,Address for correspondence Ivan Cheng, MD Department of Orthopaedic Surgery, Stanford University450 Broadway Street, Redwood City, CA 94063United States
| |
Collapse
|
10
|
Kinematic and fatigue biomechanics of an interpositional facet arthroplasty device. Spine J 2016; 16:531-9. [PMID: 26620944 DOI: 10.1016/j.spinee.2015.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/26/2015] [Accepted: 11/18/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Although approximately 30% of chronic lumbar pain can be attributed to the facets, limited surgical options exist for patients. Interpositional facet arthroplasty (IFA) is a novel treatment for lumbar facetogenic pain designed to provide patients who gain insufficient relief from medical interventional treatment options with long-term relief, filling a void in the facet pain treatment continuum. PURPOSE This study aimed to quantify the effect of IFA on segmental range of motion (ROM) compared with the intact state, and to observe device position and condition after 10,000 cycles of worst-case loading. STUDY DESIGN/SETTING In situ biomechanical analysis of the lumbar spine following implantation of a novel IFA device was carried out. METHODS Twelve cadaveric functional spinal units (L2-L3 and L5-S1) were tested in 7.5 Nm flexion-extension, lateral bending, and torsion while intact and following device implantation. Additionally, specimens underwent 10,000 cycles of worst-case complex loading and were testing in ROM again. Load-displacement and fluoroscopic data were analyzed to determine ROM and to evaluate device position during cyclic testing. Devices and facets were evaluated post testing. Institutional support for implant evaluation was received by Zyga Technology. RESULTS Range of motion post implantation decreased versus intact, and then was restored post cyclic-testing. Of the tested devices, 6.5% displayed slight movement (0.5-2 mm), all from tight L2-L3 facet joints with misplaced devices or insufficient cartilage. No damage was observed on the devices, and wear patterns were primarily linear. CONCLUSIONS The results from this in situ cadaveric biomechanics and cyclic fatigue study demonstrate that a low-profile, conformable IFA device can maintain position and facet functionality post implantation and through 10,000 complex loading cycles. In vivo conditions were not accounted for in this model, which may affect implant behavior not predictable via a biomechanical study. However, these data along with published 1-year clinical results suggest that IFA may be a valid treatment option in patients with chronic lumbar zygapophysial pain who have exhausted medical interventional options.
Collapse
|
11
|
Schmoelz W, Keiler A. Intervertebrale Cages aus biomechanischer Sicht. DER ORTHOPADE 2015; 44:132-7. [DOI: 10.1007/s00132-014-3071-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Biomechanical Evaluation of a Novel Autogenous Bone Interbody Fusion Cage for Posterior Lumbar Interbody Fusion in a Cadaveric Model. Spine (Phila Pa 1976) 2014; 39:E684-E692. [PMID: 24583726 DOI: 10.1097/brs.0000000000000291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A human cadaveric biomechanical study of a novel, prefabricated autogenous bone interbody fusion (ABIF) cage. OBJECTIVE To evaluate the biomechanical properties of the ABIF cage in a single-level construct with and without transpedicular screw and rod fixation. SUMMARY OF BACKGROUND DATA In current practice, posterior lumbar interbody fusion is generally carried out using synthetic interbody spacers or corticocancellous iliac crest bone graft (ICBG) in combination with posterior instrumentation. However, questions remain concerning the use of synthetic intervertebral implants as well as the morbidity ICBG harvesting. Therefore, ABIF cage has been developed to obviate some of the challenges in conventional posterior lumbar interbody fusion instrumentation and to facilitate the fusion process. METHODS Eighteen adult cadaveric lumbosacral (L3-S1) specimens were tested. Test conditions included single lumbosacral segments across (1) intact, (2) decompressed, (3) intervertebral cage alone, and (4) intervertebral cage with bilateral transpedicular fixation. Range of motion (ROM), neutral zone (NZ), and axial failure load were tested for each condition. RESULTS The ICBG, polyetheretherketone cage, or ABIF cage alone exhibited a significantly lower (P < 0.05) ROM and NZ than the decompressed spine. In comparison with the intact spine, all 3 test conditions without supplemental fixation were able to decrease ROM and NZ to near intact levels. When stabilized with pedicle screws, the ROM was significantly less and the NZ was significantly lower (P < 0.05) for each group both compared with the intact spine. In axial compression testing, the failure load of polyetheretherketone cage was the highest, with no significant difference between the ICBG and the ABIF cage. CONCLUSION These data suggest that the novel ABIF cage can bear the physiological intervertebral peak load, similar to ICBG. When combined with pedicle screw and rod fixation, it exhibits similar biomechanical properties as the polyetheretherketone cage plus posterior instrumentation. Based on the biomechanical properties of ABIF cage, the prospect of these cages in clinical practice is expected.
