1
|
Dos Santos Rocha A, Fodor GH, Kassai M, Degrugilliers L, Bayat S, Petak F, Habre W. Physiologically variable ventilation reduces regional lung inflammation in a pediatric model of acute respiratory distress syndrome. Respir Res 2020; 21:288. [PMID: 33129315 PMCID: PMC7602830 DOI: 10.1186/s12931-020-01559-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Benefits of variable mechanical ventilation based on the physiological breathing pattern have been observed both in healthy and injured lungs. These benefits have not been characterized in pediatric models and the effect of this ventilation mode on regional distribution of lung inflammation also remains controversial. Here, we compare structural, molecular and functional outcomes reflecting regional inflammation between PVV and conventional pressure-controlled ventilation (PCV) in a pediatric model of healthy lungs and acute respiratory distress syndrome (ARDS). METHODS New-Zealand White rabbit pups (n = 36, 670 ± 20 g [half-width 95% confidence interval]), with healthy lungs or after induction of ARDS, were randomized to five hours of mechanical ventilation with PCV or PVV. Regional lung aeration, inflammation and perfusion were assessed using x-ray computed tomography, positron-emission tomography and single-photon emission computed tomography, respectively. Ventilation parameters, blood gases and respiratory tissue elastance were recorded hourly. RESULTS Mechanical ventilation worsened respiratory elastance in healthy and ARDS animals ventilated with PCV (11 ± 8%, 6 ± 3%, p < 0.04), however, this trend was improved by PVV (1 ± 4%, - 6 ± 2%). Animals receiving PVV presented reduced inflammation as assessed by lung normalized [18F]fluorodeoxyglucose uptake in healthy (1.49 ± 0.62 standardized uptake value, SUV) and ARDS animals (1.86 ± 0.47 SUV) compared to PCV (2.33 ± 0.775 and 2.28 ± 0.3 SUV, respectively, p < 0.05), particularly in the well and poorly aerated lung zones. No benefit of PVV could be detected on regional blood perfusion or blood gas parameters. CONCLUSIONS Variable ventilation based on a physiological respiratory pattern, compared to conventional pressure-controlled ventilation, reduced global and regional inflammation in both healthy and injured lungs of juvenile rabbits.
Collapse
Affiliation(s)
- Andre Dos Santos Rocha
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland.
| | - Gergely H Fodor
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland.,Department of Medical Physics and Informatics, University of Szeged, 9 Korányi fasor, Szeged, 6720, Hungary
| | - Miklos Kassai
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland
| | - Loic Degrugilliers
- Department of Pediatric Intensive Care, Amiens University Hospital, Amiens, France
| | - Sam Bayat
- Inserm UA7 STROBE Laboratory &, Department of Clinical Physiology, Sleep and Exercise, Grenoble University Hospital, Boulevard de La Chantourne, 38700, Grenoble, La Tronche, France
| | - Ferenc Petak
- Department of Medical Physics and Informatics, University of Szeged, 9 Korányi fasor, Szeged, 6720, Hungary
| | - Walid Habre
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland
| |
Collapse
|
2
|
Bamat N, Fierro J, Wang Y, Millar D, Kirpalani H. Positive end-expiratory pressure for preterm infants requiring conventional mechanical ventilation for respiratory distress syndrome or bronchopulmonary dysplasia. Cochrane Database Syst Rev 2019; 2:CD004500. [PMID: 30820939 PMCID: PMC6395956 DOI: 10.1002/14651858.cd004500.pub3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Conventional mechanical ventilation (CMV) is a common therapy for neonatal respiratory failure. While CMV facilitates gas exchange, it may simultaneously injure the lungs. Positive end-expiratory pressure (PEEP) has received less attention than other ventilation parameters when considering this benefit-risk balance. While an appropriate PEEP level may result in clinical benefits, both inappropriately low or high levels may cause harm. An appropriate PEEP level may also be best achieved by an individualized approach. OBJECTIVES 1. To compare the effects of PEEP levels in preterm infants requiring CMV for respiratory distress syndrome (RDS). We compare both: zero end-expiratory pressure (ZEEP) (0 cm H2O) versus any PEEP and low (< 5 cm H2O) vs high (≥ 5 cm H2O) PEEP.2. To compare the effects of PEEP levels in preterm infants requiring CMV for bronchopulmonary dysplasia (BPD). We compare both: ZEEP (0 cm H2O) vs any PEEP and low (< 5 cm H2O) versus high (≥ 5 cm H2O) PEEP.3. To compare the effects of different methods for individualizing PEEP to an optimal level in preterm newborn infants requiring CMV for RDS. