1
|
Hao D, Wang DY, Dong B, Xi SC, Jiang G. Facile synthesis of a triazine-based porous organic polymer containing thiophene units for effective loading and releasing of temozolomide. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Suzuki cross-coupling reaction was employed to easily obtain a triazine-based porous organic polymer (2,4,6-tris(5-bromothiophene-2-yl)-1,3,5-triazine [TBrTh]–1,3,5-benzene-triyltriboronic acid pinacol ester [BTBPE]–covalent triazine framework [CTF]) containing thiophene units. The chemical structure of TBrTh–BTBPE–CTF was revealed by solid-state 13C NMR, Fourier-transform infrared, and X-ray photoelectron spectroscopy. TBrTh–BTBPE–CTF with an amorphous structure exhibited excellent thermal stability and intrinsic porosity (373 m2·g−1 of Brunauer–Emmett–Teller surface area). Consequently, temozolomide (TMZ) was used as an oral alkylating agent in melanoma treatment to explore the drug loading and releasing behavior of TBrTh–BTBPE–CTF as a result of the low cytotoxicity of thiophene-based polymers. The successful loading of TMZ within the polymeric structure was suggested by thermogravimetric analysis and N2 sorption isotherms. The release experiments were performed in phosphate-buffered saline at pH values of 5.5 and 7.4, exhibiting good controlled-release properties. These results suggest that the current porous organic polymer is expected to be a drug carrier for the delivery and release of TMZ.
Collapse
Affiliation(s)
- Di Hao
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , China
- Department of Dermatology, Affiliated Xuzhou Children’s Hospital of Xuzhou Medical University , Xuzhou 221006 , China
| | - Dong-Yue Wang
- School of Chemical Engineering and Technology, China University of Mining and Technology , Xuzhou 221116 , China
| | - Bin Dong
- School of Chemical Engineering and Technology, China University of Mining and Technology , Xuzhou 221116 , China
| | - Sun-Chang Xi
- School of Chemical Engineering and Technology, China University of Mining and Technology , Xuzhou 221116 , China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , China
| |
Collapse
|
2
|
Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy. J Control Release 2021; 335:130-157. [PMID: 34015400 DOI: 10.1016/j.jconrel.2021.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/13/2023]
Abstract
Despite enormous advancements in the field of oncology, the innocuous and effectual treatment of various types of malignancies remained a colossal challenge. The conventional modalities such as chemotherapy, radiotherapy, and surgery have been remained the most viable options for cancer treatment, but lacking of target-specificity, optimum safety and efficacy, and pharmacokinetic disparities are their impliable shortcomings. Though, in recent decades, numerous encroachments in the field of onco-targeted drug delivery have been adapted but several limitations (i.e., short plasma half-life, early clearance by reticuloendothelial system, immunogenicity, inadequate internalization and localization into the onco-tissues, chemoresistance, and deficient therapeutic efficacy) associated with these onco-targeted delivery systems limits their clinical viability. To abolish the aforementioned inadequacies, a promising approach has been emerged in which stealthing of synthetic nanocarriers has been attained by cloaking them into the natural cell membranes. These biomimetic nanomedicines not only retain characteristics features of the synthetic nanocarriers but also inherit the cell-membrane intrinsic functionalities. In this review, we have summarized preparation methods, mechanism of cloaking, and pharmaceutical and therapeutic superiority of cell-membrane camouflaged nanomedicines in improving the bio-imaging and immunotherapy against various types of malignancies. These pliable adaptations have revolutionized the current drug delivery strategies by optimizing the plasma circulation time, improving the permeation into the cancerous microenvironment, escaping the immune evasion and rapid clearance from the systemic circulation, minimizing the immunogenicity, and enabling the cell-cell communication via cell membrane markers of biomimetic nanomedicines. Moreover, the preeminence of cell-membrane cloaked nanomedicines in improving the bio-imaging and theranostic applications, alone or in combination with phototherapy or radiotherapy, have also been pondered.
Collapse
|
3
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
4
|
da Fonseca LM, Calvalhan DM, Previato JO, Mendonça Previato L, Freire-de-Lima L. Resistance to paclitaxel induces glycophenotype changes and mesenchymal-to-epithelial transition activation in the human prostate cancer cell line PC-3. Tumour Biol 2020; 42:1010428320957506. [PMID: 32914709 DOI: 10.1177/1010428320957506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of the multidrug resistance phenotype is one of the major challenges faced in the treatment of cancer. The multidrug resistance phenotype is characterized by cross-resistance to drugs with different chemical structures and mechanisms of action. In this work, we hypothesized that the acquisition of resistance in cancer is accompanied by activation of the epithelial-to-mesenchymal transition process, where the tumor cell acquires a more mobile and invasive phenotype; a fundamental step in tumor progression and in promoting the invasion of other organs and tissues. In addition, it is known that atypical glycosylations are characteristic of tumor cells, being used as biomarkers. We believe that the acquisition of the multidrug resistance phenotype and the activation of epithelial-to-mesenchymal transition provoke alterations in the cell glycophenotype, which can be used as glycomarkers for chemoresistance and epithelial-to-mesenchymal transition processes. Herein, we induced the multidrug resistance phenotype in the PC-3 human prostate adenocarcinoma line through the continuous treatment with the drug paclitaxel. Our results showed that the induced cell multidrug resistance phenotype (1) acquired a mixed profile between epithelial and mesenchymal phenotypes and (2) modified the glycophenotype, showing an increase in the level of sialylation and in the number of branched glycans. Both mechanisms are described as indicators of poor prognosis.
Collapse
Affiliation(s)
| | - Danilo Macedo Calvalhan
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucia Mendonça Previato
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Soll F, Ternent C, Berry IM, Kumari D, Moore TC. Quercetin Inhibits Proliferation and Induces Apoptosis of B16 Melanoma Cells In Vitro. Assay Drug Dev Technol 2020; 18:261-268. [PMID: 32799543 DOI: 10.1089/adt.2020.993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Malignant melanoma is an aggressive cancer with a poor prognosis despite numerous advances in therapeutic strategies. Quercetin is a plant-derived flavonoid suggested to have potent anticancer properties. Quercetin has no demonstrable toxicity in humans, further supporting the possibility of using quercetin therapeutically. We chose to investigate quercetin efficacy against B16 murine melanoma cells and identify the mechanisms of anticancer activity. Treatment of B16 melanoma cells with 50 μg/mL quercetin resulted in a 75% reduction in viability from 6 through 48 h post-treatment. The reduction in cancer cell viability was comparable to or greater than what was observed with etoposide, an established chemotherapeutic. Specifically, we found Quercetin reduced the proliferation of B16 melanoma cells at 48 h as much or more than etoposide. Although quercetin reduced the proportion of cells in the S and G2/M stages of the cell cycle, this could largely be explained by an increase in the subG1 population in quercetin-treated cells (suggesting apoptosis). Quercetin-induced apoptosis was confirmed by flow cytometry analysis of Annexin V+ cells. Collectively, our findings demonstrate quercetin reduces proliferation and induces apoptosis of B16 melanoma cells in vitro.