Collapse
|
13
|
Controversies about interspinous process devices in the treatment of degenerative lumbar spine diseases: past, present, and future. BIOMED RESEARCH INTERNATIONAL 2014; 2014:975052. [PMID: 24822224 PMCID: PMC4005216 DOI: 10.1155/2014/975052] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/16/2014] [Accepted: 02/23/2014] [Indexed: 01/21/2023]
Abstract
A large number of interspinous process devices (IPD) have been recently introduced to the lumbar spine market as an alternative to conventional decompressive surgery in managing symptomatic lumbar spinal pathology, especially in the older population. Despite the fact that they are composed of a wide range of different materials including titanium, polyetheretherketone, and elastomeric compounds, the aim of these devices is to unload spine, restoring foraminal height, and stabilize the spine by distracting the spinous processes. Although the initial reports represented the IPD as a safe, effective, and minimally invasive surgical alternative for relief of neurological symptoms in patients with low back degenerative diseases, recent studies have demonstrated less impressive clinical results and higher rate of failure than initially reported. The purpose of this paper is to provide a comprehensive overview on interspinous implants, their mechanisms of action, safety, cost, and effectiveness in the treatment of lumbar stenosis and degenerative disc diseases.
Collapse
|
14
|
Oktenoglu T, Erbulut D, Kiapour A, Ozer A, Lazoglu I, Kaner T, Sasani M, Goel V. Pedicle screw-based posterior dynamic stabilisation of the lumbar spine:in vitrocadaver investigation and a finite element study. Comput Methods Biomech Biomed Engin 2014; 18:1252-1261. [DOI: 10.1080/10255842.2014.890187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Alfieri A, Gazzeri R, Prell J, Scheller C, Rachinger J, Strauss C, Schwarz A. Role of lumbar interspinous distraction on the neural elements. Neurosurg Rev 2012; 35:477-84; discussion 484. [PMID: 22549123 DOI: 10.1007/s10143-012-0394-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 09/03/2011] [Accepted: 03/01/2012] [Indexed: 12/19/2022]
Abstract
The interspinous distraction devices are used to treat variable pathologies ranging from facet syndrome, diskogenic low back pain, degenerative spinal stenosis, diskopathy, spondylolisthesis, and instability. The insertion of a posterior element with an interspinous device (ISD) is commonly judged responsive to a relative kyphosis of a lumbar segment with a moderate but persistent increase of the spinal canal and of the foraminal width and area, and without influence on low-grade spondylolisthesis. The consequence is the need of shared specific biomechanical concepts to give for each degenerative problem the right indication through a critical analysis of all available experimental and clinical biomechanical data. We reviewed systematically the available clinical and experimental data about kyphosis, enlargement of the spinal canal, distraction of the interspinous distance, increase of the neural foramina, ligamentous structures, load of the posterior annulus, intradiskal pressure, strength of the spinous processes, degeneration of the adjacent segment, complications, and cost-effectiveness of the ISD. The existing literature does not provide actual scientific evidence over the superiority of the ISD strategy, but most of the experimental and clinical data show a challenging potential. These considerations are applicable with different types of ISD with only few differences between the different categories. Despite--or because of--the low invasiveness of the surgical implantation of the ISD, this technique promises to play a major role in the future degenerative lumbar microsurgery. The main indications for ISD remain lumbar spinal stenoses and painful facet arthroses. A clear documented contraindication is the presence of an anterolisthesis. Nevertheless, the existing literature does not provide evidence of superiority of outcome and cost-effectiveness of the ISD strategy over laminectomy or other surgical procedures. At this time, the devices should be used in clinical randomized independent trials in order to obtain more information concerning the most advantageous optimal indication or, in selected cases, to treat tailored indications.