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials, MEDLINE via PubMed, Embase, and CINAHL to 14 February 2018. We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomized controlled trials and quasi-randomized trials. SELECTION CRITERIA We included all randomized or quasi-randomized controlled trials studying preterm infants born at less than 37 weeks' gestational age, requiring CMV and undergoing randomization to either different PEEP levels (RDS or BPD); or, two or more alternative methods for individualizing PEEP levels (RDS only). We included cross-over trials but limited outcomes to those from the first cross-over period. DATA COLLECTION AND ANALYSIS We performed data collection and analysis according to the recommendations of the Cochrane Neonatal Review Group. We used the GRADE approach to assess the quality of evidence for prespecified key clinically relevant outcomes. MAIN RESULTS Four trials met the inclusion criteria. Two cross-over trials with 28 participants compared different PEEP levels in infants with RDS. Meta-analysis was limited to short-term measures of pulmonary gas exchange and showed no differences between low and high PEEP.We identified no trials comparing PEEP levels in infants with BPD.Two trials enrolling 44 participants compared different methods for individualizing PEEP in infants with RDS. Both trials compared an oxygenation-guided lung-recruitment maneuver (LRM) with gradual PEEP level titrations for individualizing PEEP to routine care (control). Meta-analysis showed no difference between LRM and control on mortality by hospital discharge (risk ratio (RR) 1.00, 95% confidence interval (CI) 0.17 to 5.77); there was no statistically significant difference on BPD, with an effect estimate favoring LRM (RR 0.25, 95% CI 0.03 to 2.07); and a statistically significant difference favoring LRM for the outcome of duration of ventilatory support (mean difference -1.06 days, 95% CI -1.85 to -0.26; moderate heterogeneity, I2 = 67%). Short-term oxygenation measures also favored LRM. We graded the quality of the evidence as low for all key outcomes due to risk of bias and imprecision of the effect estimates. AUTHORS' CONCLUSIONS There continues to be insufficient evidence to guide PEEP level selection for preterm infants on CMV for RDS or BPD. Low-quality data suggests that selecting PEEP levels through the application of an oxygenation-guided LRM may result in clinical benefit. Well-conducted randomized trials, particularly to further evaluate the potential benefits of oxygenation-guided LRMs, are needed.
Collapse
Affiliation(s)
- Nicolas Bamat
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of PennsylvaniaDivision of Neonatology and Center for Pediatric Clinical Effectiveness34th Street and Civic Center BoulevardPhiladelphiaUSA19104
| | - Julie Fierro
- Children's Hospital of PhiladelphiaDivision of Pulmonary MedicinePhiladelphiaUSA
| | - Yifei Wang
- Guangdong General Hospital, Guangdong Academy of Medical SciencesDepartment of Pediatrics106 Zhongshan Second RoadGuangzhouChina510080
| | - David Millar
- Royal Jubilee Maternity ServiceRegional Neonatal Intensive Care UnitRoyal Maternity HospitalGrosvenor RoadBelfastUKBT12 6BB
| | | |
Collapse
|
3
|
Capitanio S, Nordin AJ, Noraini AR, Rossetti C. PET/CT in nononcological lung diseases: current applications and future perspectives. Eur Respir Rev 2017; 25:247-58. [PMID: 27581824 DOI: 10.1183/16000617.0051-2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/05/2016] [Indexed: 12/22/2022] Open
Abstract
Positron emission tomography (PET) combined with computed tomography (CT) is an established diagnostic modality that has become an essential imaging tool in oncological practice. However, thanks to its noninvasive nature and its capability to provide physiological information, the main applications of this technique have significantly expanded.(18)F-labelled fluorodeoxyglucose (FDG) is the most commonly used radiopharmaceutical for PET scanning and demonstrates metabolic activity in various tissues. Since activated inflammatory cells, like malignant cells, predominantly metabolise glucose as a source of energy and increase expression of glucose transporters when activated, FDG-PET/CT can be successfully used to detect and monitor a variety of lung diseases, such as infections and several inflammatory conditions.The added value of FDG-PET/CT as a molecular imaging technique relies on its capability to identify disease in very early stages, long before the appearance of structural changes detectable by conventional imaging. Furthermore, by detecting the active phase of infectious or inflammatory processes, disease progression and treatment efficacy can be monitored.This review will focus on the clinical use of FDG-PET/CT in nonmalignant pulmonary diseases.