Collapse
Affiliation(s)
- Farrah Soll
- Department of Chemistry, College of Saint Mary, Omaha, Nebraska, USA
| | - Christina Ternent
- Department of Chemistry, College of Saint Mary, Omaha, Nebraska, USA
| | | | - Dunesh Kumari
- Department of Chemistry, College of Saint Mary, Omaha, Nebraska, USA
| | - Tyler C Moore
- Department of Biology, College of Science and Technology, Bellevue University, Bellevue, Nebraska, USA
| |
Collapse
|
6
|
Biau J, Chautard E, Berthault N, de Koning L, Court F, Pereira B, Verrelle P, Dutreix M. Combining the DNA Repair Inhibitor Dbait With Radiotherapy for the Treatment of High Grade Glioma: Efficacy and Protein Biomarkers of Resistance in Preclinical Models. Front Oncol 2019; 9:549. [PMID: 31275862 PMCID: PMC6593092 DOI: 10.3389/fonc.2019.00549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022] Open
Abstract
High grade glioma relapses occur often within the irradiated volume mostly due to a high resistance to radiation therapy (RT). Dbait (which stands for DNA strand break bait) molecules mimic DSBs and trap DNA repair proteins, thereby inhibiting repair of DNA damage induced by RT. Here we evaluate the potential of Dbait to sensitize high grade glioma to RT. First, we demonstrated the radiosensitizer properties of Dbait in 6/9 tested cell lines. Then, we performed animal studies using six cell derived xenograft and five patient derived xenograft models, to show the clinical potential and applicability of combined Dbait+RT treatment for human high grade glioma. Using a RPPA approach, we showed that Phospho-H2AX/H2AX and Phospho-NBS1/NBS1 were predictive of Dbait efficacy in xenograft models. Our results provide the preclinical proof of concept that combining RT with Dbait inhibition of DNA repair could be of benefit to patients with high grade glioma.
Collapse
Affiliation(s)
- Julian Biau
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France.,INSERM, U1240 IMoST, Université Clermont Auvergne, Clermont Ferrand, France.,Radiotherapy Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Emmanuel Chautard
- INSERM, U1240 IMoST, Université Clermont Auvergne, Clermont Ferrand, France.,Pathology Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nathalie Berthault
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France
| | - Leanne de Koning
- Laboratory of Proteomic Mass Spectrometry, Centre de Recherche, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Frank Court
- GReD Laboratory, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Department, DRCI, Clermont-Ferrand Hospital, Clermont-Ferrand, France
| | - Pierre Verrelle
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,Radiotherapy Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France.,U1196, INSERM, UMR9187, CNRS, Orsay, France.,Radiotherapy Department, Institut Curie Hospital, Paris, France
| | - Marie Dutreix
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France
| |
Collapse
|
7
|
Hou Y, Zhou Z, Huang K, Yang H, Han G. Long Wavelength Light Activated Prodrug Conjugates for Biomedical Applications. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yutong Hou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and SensorsShanghai Normal University Shanghai 200234 China
| | - Zhiguo Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and SensorsShanghai Normal University Shanghai 200234 China
| | - Kai Huang
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical School Worcester Massachusetts 01605 United States
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and SensorsShanghai Normal University Shanghai 200234 China
| | - Gang Han
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical School Worcester Massachusetts 01605 United States
| |
Collapse
|
8
|
Tang J, Zhou H, Hou X, Wang L, Li Y, Pang Y, Chen C, Jiang G, Liu Y. Enhanced anti-tumor efficacy of temozolomide-loaded carboxylated poly(amido-amine) combined with photothermal/photodynamic therapy for melanoma treatment. Cancer Lett 2018. [DOI: 10.1016/j.canlet.2018.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Budden T, van der Westhuizen A, Bowden NA. Sequential decitabine and carboplatin treatment increases the DNA repair protein XPC, increases apoptosis and decreases proliferation in melanoma. BMC Cancer 2018; 18:100. [PMID: 29373959 PMCID: PMC5787239 DOI: 10.1186/s12885-018-4010-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Melanoma has two key features, an over-representation of UV-induced mutations and resistance to DNA damaging chemotherapy agents. Both of these features may result from dysfunction of the nucleotide excision repair pathway, in particular the DNA damage detection branch, global genome repair (GGR). The key GGR component XPC does not respond to DNA damage in melanoma, the cause of this lack of response has not been investigated. In this study, we investigated the role of methylation in reduced XPC in melanoma. METHODS To reduce methylation and induce DNA-damage, melanoma cell lines were treated with decitabine and carboplatin, individually and sequentially. Global DNA methylation levels, XPC mRNA and protein expression and methylation of the XPC promoter were examined. Apoptosis, cell proliferation and senescence were also quantified. XPC siRNA was used to determine that the responses seen were reliant on XPC induction. RESULTS Treatment with high-dose decitabine resulted in global demethylation, including the the shores of the XPC CpG island and significantly increased XPC mRNA expression. Lower, clinically relevant dose of decitabine also resulted in global demethylation including the CpG island shores and induced XPC in 50% of cell lines. Decitabine followed by DNA-damaging carboplatin treatment led to significantly higher XPC expression in 75% of melanoma cell lines tested. Combined sequential treatment also resulted in a greater apoptotic response in 75% of cell lines compared to carboplatin alone, and significantly slowed cell proliferation, with some melanoma cell lines going into senescence. Inhibiting the increased XPC using siRNA had a small but significant negative effect, indicating that XPC plays a partial role in the response to sequential decitabine and carboplatin. CONCLUSIONS Demethylation using decitabine increased XPC and apoptosis after sequential carboplatin. These results confirm that sequential decitabine and carboplatin requires further investigation as a combination treatment for melanoma.