Collapse
Affiliation(s)
- Alex Alfieri
- Department of Neurosurgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion. Spine (Phila Pa 1976) 2012; 37:E79-85. [PMID: 21629171 DOI: 10.1097/brs.0b013e3182226ba6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Controlled laboratory study. OBJECTIVE To evaluate the biomechanical characteristics of a new expandable interbody cage in single-segment posterior lumbar interbody fusion (PLIF) using cadaveric lumbar spines. SUMMARY OF BACKGROUND DATA One of the popular methods of treating lumbar spine pathologies involves a posterior lumbar interbody fusion using bilateral interbody nonexpandable cages. However, this method can require extensive bony removal and nerve root retraction. Expandable interbody cages may decrease the risk associated with PLIFs. METHODS Biomechanical testing was performed on 5 fresh frozen L4/L5 mobile functional spinal units using a custom testing system that permits 6 df and a digital video digitizing system. The specimens were tested intact, postdiscectomy, after interbody cage placement, and after cage placement and pedicle screw fixation. Each specimen was tested from 0.5 to 8.0 N·m for extension, flexion, lateral bending, and rotation, and from 5 to 300 N for axial compression. The angular displacement, stiffness, disc height, and sagittal alignment were determined. RESULTS When the cage was supplemented with pedicle screw fixation, the mean angular displacement for rotation and lateral bending was significantly less than all other conditions (P < 0.05). The percentage range of motion (% ROM) showed a statistically significant decrease in lateral bending (P < 0.05) for cage alone vs. postdiscectomy. For the pedicle screw construct, rotation showed a significantly lower percentage ROM compared with all other constructs (P < 0.05), and lateral bending and extension-flexion showed a significantly lower percentage ROM compared with postdiscectomy (P < 0.05). For all motions, stiffness of the cage and pedicle screw construct was greater than intact, with only rotation showing a statistically significant increase (P < 0.05). Anterior disc height was restored to intact after cage alone (P < 0.05). Sagittal alignment did not show statistically significant differences. CONCLUSION PLIF using expandable lumbar interbody cage requires pedicle screw fixation.
Collapse
|
17
|
Chang TS, Chang JH, Wang CS, Chen HY, Cheng CW. Evaluation of unilateral cage-instrumented fixation for lumbar spine. J Orthop Surg Res 2010; 5:86. [PMID: 21070626 PMCID: PMC2993665 DOI: 10.1186/1749-799x-5-86] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 11/11/2010] [Indexed: 11/16/2022] Open
Abstract
Background To investigate how unilateral cage-instrumented posterior lumbar interbody fusion (PLIF) affects the three-dimensional flexibility in degenerative disc disease by comparing the biomechanical characteristics of unilateral and bilateral cage-instrumented PLIF. Methods Twelve motion segments in sheep lumbar spine specimens were tested for flexion, extension, axial rotation, and lateral bending by nondestructive flexibility test method using a nonconstrained testing apparatus. The specimens were divided into two equal groups. Group 1 received unilateral procedures while group 2 received bilateral procedures. Laminectomy, facectomy, discectomy, cage insertion and transpedicle screw insertion were performed sequentially after testing the intact status. Changes in range of motion (ROM) and neutral zone (NZ) were compared between unilateral and bilateral cage-instrumented PLIF. Results Both ROM and NZ, unilateral cage-instrumented PLIF and bilateral cage-instrumented PLIF, transpedicle screw insertion procedure did not revealed a significant difference between flexion-extension, lateral bending and axial rotation direction except the ROM in the axial rotation. The bilateral group's ROM (-1.7 ± 0. 8) of axial rotation was decreased significantly after transpedicle screw insertion procedure in comparison with the unilateral group (-0.2 ± 0.1). In the unilateral cage-instrumented PLIF group, the transpedicle screw insertion procedure did not demonstrate a significant difference between right and left side in the lateral bending and axial rotation direction. Conclusions Based on the results of this study, unilateral cage-instrumented PLIF and bilateral cage-instrumented PLIF have similar stability after transpedicle screw fixation in the sheep spine model. The unilateral approach can substantially reduce exposure requirements. It also offers the biomechanics advantage of construction using anterior column support combined with pedicle screws just as the bilateral cage-instrumented group. The unpleasant effect of couple motion resulting from inherent asymmetry was absent in the unilateral group.