Collapse
Affiliation(s)
- Selene Capitanio
- Nuclear Medicine, ASST Grande Ospedale Metropolitano Niguarda, Dept of Advanced Diagnostic Therapeutic Technologies, Milan, Italy
| | - Abdul Jalil Nordin
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Claudio Rossetti
- Nuclear Medicine, ASST Grande Ospedale Metropolitano Niguarda, Dept of Advanced Diagnostic Therapeutic Technologies, Milan, Italy
| |
Collapse
|
4
|
Musk GC, Polglase GR, Bunnell JB, Nitsos I, Tingay D, Pillow JJ. A comparison of high-frequency jet ventilation and synchronised intermittent mandatory ventilation in preterm lambs. Pediatr Pulmonol 2015; 50:1286-93. [PMID: 25823397 DOI: 10.1002/ppul.23187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/08/2015] [Accepted: 03/15/2015] [Indexed: 01/12/2023]
Abstract
PURPOSE Synchronised intermittent mandatory ventilation (SIMV) and high-frequency jet ventilation (HFJV) are accepted ventilatory strategies for treatment of respiratory distress syndrome (RDS) in preterm babies. We hypothesised that SIMV and HFJV both facilitate adequate oxygenation and ventilation but that HFJV is associated with less lung injury. RESULTS There were no differences in arterial oxygenation or partial pressure of carbon dioxide despite lower mean airway pressure during SIMV for most of the study. There were no consistent significant differences in end systolic and end diastolic PBF, lung injury data and static lung compliance. METHODS Preterm lambs of anaesthetised ewes were instrumented, intubated and delivered by caesarean section after intratracheal suction and instillation of surfactant. Each lamb was managed for 3 hr according to a predetermined algorithm for ventilatory support consistent with open lung ventilation. Pulmonary blood flow (PBF) was measured continuously and pulsatility index was calculated. Ventilatory parameters were recorded and arterial blood gases were measured at intervals. At postmortem, in situ pressure-volume deflation curves were recorded, and bronchoalveolar lavage fluid and lung tissue were obtained to assess inflammation. CONCLUSIONS SIMV and HFJV have comparable clinical efficacy and ventilator pressure requirements when applied with a targeted lung volume recruitment strategy.
Collapse
Affiliation(s)
- Gabrielle C Musk
- Animal Care Services, Faculty of Medicine Dentistry and Health Sciences, University of Western Australia, Perth, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Australia
| | - J Bert Bunnell
- Department of Bioengineering, University of Utah, Bunnell Inc, Salt Lake City, Utah
| | - Ilias Nitsos
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Australia
| | - David Tingay
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - J Jane Pillow
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, The University of Western Australia, Perth, Australia.,School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Australia
| |
Collapse
|
5
|
Biological Impact of Transpulmonary Driving Pressure in Experimental Acute Respiratory Distress Syndrome. Anesthesiology 2015; 123:423-33. [DOI: 10.1097/aln.0000000000000716] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background:
Ventilator-induced lung injury has been attributed to the interaction of several factors: tidal volume (VT), positive end-expiratory pressure (PEEP), transpulmonary driving pressure (difference between transpulmonary pressure at end-inspiration and end-expiration, ΔP,L), and respiratory system plateau pressure (Pplat,rs).
Methods:
Forty-eight Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, animals were randomized into combinations of VT and PEEP, yielding three different ΔP,L levels: ΔP,LLOW (VT = 6 ml/kg, PEEP = 3 cm H2O); ΔP,LMEAN (VT = 13 ml/kg, PEEP = 3 cm H2O or VT = 6 ml/kg, PEEP = 9.5 cm H2O); and ΔP,LHIGH (VT = 22 ml/kg, PEEP = 3 cm H2O or VT = 6 ml/kg, PEEP = 11 cm H2O). In other groups, at low VT, PEEP was adjusted to obtain a Pplat,rs similar to that achieved with ΔP,LMEAN and ΔP,LHIGH at high VT.
Results:
At ΔP,LLOW, expressions of interleukin (IL)-6, receptor for advanced glycation end products (RAGE), and amphiregulin were reduced, despite morphometric evidence of alveolar collapse. At ΔP,LHIGH (VT = 6 ml/kg and PEEP = 11 cm H2O), lungs were fully open and IL-6 and RAGE were reduced compared with ΔP,LMEAN (27.4 ± 12.9 vs. 41.6 ± 14.1 and 0.6 ± 0.2 vs. 1.4 ± 0.3, respectively), despite increased hyperinflation and amphiregulin expression. At ΔP,LMEAN (VT = 6 ml/kg and PEEP = 9.5 cm H2O), when PEEP was not high enough to keep lungs open, IL-6, RAGE, and amphiregulin expression increased compared with ΔP,LLOW (41.6 ± 14.1 vs. 9.0 ± 9.8, 1.4 ± 0.3 vs. 0.6 ± 0.2, and 6.7 ± 0.8 vs. 2.2 ± 1.0, respectively). At Pplat,rs similar to that achieved with ΔP,LMEAN and ΔP,LHIGH, higher VT and lower PEEP reduced IL-6 and RAGE expression.