Collapse
Affiliation(s)
- Timothy Budden
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, Newcastle, NSW, Australia
| | | | - Nikola A Bowden
- Hunter Medical Research Institute and Faculty of Health, University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
10
|
Li N, Ma Y, Ma L, Guan Y, Ma L, Yang D. MicroRNA-488-3p sensitizes malignant melanoma cells to cisplatin by targeting PRKDC. Cell Biol Int 2017; 41:622-629. [PMID: 28328082 DOI: 10.1002/cbin.10765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/19/2017] [Indexed: 11/11/2022]
Abstract
Deregulation of microRNAs (miRNAs) has been implicated in drug resistance in various types of cancers, including malignant melanoma (MM). MiR-488-3p has been reported as a tumor suppressor in several cancers. However, the exact expression patterns of miR-488-3p and the precise molecular mechanisms underlying its role in MM remain largely unknown and require further investigation. In this study, we demonstrated that miR-488-3p is significantly downregulated in MM clinical specimens and cell lines. Ectopic expression of miR-488-3p resulted in markedly increased drug sensitivity of MM cells in vitro and in vivo. The DNA-activated, catalytic polypeptide (PRKDC), which encodes DNA-dependent protein kinase catalytic subunit (DNA-PKcs), was identified as a direct target of miR-488-3p using luciferase reporter assays, qRT-PCR, and western blotting analyses. PRKDC knockdown by small interfering RNA (siRNA) alone promoted sensitivity of MM cells to cisplatin (DDP) while overexpression of PRKDC partially rescued the miR-488-3p-mediated acceleration of sensitivity to DDP in MM cells. Taken together, our results indicate that miR-488-3p serves as a drug resistance sensitizer in MM, supporting its potential as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Ning Li
- Department of Plastic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yue Ma
- Harbin Center for Disease Control and Prevention, Harbin, 150020, China
| | - Li Ma
- Computer Center, Fifth Hospital of Harbin, Harbin, 150030, China
| | - Yu Guan
- Animal and Plant Laboratory, Inspection and Quarantine Bureau of Heihe, Heihe, 164300, China
| | - Liang Ma
- Computer Center, Fifth Hospital of Harbin, Harbin, 150030, China
| | - Daping Yang
- Department of Plastic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| |
Collapse
|
11
|
|
12
|
Kubecek O, Trojanova P, Molnarova V, Kopecky J. Microsatellite instability as a predictive factor for immunotherapy in malignant melanoma. Med Hypotheses 2016; 93:74-6. [DOI: 10.1016/j.mehy.2016.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/21/2016] [Indexed: 12/21/2022]
|
13
|
Le Tourneau C, Dreno B, Kirova Y, Grob JJ, Jouary T, Dutriaux C, Thomas L, Lebbé C, Mortier L, Saiag P, Avril MF, Maubec E, Joly P, Bey P, Cosset JM, Sun JS, Asselain B, Devun F, Marty ME, Dutreix M. First-in-human phase I study of the DNA-repair inhibitor DT01 in combination with radiotherapy in patients with skin metastases from melanoma. Br J Cancer 2016; 114:1199-205. [PMID: 27140316 PMCID: PMC4891504 DOI: 10.1038/bjc.2016.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/11/2016] [Accepted: 04/08/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND DT01 is a DNA-repair inhibitor preventing recruitment of DNA-repair enzymes at damage sites. Safety, pharmacokinetics and preliminary efficacy through intratumoural and peritumoural injections of DT01 were evaluated in combination with radiotherapy in a first-in-human phase I trial in patients with unresectable skin metastases from melanoma. METHODS Twenty-three patients were included and received radiotherapy (30 Gy in 10 sessions) on all selected tumour lesions, comprising of two lesions injected with DT01 three times a week during the 2 weeks of radiotherapy. DT01 dose levels of 16, 32, 48, 64 and 96 mg were used, in a 3+3 dose escalation design, with an expansion cohort at 96 mg. RESULTS The median follow-up was 180 days. All patients were evaluable for safety and pharmacokinetics. No dose-limiting toxicity was observed and the maximum-tolerated dose was not reached. Most frequent adverse events were reversible grades 1 and 2 injection site reactions. Pharmacokinetic analyses demonstrated a systemic passage of DT01. Twenty-one patients were evaluable for efficacy on 76 lesions. Objective response was observed in 45 lesions (59%), including 23 complete responses (30%). CONCLUSIONS Intratumoural and peritumoural DT01 in combination with radiotherapy is safe and pharmacokinetic analyses suggest a systemic passage of DT01.
Collapse
Affiliation(s)
- C Le Tourneau
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud 75005, France.,EA7285, Versailles-Saint-Quentin-en-Yvelines University, Versailles 78000, France
| | - B Dreno
- CHU de Nantes-Hôtel Dieu, Nantes 44093, France
| | - Y Kirova
- Radiotherapy Department, Institut Curie, Paris 75005, France
| | - J J Grob
- La Timone Hospital-APHM, Aix-Marseille University, Marseille 13385, France
| | - T Jouary
- Dermatology department, Saint-André Hospital, CHU de Bordeaux, Bordeaux 33000, France
| | - C Dutriaux
- Dermatology department, Saint-André Hospital, CHU de Bordeaux, Bordeaux 33000, France
| | - L Thomas
- Lyon Sud Hospital Center, Lyon 1 University, Pierre Benite 69495, France
| | - C Lebbé
- Saint-Louis Hospital, APHP, Paris 75010, France
| | - L Mortier
- Dermatology department, CHRU of Lille, Lille 59037, France
| | - P Saiag
- Ambroise Paré Hospital, Boulogne Billancourt 92104, France
| | - M F Avril
- Cochin hospital, APHP, Paris 75014, France
| | - E Maubec
- Bichat Hospital, Paris 75877, France
| | - P Joly
- CHU Rouen, Charles-Nicolle, Rouen 76000, France
| | - P Bey
- Institut Curie, Paris 75005, France
| | - J M Cosset
- Radiotherapy Department, Institut Curie, Paris 75005, France
| | - J S Sun
- DNA Therapeutics, Evry 91058, France
| | - B Asselain
- Department of Biostatistics, Institut Curie, Paris 75005, France
| | - F Devun
- DNA Therapeutics, Evry 91058, France.,Institut Curie, Orsay 91405, France
| | - M E Marty
- Saint-Louis Hospital, APHP, Paris 75010, France
| | - M Dutreix
- Institut Curie, Orsay 91405, France.,CNRS-UMR3347, INSERM-U1021, Paris-Sud University, Orsay 91405, France
| |
Collapse
|
14
|
Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1. J Invest Dermatol 2016; 136:1219-1228. [PMID: 26880244 DOI: 10.1016/j.jid.2016.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 12/13/2022]
Abstract
Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy.
Collapse
|
15
|
An T, Zhang C, Han X, Wan G, Wang D, Yang Z, Wang Y, Zhang L, Wang Y. Hyaluronic acid-coated poly(β-amino) ester nanoparticles as carrier of doxorubicin for overcoming drug resistance in breast cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra03997a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hyaluronic acid-coated poly(β-amino) ester nanoparticles used as carrier for doxorubicin could efficiently overcome the drug resistance in breast cancer cells.
Collapse
Affiliation(s)
- Tong An
- School of Pharmacy
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- Tianjin Medical University
- Tianjin 300070
- People's Republic of China
| | - Cong Zhang
- School of Pharmacy
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- Tianjin Medical University
- Tianjin 300070
- People's Republic of China
| | - Xue Han
- School of Pharmacy
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- Tianjin Medical University
- Tianjin 300070
- People's Republic of China
| | - Guoyun Wan
- School of Pharmacy
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- Tianjin Medical University
- Tianjin 300070
- People's Republic of China
| | - Dan Wang
- School of Pharmacy
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- Tianjin Medical University
- Tianjin 300070
- People's Republic of China
| | - Zhe Yang
- School of Pharmacy
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- Tianjin Medical University
- Tianjin 300070
- People's Republic of China
| | - Yue Wang
- School of Stomatology
- Tianjin Medical University
- Tianjin 300070
- People's Republic of China
| | - Lianyun Zhang
- School of Stomatology
- Tianjin Medical University
- Tianjin 300070
- People's Republic of China
| | - Yinsong Wang
- School of Pharmacy
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- Tianjin Medical University
- Tianjin 300070
- People's Republic of China
| |
Collapse
|
16
|
Tajedin L, Anwar M, Gupta D, Tuteja R. Comparative insight into nucleotide excision repair components of Plasmodium falciparum. DNA Repair (Amst) 2015; 28:60-72. [PMID: 25757193 DOI: 10.1016/j.dnarep.2015.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 12/19/2022]
Abstract
Nucleotide excision repair (NER) is one of the DNA repair pathways crucial for maintenance of genome integrity and deals with repair of DNA damages arising due to exogenous and endogenous factors. The multi-protein transcription initiation factor TFIIH plays a critical role in NER and transcription and is highly conserved throughout evolution. The malaria parasite Plasmodium falciparum has been a challenge for the researchers for a long time because of emergence of drug resistance. The availability of its genome sequence has opened new avenues for research. Antimalarial drugs like chloroquine and mefloquine have been reported to inhibit NER pathway mediated repair reactions and thus promote mutagenesis. Previous studies have validated existence and implied possible association of defective or altered DNA repair pathways with development of drug resistant phenotype in certain P. falciparum strains. We conjecture that a compromised NER pathway in combination with other DNA repair pathways might be conducive for the emergence and sustenance of drug resistance in P. falciparum. Therefore we decided to unravel the components of NER pathway in P. falciparum and using bioinformatics based approaches here we report a genome wide in silico analysis of NER components from P. falciparum and their comparison with the human host. Our results reveal that P. falciparum genome contains almost all the components of NER but we were unable to find clear homologue for p62 and XPC in its genome. The structure modeling of all the components further suggests that their structures are significantly conserved. Furthermore this study lays a foundation to perform similar comparative studies between drug resistant and drug sensitive strains of parasite in order to understand DNA repair-related mechanisms of drug resistance.