Collapse
Affiliation(s)
- Ti-Sheng Chang
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taichung, Taiwan.
| | | | | | | | | |
Collapse
|
18
|
Chen JF, Lee ST, Wu CT. A Hollow Cylindrical PMMA Strut for Cervical Spine Reconstruction After Cervical Multilevel Corpectomy. ACTA ACUST UNITED AC 2010; 23:321-7. [PMID: 20084029 DOI: 10.1097/bsd.0b013e3181b15bc8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Hee HT, Kundnani V. Rationale for use of polyetheretherketone polymer interbody cage device in cervical spine surgery. Spine J 2010; 10:66-9. [PMID: 19944652 DOI: 10.1016/j.spinee.2009.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 10/20/2009] [Indexed: 02/03/2023]
Affiliation(s)
- Hwan T Hee
- University Spine Centre, Orthopedics, Hand & Reconstructive Microsurgery Cluster, National University Hospital, Singapore 119074.
| | | |
Collapse
|
20
|
Ploumis A, Wu C, Mehbod A, Fischer G, Faundez A, Wu W, Transfeldt E. Revision of transforaminal lumbar interbody fusion using anterior lumbar interbody fusion: a biomechanical study in nonosteoporotic bone. J Neurosurg Spine 2010; 12:82-7. [DOI: 10.3171/2009.7.spine0921] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Transforaminal lumbar interbody fusion (TLIF) is a popular fusion technique for treating chronic low-back pain. In cases of interbody nonfusion, revision techniques for TLIF include anterior lumbar interbody fusion (ALIF) approaches. Biomechanical data of the revision techniques are not available. The purpose of this study was to compare the immediate construct stability, in terms of range of motion (ROM) and neutral zone (NZ), of a revision ALIF procedure for an unsuccessful TLIF. An in vitro biomechanical comparison of TLIF and its ALIF revision procedure was conducted on cadaveric nonosteoporotic human spine segments.
Methods
Twelve cadaveric lumbar motion segments with normal bone mineral density were loaded in unconstrained axial torsion, lateral bending, and flexion-extension under 0.05 Hz and ± 6-nm sinusoidal waveform. The specimens underwent TLIF (with posterior pedicle fixation) and anterior ALIF (with intact posterior fixation). Multidirectional flexibility testing was conducted following each step. The ROM and NZ data were measured and calculated for each test.
Results
Globally, the TLIF and revision ALIF procedures significantly reduced ROM and NZ compared with that of the intact condition. The revision ALIF procedures achieved similar ROM as the TLIF procedure.
Conclusions
Revision ALIF maintained biomechanical stability of TLIF in nonosteoporotic spines. Revision ALIF can be performed without sacrificing spinal stability in cases of intact posterior instrumentation.
Collapse
Affiliation(s)
- Avraam Ploumis
- 1‘S. Niarchos’ Rehab Unit/Orthopaedic Department, University Hospital of Ioannina, Ioannina, Greece
| | - Chunhui Wu
- 2Foundation for the Advancement of Spinal Knowledge, and
| | - Amir Mehbod
- 3Twin Cities Spine Center, Minneapolis, Minnesota
| | | | - Antonio Faundez
- 5Department of Orthopaedic Surgery, Hôpitaux Universitaires de Genève, Geneva, Switzerland; and
| | - Wentien Wu
- 6Buddhist TzuChi General Hospital, Taiwan, Republic of China
| | | |
Collapse
|
21
|
Buttermann GR, Beaubien BP, Freeman AL, Stoll JE, Chappuis JL. Interbody device endplate engagement effects on motion segment biomechanics. Spine J 2009; 9:564-73. [PMID: 19457722 DOI: 10.1016/j.spinee.2009.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 03/06/2009] [Accepted: 03/30/2009] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Stand-alone nonbiologic interbody fusion devices for the lumbar spine have been used for interbody fusion since the early 1990s. However, most devices lack the stability found in clinically successful circumferential fusion constructs. Stability results from cage geometry and device/vertebral endplate interface integrity. To date, there has not been a published comparative biomechanical study specifically evaluating the effects of endplate engagement of interbody devices. PURPOSE Lumbar motion segments implanted with three different interbody devices were tested biomechanically to compare the effects of endplate engagement on motion segment rigidity. The degree of additional effect of supplemental posterior and anterior fixation was also investigated. STUDY DESIGN/SETTING A cadaveric study of interbody fusion devices with varying degrees of endplate interdigitation. OUTCOME MEASURES Implanted motion segment range of motion (ROM), neutral zone (NZ), stiffness, and disc height. METHODS Eighteen human L23 and L45 motion segments were distributed into three interbody groups (n=6 each) receiving a polymeric (polyetheretherketone) interbody spacer with small ridges; a modular interbody device with endplate spikes (InFix, Abbott Spine, Austin, TX, USA); or dual tapered threaded interbody cages (LT [Lordotic tapered] cage; Medtronic, Memphis, TN, USA). Specimens were tested intact using a 7.5-Nm flexion-extension, lateral bending, and axial torsion flexibility protocol. Testing was repeated after implantation of the interbody device, anterior plate fixation, and posterior interpedicular fixation. Radiographic measurements determined changes in disc height and intervertebral lordosis. ROM and NZ were calculated and compared using analysis of variance. RESULTS The interbody cages with endplate spikes or threads provided a statistically greater increase in disc height versus the polymer spacer (p=.01). Relative to intact, all stand-alone devices significantly reduced ROM in lateral bending by a mean 37% to 61% (p< or =.001). The cages with endplate spikes or threads reduced ROM by approximately 50% and NZ by approximately 60% in flexion-extension (p< or =.02). Only the cage with endplate spikes provided a statistically significant reduction in axial torsion ROM compared with the intact state (50% decrease, p<.001). Posterior fixation provided a significant reduction in ROM in all directions versus the interbody device alone (p<.001). Anterior plating decreased ROM over interbody device alone in flexion-extension and torsion but did not have additional effect on lateral bending ROM. CONCLUSION The cages with endplate spikes or threads provide substantial motion segment rigidity compared with intact in bending modes. Only the cages with endplate spikes were more rigid than intact in torsion. All devices experienced increased rigidity with anterior plating and even greater rigidity with posterior fixation. It appears that the endplate engagement with spikes may be beneficial in limiting torsion, which is generally difficult with other "stand-alone" devices tested in the current and prior reports.
Collapse
|
22
|
Tsuang YH, Chiang YF, Hung CY, Wei HW, Huang CH, Cheng CK. Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation—A finite element study. Med Eng Phys 2009; 31:565-70. [DOI: 10.1016/j.medengphy.2008.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 10/30/2008] [Accepted: 11/17/2008] [Indexed: 11/30/2022]
|
23
|
Comparison of cage designs for transforaminal lumbar interbody fusion: a biomechanical study. Clin Biomech (Bristol, Avon) 2008; 23:979-85. [PMID: 18675496 DOI: 10.1016/j.clinbiomech.2008.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/14/2008] [Accepted: 02/15/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prior biomechanical studies of transforaminal lumbar interbody fusion were primarily focused on various posterior instrumentation options, comparison with other fusion techniques, and cage positioning inside disc space. Few studies investigated the biomechanics of various cage designs in terms of construct stability. METHODS Twelve lumbar motion segments were used in this study. The experimental procedure has two steps: multidirectional flexibility test and cyclic test. In the multidirectional flexibility test, all twelve specimens were tested following intact and five different cages (straight or banana shaped). The straight cages had biconvex or flat profile. In the cyclic test, the twelve specimens were randomly divided into two groups for biconvex and flat cages. Three thousand cycles in axial torsion, lateral bending and flexion extension were applied sequentially and cage migration was measured. FINDINGS On average, the cage and posterior fixation reduced the range of motion of the intact condition by 40%, 69% and 75% in axial torsion, lateral bending and flexion extension, respectively. There was no statistical difference in construct stability among all five cages. The cage migration (biconvex vs flat) under cyclic loading was less than 0.2mm and no statistical difference was found. INTERPRETATION The experimental results suggest that the geometry of cages, including shape (banana or straight), length, and surface profile (biconvex or flat), does not affect construct stability when the cages are used in conjunction with posterior fixation. With posterior fixation and surface serration, cage migration was minimal under cyclic loading for both biconvex and flat cages.