Conclusion:
In the acute respiratory distress syndrome model used in this experiment, two strategies minimized ventilator-induced lung injury: (1) low VT and PEEP, yielding low ΔP,L and Pplat,rs; and (2) low VT associated with a PEEP level sufficient to keep the lungs open.
Collapse
|
6
|
Monitoring Lung Volumes During Mechanical Ventilation. PEDIATRIC AND NEONATAL MECHANICAL VENTILATION 2015. [PMCID: PMC7193716 DOI: 10.1007/978-3-642-01219-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Respiratory inductive plethysmography (RIP) is a non-invasive method of measuring change in lung volume which is well-established as a monitor of tidal ventilation and thus respiratory patterns in sleep medicine. As RIP is leak independent, can measure end-expiratory lung volume as well as tidal volume and is applicable to both the ventilated and spontaneously breathing patient, there has been a recent interest in its use as a bedside tool in the intensive care unit.
Collapse
|
7
|
Rochow N, Manan A, Wu WI, Fusch G, Monkman S, Leung J, Chan E, Nagpal D, Predescu D, Brash J, Selvaganapathy PR, Fusch C. An Integrated Array of Microfluidic Oxygenators as a Neonatal Lung Assist Device: In Vitro Characterization and In Vivo Demonstration. Artif Organs 2014; 38:856-66. [DOI: 10.1111/aor.12269] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Niels Rochow
- Division of Neonatology; Department of Pediatrics; McMaster University; Hamilton Ontario Canada
| | - Asmaa Manan
- School of Biomedical Engineering; McMaster University; Hamilton Ontario Canada
| | - Wen-I Wu
- Department of Mechanical Engineering; McMaster University; Hamilton Ontario Canada
| | - Gerhard Fusch
- Division of Neonatology; Department of Pediatrics; McMaster University; Hamilton Ontario Canada
| | - Shelley Monkman
- Division of Neonatology; Department of Pediatrics; McMaster University; Hamilton Ontario Canada
| | - Jennifer Leung
- Department of Chemical Engineering; McMaster University; Hamilton Ontario Canada
| | - Emily Chan
- Division of Neonatology; Department of Pediatrics; McMaster University; Hamilton Ontario Canada
| | - Dipen Nagpal
- Department of Mechanical Engineering; McMaster University; Hamilton Ontario Canada
| | - Dragos Predescu
- Division of Cardiology; Department of Pediatrics; McMaster University; Hamilton Ontario Canada
| | - John Brash
- School of Biomedical Engineering; McMaster University; Hamilton Ontario Canada
- Department of Chemical Engineering; McMaster University; Hamilton Ontario Canada
| | - Ponnambalam Ravi Selvaganapathy
- School of Biomedical Engineering; McMaster University; Hamilton Ontario Canada
- Department of Mechanical Engineering; McMaster University; Hamilton Ontario Canada
| | - Christoph Fusch
- Division of Neonatology; Department of Pediatrics; McMaster University; Hamilton Ontario Canada
- School of Biomedical Engineering; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
8
|
Bamat N, Millar D, Suh S, Kirpalani H. Positive end expiratory pressure for preterm infants requiring conventional mechanical ventilation for respiratory distress syndrome or bronchopulmonary dysplasia. Cochrane Database Syst Rev 2012; 1:CD004500. [PMID: 22258957 DOI: 10.1002/14651858.cd004500.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Conventional mechanical ventilation (CMV) of neonates has been used as a treatment of respiratory failure for over 30 years. While CMV facilitates gas exchange, it may simultaneously damage the lung. Positive end expiratory pressure (PEEP) has received less attention than other ventilation parameters when considering this balance of benefit and possible harm. While an appropriate level of PEEP may exert substantial benefits in ventilation, both inappropriately low or high levels may lead to harm. An appropriate level of PEEP for neonates may also be best achieved by an individualized approach. OBJECTIVES 1. To compare the effects of different levels of PEEP in preterm newborn infants requiring CMV for respiratory distress syndrome (RDS).2. To compare the effects of different levels of PEEP in preterm infants requiring CMV for bronchopulmonary dysplasia (BPD).3. To compare the effects of different methods for individualizing PEEP to an optimal level in preterm newborn infants requiring CMV for RDS. SEARCH METHODS The search was performed in accordance with the standard search strategy for the Cochrane Neonatal Review Group. The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library), Ovid MEDLINE, EMBASE, study references and experts were utilized for study identification. SELECTION CRITERIA All randomized and quasi-randomized controlled trials studying preterm infants (less than 37 weeks gestational age) requiring CMV with endotracheal intubation and undergoing randomization to either different PEEP levels (RDS or BPD) or two or more alternative methods for individualizing PEEP levels (RDS only) were included. Cross-over trials were included but