Collapse
Affiliation(s)
- Leila Tajedin
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Masroor Anwar
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dinesh Gupta
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
17
|
Biau J, Devun F, Jdey W, Kotula E, Quanz M, Chautard E, Sayarath M, Sun JS, Verrelle P, Dutreix M. A preclinical study combining the DNA repair inhibitor Dbait with radiotherapy for the treatment of melanoma. Neoplasia 2014; 16:835-44. [PMID: 25379020 PMCID: PMC4212251 DOI: 10.1016/j.neo.2014.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 01/05/2023] Open
Abstract
Melanomas are highly radioresistant tumors, mainly due to efficient DNA double-strand break (DSB) repair. Dbait (which stands for DNA strand break bait) molecules mimic DSBs and trap DNA repair proteins, thereby inhibiting repair of DNA damage induced by radiation therapy (RT). First, the cytotoxic efficacy of Dbait in combination with RT was evaluated in vitro in SK28 and 501mel human melanoma cell lines. Though the extent of RT-induced damage was not increased by Dbait, it persisted for longer revealing a repair defect. Dbait enhanced RT efficacy independently of RT doses. We further assayed the capacity of DT01 (clinical form of Dbait) to enhance efficacy of “palliative” RT (10 × 3 Gy) or “radical” RT (20 × 3 Gy), in an SK28 xenografted model. Inhibition of repair of RT-induced DSB by DT01 was revealed by the significant increase of micronuclei in tumors treated with combined treatment. Mice treated with DT01 and RT combination had significantly better tumor growth control and longer survival compared to RT alone with the “palliative” protocol [tumor growth delay (TGD) by 5.7-fold; median survival: 119 vs 67 days] or the “radical” protocol (TGD by 3.2-fold; median survival: 221 vs 109 days). Only animals that received the combined treatment showed complete responses. No additional toxicity was observed in any DT01-treated groups. This preclinical study provides encouraging results for a combination of a new DNA repair inhibitor, DT01, with RT, in the absence of toxicity. A first-in-human phase I study is currently under way in the palliative management of melanoma in-transit metastases (DRIIM trial).
Collapse
Affiliation(s)
- Julian Biau
- Institut Curie, Centre de Recherche, Orsay, France ; UMR3347, Centre National de la Recherche Scientifique, Orsay, France ; U1021, Institut National de la Santé et de la Recherche Médicale, Orsay, France ; Université Paris Sud, Orsay, France ; Clermont Université, Université d'Auvergne, EA7283 CREaT, Clermont-Ferrand, France ; Radiotherapy Department, Centre Jean Perrin, Clermont-Ferrand, France
| | - Flavien Devun
- Institut Curie, Centre de Recherche, Orsay, France ; DNA Therapeutics, Evry, France
| | - Wael Jdey
- Institut Curie, Centre de Recherche, Orsay, France ; UMR3347, Centre National de la Recherche Scientifique, Orsay, France ; U1021, Institut National de la Santé et de la Recherche Médicale, Orsay, France ; Université Paris Sud, Orsay, France ; DNA Therapeutics, Evry, France
| | - Ewa Kotula
- Institut Curie, Centre de Recherche, Orsay, France ; UMR3347, Centre National de la Recherche Scientifique, Orsay, France ; U1021, Institut National de la Santé et de la Recherche Médicale, Orsay, France ; Université Paris Sud, Orsay, France ; DNA Therapeutics, Evry, France
| | - Maria Quanz
- Institut Curie, Centre de Recherche, Orsay, France ; DNA Therapeutics, Evry, France
| | - Emmanuel Chautard
- Clermont Université, Université d'Auvergne, EA7283 CREaT, Clermont-Ferrand, France ; Radiotherapy Department, Centre Jean Perrin, Clermont-Ferrand, France
| | | | | | - Pierre Verrelle
- Clermont Université, Université d'Auvergne, EA7283 CREaT, Clermont-Ferrand, France ; Radiotherapy Department, Centre Jean Perrin, Clermont-Ferrand, France
| | - Marie Dutreix
- Institut Curie, Centre de Recherche, Orsay, France ; UMR3347, Centre National de la Recherche Scientifique, Orsay, France ; U1021, Institut National de la Santé et de la Recherche Médicale, Orsay, France ; Université Paris Sud, Orsay, France
| |
Collapse
|
18
|
Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules 2014; 19:13848-77. [PMID: 25191874 PMCID: PMC6271846 DOI: 10.3390/molecules190913848] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/27/2023] Open
Abstract
Tyrosine kinases (TKs) play an important role in pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Aberrant activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to interfere with the activity of deregulated kinases. These TKIs are remarkably effective in the treatment of various human cancers including head and neck, gastric, prostate and breast cancer and several types of leukemia. However, these TKIs are transported out of the cell by ATP-binding cassette (ABC) transporters, resulting in development of a characteristic drug resistance phenotype in cancer patients. Interestingly, some of these TKIs also inhibit the ABC transporter mediated multi drug resistance (MDR) thereby; enhancing the efficacy of conventional chemotherapeutic drugs. This review discusses the clinically relevant TKIs and their interaction with ABC drug transporters in modulating MDR.
Collapse
|
19
|
Kathawala RJ, Chen JJ, Zhang YK, Wang YJ, Patel A, Wang DS, Talele TT, Ashby CR, Chen ZS. Masitinib antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance. Int J Oncol 2014; 44:1634-42. [PMID: 24626598 PMCID: PMC4027943 DOI: 10.3892/ijo.2014.2341] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/06/2014] [Indexed: 12/15/2022] Open
Abstract
In this in vitro study, we determined whether masitinib could reverse multidrug resistance (MDR) in cells overexpressing the ATP binding cassette subfamily G member 2 (ABCG2) transporter. Masitinib (1.25 and 2.5 μM) significantly decreases the resistance to mitoxantrone (MX), SN38 and doxorubicin in HEK293 and H460 cells overexpressing the ABCG2 transporter. In addition, masitinib (2.5 μM) significantly increased the intracellular accumulation of [3H]-MX, a substrate for ABCG2, by inhibiting the function of ABCG2 and significantly decreased the efflux of [3H]-MX. However, masitinib (2.5 μM) did not significantly alter the expression of the ABCG2 protein. In addition, a docking model suggested that masitinib binds within the transmembrane region of a homology-modeled human ABCG2 transporter. Overall, our in vitro findings suggest that masitinib reverses MDR to various anti-neoplastic drugs in HEK293 and H460 cells overexpressing ABCG2 by inhibiting their transport activity as opposed to altering their levels of expression.