Collapse
|
24
|
Position of interbody spacer in transforaminal lumbar interbody fusion: effect on 3-dimensional stability and sagittal lumbar contour. ACTA ACUST UNITED AC 2008; 21:175-80. [PMID: 18458586 DOI: 10.1097/bsd.0b013e318074bb7d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
STUDY DESIGN Biomechanical study. OBJECTIVE To test 2 different intervertebral positions of a semilunar cage and their effects on 3-dimensional stability and segmental lordosis in a model of transforaminal lumbar interbody fusion (TLIF). SUMMARY OF BACKGROUND DATA In his original TLIF description, Harms recommended decortication of endplates, followed by placement of mesh cages in the middle-posterior intervertebral third. Subsequent studies presented conflicting recommendations: anterior placement of the spacer-cage for better load-sharing versus placement on the stronger posterolateral endplate regions. METHODS Six human lumbar spinal functional units were first tested intact. TLIF was performed using a semilunar poly-ether-ether-ketone cage randomly inserted in the anterior (TLIF-A) or posterior (TLIF-P) disc space. Pedicle screws and rods were added. Unconstrained pure moments in axial-torsion, lateral-bending (LB), and flexion-extension (FE) were applied under 0.05 Hz and +/-5 Nm sinusoidal waveform. Segmental motions were recorded. Range of motion (ROM) and neutral zone (NZ) were calculated. Pairwise comparisons were made using nonparametric Wilcoxon-matched pairs signed rank sum test with statistical significance set at P<0.05. RESULTS TLIF-A and TLIF-P significantly decreased ROM (P<0.05) of the intact spinal functional unit, in FE and LB. In axial-torsion, decrease of ROM after TLIF procedures was not significant (P>0.05). Delta-ROM between TLIF-A and TLIF-P was not significant (P>0.05). TLIF-A and TLIF-P significantly decreased NZ in LB (P<0.05). In FE, TLIF-P significantly decreased NZ (P<0.05); TLIF-A showed a trend toward significance (P=0.09). Delta-NZ between TLIF-A and TLIF-P was not significant (P>0.05). Segmental lordosis of TLIF-A and TLIF-P on C-arm views showed angle differences within the range of measurement error of Cobb angles. CONCLUSIONS Difference in ROM and NZ between anterior (TLIF-A) or posterior (TLIF-P) positions was not statistically significant. Similarly, both positions did not influence segmental lordosis.
Collapse
|
25
|
Truumees E, Majid K, Brkaric M. Anterior Lumbar Interbody Fusion in the Treatment of Mechanical Low Back Pain. ACTA ACUST UNITED AC 2008. [DOI: 10.1053/j.semss.2008.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study. Spine (Phila Pa 1976) 2006; 31:E992-8. [PMID: 17172990 DOI: 10.1097/01.brs.0000250177.84168.ba] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN To determine the effect of cage/spacer stiffness on the stresses in the bone graft and cage subsidence. OBJECTIVE To investigate the effect of cage stiffness on the biomechanics of the fused segment in the lumbar region using finite element analysis. SUMMARY OF BACKGROUND DATA There are a wide variety of cage/spacer designs available for lumbar interbody fusion surgery. These range from circular, tapered, rectangular with and without curvature, and were initially manufactured using titanium alloy. Recent advances in the medical implant industry have resulted in using medical grade polyetheretherketone (PEEK). The biomechanical advantages of using different cage material in terms of stability, subsidence, and stresses in bone graft are not fully understood. METHODS A previously validated 3-dimensional, nonlinear finite element model of an intact L3-L5 segment was modified to simulate posterior interbody fusion spacers made of PEEK ("E" = 3.6 GPa) and titanium ("E" = 110 GPa) at the L4/5 disc with posterior instrumentation. Bone graft ("E" = 12 GPa) packed between the spacers in the intervertebral space was also simulated. The posterior lumbar interbody fusion spacer with instrumentation and graft represent a simulation of the condition present immediately after surgery. RESULTS The peak centroidal Von Mises stresses in the graft bone increased by at least 9-fold with PEEK spacers as compared to titanium spacer. The peak centroidal Von Mises stresses in the endplates increased by at least 2.4-fold with titanium spacers over the PEEK spacers. These stresses were concentrated at places where the spacer interfaced with the endplate. The stiffness of the spacer did not affect the relative motion (stability) across the instrumented (L4/5) segment. CONCLUSIONS Spacers less stiff than the graft will: (1) provide stability similar to titanium cages in the presence of posterior instrumentation, (2) reduce the stresses in endplates adjacent to the spacers, and (3) increase the load transfer through the graft, as evident from the increase in stresses in graft.
Collapse
Affiliation(s)
- Sasidhar Vadapalli
- Engineering Center for Orthopaedic Research Excellence (E-CORE), Departments of Bioengineering and Orthopaedic Surgery, Colleges of Engineering and Medicine, University of Toledo, Toledo, OH 43606, USA
| | | | | | | | | | | | | |
Collapse
|