we limited the findings to those in the first cross-over period. DATA COLLECTION AND ANALYSIS Data collection and analysis were performed in accordance with the recommendations of the Cochrane Neonatal Review Group. MAIN RESULTS An initial evaluation identified 10 eligible articles. Ultimately, a single study met our inclusion criteria. The study addressed the effects of different levels of PEEP in preterm newborn infants requiring CMV for RDS. Only short term physiologic measures were reported. All results were limited to a small sample size without statistically significant results. No trials addressing the effect of PEEP in infants with BPD or strategies to individualize the management of PEEP were identified. AUTHORS' CONCLUSIONS There is insufficient evidence to guide selection of appropriate PEEP levels for RDS or CMV. There is a need for well designed clinical trials evaluating the optimal application of this important and frequently applied intervention.
Collapse
Affiliation(s)
- Nicolas Bamat
- Pediatric Residency Program, Children’s Hospital of Philadelphia, 34th Street and Civic CenterBoulevard, Philadelphia, Pennsylvania, 19104, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
A recent systematic review and meta-analysis shows that volume-targeted ventilation (VTV) compared with pressure-limited ventilation (PLV) reduce death and bronchopulmonary dysplasia, pneumothorax, hypocarbia and severe cranial ultrasound abnormalities. In this paper, we present published research and our experience with volume guarantee (VG) ventilation, a VTV mode available on the Dräger Babylog 8000plus and VN500 ventilators. The VG algorithm measures the expired tidal volume (V(T)) for each inflation and adjusts the peak inflating pressure for the next inflation to deliver a V(T) set by the clinician. The advantage of controlling expired V(T) is that this is less influenced by endotracheal tube leak than inspired V(T). VG ventilation can be used with an endotracheal tube leak up to ∼50%. Initial set V(T) for infants with respiratory distress syndrome should be 4.0 to 5.0 ml kg(-1). The set V(T) should be adjusted to maintain normocapnoea. Setting the peak inflating pressure limit well above the working pressure is important to enable the ventilator to deliver the set V(T), and to avoid frequent alarms. This paper provides a practical guide on how to use VG ventilation.
Collapse
|
10
|
Wright CJ, Kirpalani H. Targeting inflammation to prevent bronchopulmonary dysplasia: can new insights be translated into therapies? Pediatrics 2011; 128:111-26. [PMID: 21646264 PMCID: PMC3124103 DOI: 10.1542/peds.2010-3875] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) frequently complicates preterm birth and leads to significant long-term morbidity. Unfortunately, few therapies are known to effectively prevent or treat BPD. Ongoing research has been focusing on potential therapies to limit inflammation in the preterm lung. In this review we highlight recent bench and clinical research aimed at understanding the role of inflammation in the pathogenesis of BPD. We also critically assess currently used therapies and promising developments in the field.
Collapse
Affiliation(s)
- Clyde J. Wright
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; ,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and
| | - Haresh Kirpalani
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; ,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and ,Department of Clinical Epidemiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Despite the well recognized role of mechanical ventilation in lung injury, appropriate surrogate markers to guide titration of ventilator settings remain elusive. One would like to strike a balance between protecting aerated units from overdistension while recruiting unstable units, thereby reducing tissue damage associated with their cyclic recruitment and derecruitment. To do so requires some estimate of the topographical distribution of parenchymal stress and strain. RECENT FINDINGS Recent studies have highlighted the importance of chest wall recoil and its effect on pleural pressure (Ppl) in determining lung stress. Although esophageal pressure (Pes) has traditionally been used to measure the average Ppl in normal upright patients, in recumbent acute lung injury/acute respiratory distress syndrome patients Pes-based estimates of Ppl are subject to untestable assumptions. Nevertheless, Pes measurements in recumbent patients with injured lungs strongly suggest that Ppl over dependent parts of the lung can exceed airway pressure by substantial amounts. Moreover, results of a pilot study in which Pes was used to titrate positive end-expiratory pressure (PEEP) suggest clinical benefit. SUMMARY Notwithstanding its theoretical limitations, esophageal manometry has shown promise in PEEP titration and deserves further evaluation in a larger trial on patients with injured lungs.