Collapse
Affiliation(s)
- Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Jun-Jiang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Atish Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - De-Shen Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| |
Collapse
|
20
|
Patel NR, Pattni BS, Abouzeid AH, Torchilin VP. Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev 2013; 65:1748-62. [PMID: 23973912 DOI: 10.1016/j.addr.2013.08.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/02/2013] [Indexed: 01/08/2023]
Abstract
Multidrug resistance is the most widely exploited phenomenon by which cancer eludes chemotherapy. Broad variety of factors, ranging from the cellular ones, such as over-expression of efflux transporters, defective apoptotic machineries, and altered molecular targets, to the physiological factors such as higher interstitial fluid pressure, low extracellular pH, and formation of irregular tumor vasculature are responsible for multidrug resistance. A combination of various undesirable factors associated with biological surroundings together with poor solubility and instability of many potential therapeutic small & large molecules within the biological systems and systemic toxicity of chemotherapeutic agents has necessitated the need for nano-preparations to optimize drug delivery. The physiology of solid tumors presents numerous challenges for successful therapy. However, it also offers unique opportunities for the use of nanotechnology. Nanoparticles, up to 400 nm in size, have shown great promise for carrying, protecting and delivering potential therapeutic molecules with diverse physiological properties. In this review, various factors responsible for the MDR and the use of nanotechnology to overcome the MDR, the use of spheroid culture as well as the current technique of producing microtumor tissues in vitro are discussed in detail.
Collapse
|
21
|
Soares AS, Costa VM, Diniz C, Fresco P. Potentiation of cytotoxicity of paclitaxel in combination with Cl-IB-MECA in human C32 metastatic melanoma cells: A new possible therapeutic strategy for melanoma. Biomed Pharmacother 2013; 67:777-89. [PMID: 24035253 DOI: 10.1016/j.biopha.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/10/2013] [Indexed: 01/14/2023] Open
Abstract
Metastatic melanoma monotherapies with drugs such as dacarbazine, cisplatin or paclitaxel (PXT) are associated with significant toxicity and low efficacy rates. These facts reinforce the need for development of novel agents or combinatory strategies. Cl-IB-MECA is a small molecule, orally bioavailable, well tolerated and currently under clinical trials as an anticancer agent. Our aim was to investigate a possible combinatory therapeutic strategy using PXT and Cl-IB-MECA on human C32 melanoma cells and its underlying mechanisms. Cytotoxicity was evaluated using MTT reduction, lactate dehydrogenase leakage and neutral red uptake assays, for different concentrations and combinations of both agents, at 24 and 48 h. Apoptosis was also assessed using fluorescence microscopy and through the evaluation of caspases 8, 9, and 3 activities. We demonstrated, for the first time, that combination of PXT and Cl-IB-MECA significantly increases cytotoxicity for clinically relevant concentrations. This combination seems to act synergistically in disrupting membrane integrity, but also causing lysosomal and mitochondrial dysfunction. When using the lowest PTX concentration (10 ng/mL), co-incubation with CI-IB-MECA (micromolar concentrations) potentiated overall cytotoxic effects and morphological signs of apoptosis. All combinations studied enhanced caspase 8, 9, and 3 activities, suggesting the involvement of both intrinsic and extrinsic apoptotic pathways. The possibility that cytotoxicity elicited by Cl-IB-MECA, alone or in combination with PXT, involves adenosine receptor activation was discarded and results confirmed that oxidative stress is only involved in cytotoxicity after treatment with PXT, alone. Being melanoma a very apoptosis-resistance cancer, this combination seems to hold promise as a new therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Ana S Soares
- REQUIMTE/Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
22
|
Paulitschke V, Haudek-Prinz V, Griss J, Berger W, Mohr T, Pehamberger H, Kunstfeld R, Gerner C. Functional classification of cellular proteome profiles support the identification of drug resistance signatures in melanoma cells. J Proteome Res 2013; 12:3264-76. [PMID: 23713901 PMCID: PMC3733130 DOI: 10.1021/pr400124w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Drug
resistance is a major obstacle in melanoma treatment. Recognition
of specific resistance patterns, the understanding of the patho-physiology
of drug resistance, and identification of remaining options for individual
melanoma treatment would greatly improve therapeutic success. We performed
mass spectrometry-based proteome profiling of A375 melanoma cells
and HeLa cells characterized as sensitive to cisplatin in comparison
to cisplatin resistant M24met and TMFI melanoma cells. Cells were
fractionated into cytoplasm, nuclei and secretome and the proteome
profiles classified according to Gene Ontology. The cisplatin resistant
cells displayed increased expression of lysosomal as well as Ca2+ ion binding and cell adherence proteins. These findings
were confirmed using Lysotracker Red staining and cell adhesion assays
with a panel of extracellular matrix proteins. To discriminate specific
survival proteins, we selected constitutively expressed proteins of
resistant M24met cells which were found expressed upon challenging
the sensitive A375 cells. Using the CPL/MUW proteome database, the
selected lysosomal, cell adherence and survival proteins apparently
specifying resistant cells were narrowed down to 47 proteins representing
a potential resistance signature. These were tested against our proteomics
database comprising more than 200 different cell types/cell states
for its predictive power. We provide evidence that this signature
enables the automated assignment of resistance features as readout
from proteome profiles of any human cell type. Proteome profiling
and bioinformatic processing may thus support the understanding of
drug resistance mechanism, eventually guiding patient tailored therapy.
Collapse
Affiliation(s)
- Verena Paulitschke
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Deng W, Dai CL, Chen JJ, Kathawala RJ, Sun YL, Chen HF, Fu LW, Chen ZS. Tandutinib (MLN518) reverses multidrug resistance by inhibiting the efflux activity of the multidrug resistance protein 7 (ABCC10). Oncol Rep 2013; 29:2479-85. [PMID: 23525656 PMCID: PMC3694559 DOI: 10.3892/or.2013.2362] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/02/2013] [Indexed: 12/12/2022] Open
Abstract
It is well established that ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR) is one of the major mechanisms that causes resistance to antineoplastic drugs in cancer cells. ABC transporters can significantly decrease the intracellular concentration of antineoplastic drugs by increasing their efflux, thereby lowering their cytotoxic activity. One of these transporters, the multidrug resistance protein 7 (MRP7/ABCC10), has already been shown to produce resistance to antineoplastic drugs by increasing the efflux of the drugs. In the present study, we investigated whether tandutinib, an FMS-like tyrosine kinase 3 (FLT3) inhibitor, has the potential to reverse MRP7-mediated MDR. Our results revealed that tandutinib significantly enhanced the sensitivity of MRP7-transfected HEK293 cells to the 2 established MRP7 substrates, paclitaxel and vincristine, whereas there was less or no effect on the control vector-transfected HEK293 cells. [³H]-paclitaxel accumulation and efflux studies demonstrated that tandutinib increased the intracellular accumulation of [³H]-paclitaxel and inhibited the efflux of [³H]-paclitaxel from HEK-MRP7 cells. In addition, western blot analysis showed that tandutinib did not significantly affect MRP7 expression. Thus, we conclude that the FLT3 inhibitor tandutinib can reverse MRP7-mediated MDR through inhibition of the drug efflux function and may have potential to be used clinically in combination therapy for cancer patients.