Collapse
Affiliation(s)
- Maria Plataki
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
12
|
Positron emission tomography: a tool for better understanding of ventilator-induced and acute lung injury. Curr Opin Crit Care 2011; 17:7-12. [PMID: 21169828 DOI: 10.1097/mcc.0b013e32834272ab] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW PET has recently gained traction among several groups of investigators as an imaging tool to study lung pathophysiology in vivo noninvasively on a regional basis. This review aims to present the major findings of PET studies on acute lung injury (ALI) and ventilator-induced lung injury (VILI) with a perspective relevant to the physiologist-intensivist. RECENT FINDINGS Using various tracers, PET has been used to investigate the relationship between the distributions of pulmonary perfusion, ventilation and aeration, and the effect of positive end-expiratory pressure, recruitment maneuvers, prone positioning, and endotoxin on these distributions in ALI. More recently, PET with 2-[18F]fluoro-2-deoxy-D-glucose has been used to measure regional neutrophil metabolic activation in ALI and VILI. Because gas exchange impairment and inflammation are two hallmarks of ALI and VILI, these studies have provided significant insights into the pathophysiology of these conditions. SUMMARY PET is a versatile imaging tool for physiologic investigation. By imaging the regional effects of interventions commonly performed in critically ill patients with ALI, PET has improved our understanding of the mechanism by which such interventions can exert their positive or negative effects as well as of the pathophysiology of ALI and VILI.
Collapse
|
13
|
Bellani G, Guerra L, Musch G, Zanella A, Patroniti N, Mauri T, Messa C, Pesenti A. Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am J Respir Crit Care Med 2011; 183:1193-9. [PMID: 21257791 DOI: 10.1164/rccm.201008-1318oc] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE During acute lung injury (ALI), mechanical ventilation can aggravate inflammation by promoting alveolar distension and cyclic recruitment-derecruitment. As an estimate of the intensity of inflammation, metabolic activity can be measured by positron emission tomography imaging of [(18)F]fluoro-2-deoxy-D-glucose. OBJECTIVES To assess the relationship between gas volume changes induced by tidal ventilation and pulmonary metabolic activity in patients with ALI. METHODS In 13 mechanically ventilated patients with ALI and relatively high positive end-expiratory pressure, we performed a positron emission tomography scan of the chest and three computed tomography scans: at mean airway pressure, end-expiration, and end-inspiration. Metabolic activity was measured from the [(18)F]fluoro-2-deoxy-D-glucose uptake rate. The computed tomography scans were used to classify lung regions as derecruited throughout the respiratory cycle, undergoing recruitment-derecruitment, and normally aerated. MEASUREMENTS AND MAIN RESULTS Metabolic activity of normally aerated lung was positively correlated both with plateau pressure, showing a pronounced increase above 26 to 27 cm H(2)O, and with regional Vt normalized by end-expiratory lung gas volume. This relationship did not appear to be caused by a higher underlying parenchymal metabolic activity in patients with higher plateau pressure. Regions undergoing cyclic recruitment-derecruitment did not have higher metabolic activity than those collapsed throughout the respiratory cycle. CONCLUSIONS In patients with ALI managed with relatively high end-expiratory pressure, metabolic activity of aerated regions was associated with both plateau pressure and regional Vt normalized by end-expiratory lung gas volume, whereas no association was found between cyclic recruitment-derecruitment and increased metabolic activity.