Collapse
Affiliation(s)
- Wen Deng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hartman ML, Czyz M. Anti-apoptotic proteins on guard of melanoma cell survival. Cancer Lett 2013; 331:24-34. [PMID: 23340174 DOI: 10.1016/j.canlet.2013.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/18/2012] [Accepted: 01/07/2013] [Indexed: 12/30/2022]
Abstract
Apoptosis plays a pivotal role in sustaining proper tissue development and homeostasis. Evading apoptosis by cancer cells is a part of their adaption to microenvironment and therapies. Cellular integrity is predominantly maintained by pro-survival members of Bcl-2 family and IAPs. Melanoma cells are characterized by a labile and stage-dependent phenotype. Pro-survival molecules can protect melanoma cells from apoptosis and mediate other processes, thus enhancing aggressive phenotype. The essential role of Bcl-2, Mcl-1, Bcl-X(L), livin, survivin and XIAP was implicated for melanoma, often in a tumor stage-dependent fashion. In this review, the current knowledge of pro-survival machinery in melanoma is discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Poland
| | | |
Collapse
|
25
|
Budden T, Bowden NA. The role of altered nucleotide excision repair and UVB-induced DNA damage in melanomagenesis. Int J Mol Sci 2013; 14:1132-51. [PMID: 23303275 PMCID: PMC3565312 DOI: 10.3390/ijms14011132] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 12/26/2012] [Indexed: 01/12/2023] Open
Abstract
UVB radiation is the most mutagenic component of the UV spectrum that reaches the earth's surface and causes the development of DNA damage in the form of cyclobutane pyrimidine dimers and 6-4 photoproducts. UV radiation usually results in cellular death, but if left unchecked, it can affect DNA integrity, cell and tissue homeostasis and cause mutations in oncogenes and tumour-suppressor genes. These mutations, if unrepaired, can lead to abnormal cell growth, increasing the risk of cancer development. Epidemiological data strongly associates UV exposure as a major factor in melanoma development, but the exact biological mechanisms involved in this process are yet to be fully elucidated. The nucleotide excision repair (NER) pathway is responsible for the repair of UV-induced lesions. Patients with the genetic disorder Xeroderma Pigmentosum have a mutation in one of eight NER genes associated with the XP complementation groups XP-A to XP-G and XP variant (XP-V). XP is characterized by diminished repair capacity, as well as a 1000-fold increase in the incidence of skin cancers, including melanoma. This has suggested a significant role for NER in melanoma development as a result of UVB exposure. This review discusses the current research surrounding UVB radiation and NER capacity and how further investigation of NER could elucidate the role of NER in avoiding UV-induced cellular death resulting in melanomagenesis.
Collapse
Affiliation(s)
- Timothy Budden
- Centre for Information Based Medicine, Hunter Medical Research Institute, and School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW 2289, Australia.
| | | |
Collapse
|
26
|
Ho H, Aruri J, Kapadia R, Mehr H, White MA, Ganesan AK. RhoJ regulates melanoma chemoresistance by suppressing pathways that sense DNA damage. Cancer Res 2012; 72:5516-28. [PMID: 22971344 DOI: 10.1158/0008-5472.can-12-0775] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Melanomas resist conventional chemotherapeutics, in part, through intrinsic disrespect of apoptotic checkpoint activation. In this study, using an unbiased genome-wide RNA interference screen, we identified RhoJ and its effector PAK1, as key modulators of melanoma cell sensitivity to DNA damage. We find that RhoJ activates PAK1 in response to drug-induced DNA damage, which then uncouples ATR from its downstream effectors, ultimately resulting in a blunted DNA damage response (DDR). In addition, ATR suppression leads to the decreased phosphorylation of ATF2 and consequent increased expression of the melanocyte survival gene Sox10 resulting in a higher DDR threshold required to engage melanoma cell death. In the setting of normal melanocyte behavior, this regulatory relationship may facilitate appropriate epidermal melanization in response to UV-induced DNA damage. However, pathologic pathway activation during oncogenic transformation produces a tumor that is intrinsically resistant to chemotherapy and has the propensity to accumulate additional mutations. These findings identify DNA damage agents and pharmacologic inhibitors of RhoJ/PAK1 as novel synergistic agents that can be used to treat melanomas that are resistant to conventional chemotherapies.
Collapse
Affiliation(s)
- Hsiang Ho
- Department of Dermatology, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
27
|
Somasundaram R, Villanueva J, Herlyn M. Intratumoral heterogeneity as a therapy resistance mechanism: role of melanoma subpopulations. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 65:335-59. [PMID: 22959031 DOI: 10.1016/b978-0-12-397927-8.00011-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malignant melanoma is an aggressive form of skin cancer whose incidence continues to increase worldwide. Increased exposure to sun, ultraviolet radiation, and the use of tanning beds can increase the risk of melanoma. Early detection of melanomas is the key to successful treatment mainly through surgical excision of the primary tumor lesion. But in advanced stage melanomas, once the disease has spread beyond the primary site to distant organs, the tumors are difficult to treat and quickly develop resistance to most available forms of therapy. The advent of molecular and cellular techniques has led to a better characterization of tumor cells revealing the presence of heterogeneous melanoma subpopulations. The discovery of gene mutations and alterations of cell-signaling pathways in melanomas has led to the development of new targeted drugs that show dramatic response rates in patients. Single-agent therapies generally target one subpopulation of tumor cells while leaving others unharmed. The surviving subpopulations will have the ability to repopulate the original tumors that can continue to progress. Thus, a rational approach to target multiple subpopulations of tumor cells with a combination of drugs instead of single-agent therapy will be necessary for long-lasting inhibition of melanoma lesions. In this context, the recent development of immune checkpoint reagents provides an additional armor that can be used in combination with targeted drugs to expand the presence of melanoma reactive T cells in circulation to prevent tumor recurrence.
Collapse
Affiliation(s)
- Rajasekharan Somasundaram
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, Philadelphia, USA
| | | | | |
Collapse
|
28
|
Gatouillat G, Balasse E, Joseph-Pietras D, Morjani H, Madoulet C. Resveratrol induces cell-cycle disruption and apoptosis in chemoresistant B16 melanoma. J Cell Biochem 2010; 110:893-902. [PMID: 20564188 DOI: 10.1002/jcb.22601] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Resveratrol, a naturally occurring polyphenol, has been shown to possess chemopreventive activities. In this study, we show that resveratrol (0-500 microM) inhibits the growth of a doxorubicin-resistant B16 melanoma cell subline (B16/DOX) (IC(50) = 25 microM after 72 h, P < 0.05). This was accomplished by imposing an artificial checkpoint at the G(1)-S phase transition, as demonstrated by cell-cycle analysis and down-regulation of cyclin D1/cdk4 and increased of p53 expression level. The G(1)-phase arrest of cell cycle in resveratrol-treated (10-100 microM) B16/DOX cells was followed by the induction of apoptosis, which was revealed by pyknotic nuclei and fragmented DNA. Resveratrol also potentiated at subtoxic dose (25 microM for 24 h) doxorubicin cytotoxicity in the chemoresistant B16 melanoma (P < 0.01). When administered to mice, resveratrol (12.5 mg/kg) reduced the growth of an established B16/DOX melanoma and prolonged survival (32% compared to untreated mice). All these data support a potential use of resveratrol alone or in combination with other chemotherapeutic agents in the management of chemoresistant tumors.
Collapse
Affiliation(s)
- Grégory Gatouillat
- Faculty of Pharmacy, Department of Biochemistry and Molecular Biology, URCA, Reims, France
| | | | | | | | | |
Collapse
|
29
|
Bowden NA, Ashton KA, Avery-Kiejda KA, Zhang XD, Hersey P, Scott RJ. Nucleotide excision repair gene expression after Cisplatin treatment in melanoma. Cancer Res 2010; 70:7918-26. [PMID: 20807809 DOI: 10.1158/0008-5472.can-10-0161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two of the hallmark features of melanoma are its development as a result of chronic UV radiation exposure and the limited efficacy of cisplatin in the disease treatment. Both of these DNA-damaging agents result in large helix-distorting DNA damage that is recognized and repaired by nucleotide excision repair (NER). The aim of this study was to examine the expression of NER gene transcripts, p53, and p21 in melanoma cell lines treated with cisplatin compared with melanocytes. Basal expression of all genes was greater in the melanoma cell lines compared with melanocytes. Global genome repair (GGR) transcripts showed significantly decreased relative expression (RE) in melanoma cell lines 24 hours after cisplatin treatment. The basal RE of p53 was significantly higher in the melanoma cell lines compared with the melanocytes. However, induction of p53 was only significant in the melanocytes at 6 and 24 hours after cisplatin treatment. Inhibition of p53 expression significantly decreased the expression of all the GGR transcripts in melanocytes at 6 and 24 hours after cisplatin treatment. Although the RE levels were lower with p53 inhibition, the induction of the GGR genes was very similar to that in the control melanocytes and increased significantly across the time points. The findings from this study revealed reduced GGR transcript levels in melanoma cells 24 hours after cisplatin treatment. Our findings suggest a possible mechanistic explanation for the limited efficacy of cisplatin treatment and the possible role of UV light in melanoma.
Collapse
Affiliation(s)
- Nikola A Bowden
- Centre for Information Based Medicine, University of Newcastle, Newcastle, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Yang JY, Ha SA, Yang YS, Kim JW. p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance. BMC Cancer 2010; 10:388. [PMID: 20649952 PMCID: PMC2913965 DOI: 10.1186/1471-2407-10-388] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 07/22/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cancer cells recurrently develop into acquired resistance to the administered drugs. The iatrogenic mechanisms of induced chemotherapy-resistance remain elusive and the degree of drug resistance did not exclusively correlate with reductions of drug accumulation, suggesting that drug resistance may involve additional mechanisms. Our aim is to define the potential targets, that makes drug-sensitive MCF-7 breast cancer cells turn to drug-resistant, for the anti-cancer drug development against drug resistant breast cancer cells. METHODS Doxorubicin resistant human breast MCF-7 clones were generated. The doxorubicin-induced cell fusion events were examined. Heterokaryons were identified and sorted by FACS. In the development of doxorubicin resistance, cell-fusion associated genes, from the previous results of microarray, were verified using dot blot array and quantitative RT-PCR. The doxorubicin-induced expression patterns of pro-survival and pro-apoptotic genes were validated. RESULTS YB-1 and ABCB5 were up regulated in the doxorubicin treated MCF-7 cells that resulted in certain degree of genomic instability that accompanied by the drug resistance phenotype. Cell fusion increased diversity within the cell population and doxorubicin resistant MCF-7 cells emerged probably through clonal selection. Most of the drug resistant hybrid cells were anchorage independent. But some of the anchorage dependent MCF-7 cells exhibited several unique morphological appearances suggesting minor population of the fused cells maybe de-differentiated and have progenitor cell like characteristics. CONCLUSION Our work provides valuable insight into the drug induced cell fusion event and outcome, and suggests YB-1, GST, ABCB5 and ERK3 could be potential targets for the anti-cancer drug development against drug resistant breast cancer cells. Especially, the ERK-3 serine/threonine kinase is specifically up-regulated in the resistant cells and known to be susceptible to synthetic antagonists.
Collapse
Affiliation(s)
- Ji Yeon Yang
- Molecular Genetic Laboratory, College of Medicine, The Catholic University of Korea, Seoul 137-040, Republic of Korea
| | | | | | | |
Collapse
|
31
|
Shen T, Kuang YH, Ashby CR, Lei Y, Chen A, Zhou Y, Chen X, Tiwari AK, Hopper-Borge E, Ouyang J, Chen ZS. Imatinib and nilotinib reverse multidrug resistance in cancer cells by inhibiting the efflux activity of the MRP7 (ABCC10). PLoS One 2009; 4:e7520. [PMID: 19841739 PMCID: PMC2759525 DOI: 10.1371/journal.pone.0007520] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/02/2009] [Indexed: 01/17/2023] Open
Abstract
Background One of the major mechanisms that could produce resistance to antineoplastic drugs in cancer cells is the ATP binding cassette (ABC) transporters. The ABC transporters can significantly decrease the intracellular concentration of antineoplastic drugs by increasing their efflux, thereby lowering the cytotoxic activity of antineoplastic drugs. One of these transporters, the multiple resistant protein 7 (MRP7, ABCC10), has recently been shown to produce resistance to antineoplastic drugs by increasing the efflux of paclitaxel. In this study, we examined the effects of BCR-Abl tyrosine kinase inhibitors imatinib, nilotinib and dasatinib on the activity and expression of MRP7 in HEK293 cells transfected with MRP7, designated HEK-MRP7-2. Methodology and/or Principal Findings We report for the first time that imatinib and nilotinib reversed MRP7-mediated multidrug resistance. Our MTT assay results indicated that MRP7 expression in HEK-MRP7-2 cells was not significantly altered by incubation with 5 µM of imatinib or nilotinib for up to 72 hours. In addition, imatinib and nilotinib (1-5 µM) produced a significant concentration-dependent reversal of MRP7-mediated multidrug resistance by enhancing the sensitivity of HEK-MRP7-2 cells to paclitaxel and vincristine. Imatinib and nilotinib, at 5 µM, significantly increased the accumulation of [3H]-paclitaxel in HEK-MRP7-2 cells. The incubation of the HEK-MRP7-2 cells with imatinib or nilotinib (5 µM) also significantly inhibited the efflux of paclitaxel. Conclusions Imatinib and nilotinib reverse MRP7-mediated paclitaxel resistance, most likely due to their inhibition of the efflux of paclitaxel via MRP7. These findings suggest that imatinib or nilotinib, in combination with other antineoplastic drugs, may be useful in the treatment of certain resistant cancers.
Collapse
Affiliation(s)
- Tong Shen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | - Ye-Hong Kuang
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
- Department of Dermatology, Xiang Ya Hospital, Central South University, Changsha, China
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | - Yu Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | - Angel Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | - Ying Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | - Xiang Chen
- Department of Dermatology, Xiang Ya Hospital, Central South University, Changsha, China
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | | | - Jiangyong Ouyang
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Small-Molecule Drugs Mimicking DNA Damage: A New Strategy for Sensitizing Tumors to Radiotherapy. Clin Cancer Res 2009; 15:1308-16. [DOI: 10.1158/1078-0432.ccr-08-2108] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Jones C, Plummer ER. PARP inhibitors and cancer therapy - early results and potential applications. Br J Radiol 2008; 81 Spec No 1:S2-5. [PMID: 18819994 DOI: 10.1259/bjr/30872348] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Polyadenosine diphosphate-ribose polymerase (PARP) inhibitors are emerging as an exciting new class of agents for treating cancer. There is pre-clinical evidence for their use to potentiate both chemotherapeutic agents and radiotherapy, and also as single agents. This paper discusses the early clinical work published showing their use in combination with temozolomide in malignant melanoma, and in familial (BRCA-related) cancers.