Collapse
Affiliation(s)
- Giacomo Bellani
- Department of Experimental Medicine (DIMS), University of Milan-Bicocca, Via Cadore 48, 20052 Monza (MB) Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Maintaining end-expiratory transpulmonary pressure prevents worsening of ventilator-induced lung injury caused by chest wall constriction in surfactant-depleted rats. Crit Care Med 2010; 38:2358-64. [PMID: 20890197 DOI: 10.1097/ccm.0b013e3181fa02b8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To see whether in acute lung injury 1) compression of the lungs caused by thoracoabdominal constriction degrades lung function and worsens ventilator-induced lung injury; and 2) maintaining end-expiratory transpulmonary pressure by increasing positive end-expiratory pressure reduces the deleterious effects of chest wall constriction. DESIGN Experimental study in rats. SETTING Physiology laboratory. INTERVENTIONS Acute lung injury was induced in three groups of nine rats by saline lavage. Nine animals immediately killed served as a control group. Group L had lavage only, group LC had the chest wall constricted with an elastic binder, and group LCP had the same chest constriction but with positive end-expiratory pressure raised to maintain end-expiratory transpulmonary pressure. After lavage, all groups were ventilated with the same pattern for 1½ hrs. MEASUREMENTS AND MAIN RESULTS Transpulmonary pressure, measured with an esophageal balloon catheter, lung volume changes, arterial blood gasses, and pH were assessed during mechanical ventilation. Lung wet-to-dry ratio, albumin, tumor necrosis factor-α, interleukin-1β, interleukin-6, interleukin-10, and macrophage inflammatory protein-2 in serum and bronchoalveolar lavage fluid and serum E-selectin and von Willebrand Factor were measured at the end of mechanical ventilation. Lavage caused hypoxemia and acidemia, increased lung resistance and elastance, and decreased end-expiratory lung volume. With prolonged mechanical ventilation, lung mechanics, hypoxemia, and wet-to-dry ratio were significantly worse in group LC. Proinflammatory cytokines except E-selectin were elevated in serum and bronchoalveolar lavage fluid in all groups with significantly greater levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 in group LC, which also exhibited significantly worse bronchiolar injury and greater heterogeneity of airspace expansion at a fixed transpulmonary pressure than other groups. CONCLUSIONS Chest wall constriction in acute lung injury reduces lung volume, worsens hypoxemia, and increases pulmonary edema, mechanical abnormalities, proinflammatory mediator release, and histologic signs of ventilator-induced lung injury. Maintaining end-expiratory transpulmonary pressure at preconstriction levels by adding positive end-expiratory pressure prevents these deleterious effects.
Collapse
|
15
|
Kredel M, Muellenbach RM, Schlegel N, Wunder C, Klingelhöfer M, Lange M, Roewer N, Waschke J, Brederlau J. Pulmonary effects of positive end-expiratory pressure and fluid therapy in experimental lung injury. Exp Lung Res 2010; 37:35-43. [PMID: 21077780 DOI: 10.3109/01902148.2010.514023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The separate effects of positive end-expiratory pressure (PEEP) and intravascular volume administration on the histopathologic lung injury were not investigated in experimental lung injury previously. The authors hypothesized that high PEEP and a restrictive volume therapy would yield the best oxygenation and the least degree of lung injury. Pigs (52.8 ± 3.4 kg) underwent saline lavage-induced lung injury. The animals were ventilated either with low PEEP (mean PEEP 9 to 12 cm H₂O) and liberal volume therapy using hydroxyethyl starch (LowP/Vol+) or high PEEP (mean PEEP 21 cm H₂O) combined with recruitment maneuvers and liberal (HighP/Vol+) or restrictive volume therapy (HighP/Vol-). After 6.5 hours, lung injury was determined by using a histopathologic score evaluating overdistension, edema, exsudation, and inflammation. When volume therapy was liberal, high PEEP (HighP/Vol+) improved the Pao₂/Fio₂ index (416 ± 80 mm Hg) compared to low PEEP (LowP/Vol+, 189 ± 55 mm Hg; P < .05) but there was no difference in the median (interquartile range) lung injury score: 1.6 (1.2-1.9) and 1.9 (1.4-2.0). High PEEP with restrictive volume therapy (HighP/Vol-) did not further improve oxygenation (400 ± 55 mm Hg) but ameliorated the degree of lung injury: 0.9 (0.8-1.4) (P < .05). In lavage-induced lung injury, high PEEP improved oxygenation, but restrictive volume administration markedly reduced the lung injury score, mainly by reduced edema.
Collapse
Affiliation(s)
- Markus Kredel
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jauncey-Cooke JI, Bogossian F, East CE. Lung protective ventilation strategies in paediatrics-A review. Aust Crit Care 2010; 23:81-8. [PMID: 20047842 DOI: 10.1016/j.aucc.2009.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/03/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022] Open
Abstract
Ventilator Associated Lung Injury (VALI) is an iatrogenic phenomena that significantly impacts on the morbidity and mortality of critically ill patients. The hazards associated with mechanical ventilation are becoming increasingly understood courtesy of a large body of research. Barotrauma, volutrauma and biotrauma all play a role in VALI. Concomitant to this growth in understanding is the development of strategies to reduce the deleterious impact of mechanical ventilation. The majority of the research is based upon adult populations but with careful extrapolation this review will focus on paediatrics. This review article describes the physiological basis of VALI and discusses the various lung protective strategies that clinicians can employ to minimise its incidence and optimise outcomes for paediatric patients.