Collapse
Affiliation(s)
- C Jones
- Northern Institute for Cancer Research, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
34
|
Abstract
Regional chemotherapy was developed in the 1950s and continues to play an integral part in the development of newer therapies for advanced solid malignancies. Regional therapies have evolved in complexity but are still based on the pharmacokinetics of drug delivery to solid malignancies. Newer techniques demonstrate that the combination of regional therapies, hyperthermia, and surgery is essential in promoting improved patient outcomes.
Collapse
|
35
|
Kluger HM, McCarthy MM, Alvero AB, Sznol M, Ariyan S, Camp RL, Rimm DL, Mor G. The X-linked inhibitor of apoptosis protein (XIAP) is up-regulated in metastatic melanoma, and XIAP cleavage by Phenoxodiol is associated with Carboplatin sensitization. J Transl Med 2007; 5:6. [PMID: 17257402 PMCID: PMC1796544 DOI: 10.1186/1479-5876-5-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 01/26/2007] [Indexed: 12/17/2022] Open
Abstract
XIAP up-regulation is associated with chemotherapy resistance. Phenoxodiol causes XIAP degradation and chemotherapy sensitization in ovarian cancer. Here we assessed XIAP expression in melanomas, using tissue microarrays containing 436 melanomas and 336 nevi by a novel method of automated, quantitative analysis (AQUA). We used S100 to define pixels as melanoma (tumor mask) within the array spot, and measured XIAP expression using Cy5-conjugated antibodies within the mask. XIAP expression was significantly higher in melanomas than nevi (P < 0.0001), and higher in metastatic than primary lesions (P < 0.0001). We then assessed a panel of melanoma cell lines for XIAP expression, and found high expression in all cell lines. Three of the cell lines were assessed for Phenoxodiol and Carboplatin sensitivity; all were resistant to Carboplatin and showed variable sensitivity to Phenoxodiol. Pre-treating Phenoxodiol sensitive cells with Phenoxodiol prior to Carboplatin resulted in XIAP degradation, associated with Carboplatin sensitization and apoptosis, whereas exposing Phenoxodiol resistant cells to Phenoxodiol resulted in less XIAP degradation and minimal Carboplatin sensitization. We conclude that XIAP levels in clinical specimens are significantly higher in melanomas than their benign counterparts, and higher in metastatic than in primary specimens, suggesting an association with malignant progression and disease aggression. Melanoma resistance to Carboplatin is possibly due to XIAP over-expression. Phenoxodiol can sensitize melanoma cells to Carboplatin in vitro with corresponding XIAP degradation, although the precise target and mechanism of action of Phenoxodiol are subject to further assessment. Targeting XIAP warrants additional investigation as a therapeutic approach for metastatic melanoma.
Collapse
Affiliation(s)
- Harriet M Kluger
- Department of Medicine, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Mary M McCarthy
- Department of Medicine, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Ayesha B Alvero
- Department of Obstetrics & Gynecology, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Mario Sznol
- Department of Medicine, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Stephan Ariyan
- Department of Surgery, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Robert L Camp
- Department of Pathology, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Gil Mor
- Department of Medicine, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| |
Collapse
|
36
|
Mousavi-Shafaei P, Ziaee AA, Azizi E, Zangemeister-Wittke U. Antisense-mediated melanoma inhibitor of apoptosis protein downregulation sensitizes G361 melanoma cells to cisplatin. Anticancer Drugs 2006; 17:1031-9. [PMID: 17001176 DOI: 10.1097/01.cad.0000231474.77159.e3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Malignant melanoma is an aggressive form of skin cancer that is highly resistant to conventional therapies. The melanoma inhibitor of apoptosis protein is a potent inhibitor of apoptosis and is overexpressed in melanoma cells, but undetectable in most normal tissues including melanocytes. We designed 20-mer phosphorothioate antisense oligonucleotides complementary to five putatively single-stranded sites on the melanoma inhibitor of apoptosis protein mRNA and investigated their ability to sensitize G361 melanoma cells to cisplatin. Inhibition of melanoma inhibitor of apoptosis protein mRNA and protein expression were measured by real-time polymerase chain reaction and immunoblotting. Cell viability and apoptosis were quantitated by colorimetric viability assays and by annexin V staining, respectively. Oligonucleotide M706 was identified as the most efficient antisense sequence which downregulated melanoma inhibitor of apoptosis protein mRNA and protein levels in G361 cells by 68 and 78%, respectively. The specificity of target downregulation was confirmed using scrambled sequence control oligonucleotides that only marginally decreased melanoma inhibitor of apoptosis protein expression. Whereas downregulation of melanoma inhibitor of apoptosis protein moderately inhibited cell growth by 26%, in combination with cisplatin, this resulted in a supra-additive effect with almost 57% reduction in G361 cell viability compared with cisplatin alone (17%) (P<0.05). Cell death was mainly due to apoptosis as demonstrated by a 3- to 4-fold increase in annexin V-positive cells and typical morphological changes compared with controls. In summary, we describe a new antisense oligonucleotide that efficiently downregulates melanoma inhibitor of apoptosis protein expression and sensitizes melanoma cells to cisplatin.
Collapse
Affiliation(s)
- Parisa Mousavi-Shafaei
- Institute of Biochemistry and Biophysics, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|
37
|
Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, Sayegh MH, Sadee W, Frank MH. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 2005; 65:4320-33. [PMID: 15899824 DOI: 10.1158/0008-5472.can-04-3327] [Citation(s) in RCA: 407] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhanced drug efflux mediated by ABCB1 P-glycoprotein and related ATP-binding cassette transporters is one of several mechanisms of multidrug resistance thought to impair chemotherapeutic success in human cancers. In malignant melanoma, its potential contribution to chemoresistance is uncertain. Here, we show that ABCB5, which functions as a determinant of membrane potential and regulator of cell fusion in physiologic skin progenitor cells, is expressed in clinical malignant melanoma tumors and preferentially marks a subset of hyperpolarized, CD133+ stem cell phenotype-expressing tumor cells in malignant melanoma cultures and clinical melanomas. We found that ABCB5 blockade significantly reversed resistance of G3361 melanoma cells to doxorubicin, an agent to which clinical melanomas have been found refractory, resulting in a 43% reduction in the LD50 from 4 to 2.3 micromol/L doxorubicin (P < 0.05). Our results identified ABCB5-mediated doxorubicin efflux transport as the underlying mechanism of resistance, because ABCB5 blockade significantly enhanced intracellular drug accumulation. Consistent with this novel ABCB5 function and mechanism in doxorubicin resistance, gene expression levels of the transporter across a panel of human cancer cell lines used by the National Cancer Institute for drug screening correlated significantly with tumor resistance to doxorubicin (r = 0.44; P = 0.016). Our results identify ABCB5 as a novel drug transporter and chemoresistance mediator in human malignant melanoma. Moreover, our findings show that ABCB5 is a novel molecular marker for a distinct subset of chemoresistant, stem cell phenotype-expressing tumor cells among melanoma bulk populations and indicate that these chemoresistant cells can be specifically targeted via ABCB5 to enhance cytotoxic efficacy.
Collapse
MESH Headings
- AC133 Antigen
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/pharmacology
- Antigens, CD
- Doxorubicin/pharmacokinetics
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Flow Cytometry
- Gene Expression
- Glycoproteins/biosynthesis
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Humans
- Melanoma/drug therapy
- Melanoma/genetics
- Melanoma/metabolism
- Melanoma/pathology
- Peptides/genetics
- Peptides/metabolism
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Natasha Y Frank
- Department of Genetics, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|