Collapse
Affiliation(s)
- Jacqui I Jauncey-Cooke
- The University of Queensland, School of Nursing and Midwifery, Herston, Australia; Clinical Nurse, PICU, Mater Children's Hospital, South Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
17
|
Loring SH, O'Donnell CR, Behazin N, Malhotra A, Sarge T, Ritz R, Novack V, Talmor D. Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol (1985) 2009; 108:515-22. [PMID: 20019160 DOI: 10.1152/japplphysiol.00835.2009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute lung injury can be worsened by inappropriate mechanical ventilation, and numerous experimental studies suggest that ventilator-induced lung injury is increased by excessive lung inflation at end inspiration or inadequate lung inflation at end expiration. Lung inflation depends not only on airway pressures from the ventilator but, also, pleural pressure within the chest wall. Although esophageal pressure (Pes) measurements are often used to estimate pleural pressures in healthy subjects and patients, they are widely mistrusted and rarely used in critical illness. To assess the credibility of Pes as an estimate of pleural pressure in critically ill patients, we compared Pes measurements in 48 patients with acute lung injury with simultaneously measured gastric and bladder pressures (Pga and P(blad)). End-expiratory Pes, Pga, and P(blad) were high and varied widely among patients, averaging 18.6 +/- 4.7, 18.4 +/- 5.6, and 19.3 +/- 7.8 cmH(2)O, respectively (mean +/- SD). End-expiratory Pes was correlated with Pga (P = 0.0004) and P(blad) (P = 0.0104) and unrelated to chest wall compliance. Pes-Pga differences were consistent with expected gravitational pressure gradients and transdiaphragmatic pressures. Transpulmonary pressure (airway pressure - Pes) was -2.8 +/- 4.9 cmH(2)O at end exhalation and 8.3 +/- 6.2 cmH(2)O at end inflation, values consistent with effects of mediastinal weight, gravitational gradients in pleural pressure, and airway closure at end exhalation. Lung parenchymal stress measured directly as end-inspiratory transpulmonary pressure was much less than stress inferred from the plateau airway pressures and lung and chest wall compliances. We suggest that Pes can be used to estimate transpulmonary pressures that are consistent with known physiology and can provide meaningful information, otherwise unavailable, in critically ill patients.
Collapse
Affiliation(s)
- Stephen H Loring
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
OBJECTIVE To determine which flow setting most accurately detects the lower inflection point (Pflex) using an automated constant flow method and varying endotracheal tube (ETT) sizes with and without an airleak in a pediatric lung model. DESIGN Interventional laboratory study. SETTING Children's hospital research center. INTERVENTIONS A pediatric lung model was created with Pflexs of the inspiratory pressure-volume (P-V) curve set at 5 and 10 cm H2O using the ASL 5000 Test Lung (IngMar Medical, Pittsburgh, PA). Three ETT sizes (3.0, 4.0, 5.0 mm) were tested with and without a 25% airleak. P-V curves were obtained using an automated constant flow method at ten different flow rates. MEASUREMENTS AND MAIN RESULTS Without an ETT airleak, the lowest flow of 0.5 L/min led to the most accurate determination of Pflex regardless of ETT size or set Pflex (p < 0.001). When a 25% leak was introduced, accuracy of measured Pflex depended on both ETT size (p < 0.001) and flow rate (p < 0.001). Optimum flow rates for Pflex determination were 0.5, 1.0, and 1.5 L/min at Pflex of 5 cm H2O, and 2.0, 3.5, and 4.5 L/min at 10 cm H2O for 3.0, 4.0, and 5.0 mm ETTs, respectively (p < 0.001). CONCLUSIONS Estimation of Pflex can be achieved using automated P-V curves with ETTs appropriate for pediatric use, with and without an airleak. ETT size and flow rate affect the accuracy of these measurements when an airleak is present, and use of increased flow rates to create the automated P-V curves can reduce error. These data support the idea that a low-flow technique provides the most accurate determination of Pflex in pediatric patients without a leak around their ETT, whereas increased flows are needed to compensate when an ETT airleak is present.
Collapse
|
19
|
Turner DA, Arnold JH. Insights in pediatric ventilation: timing of intubation, ventilatory strategies, and weaning. Curr Opin Crit Care 2007; 13:57-63. [PMID: 17198050 DOI: 10.1097/mcc.0b013e32801297f9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Mechanical ventilation is a common intervention provided by pediatric intensivists. This fact notwithstanding, the management of mechanical ventilation in pediatrics is largely guided by a few pediatric trials along with careful interpretation and application of adult data. RECENT FINDINGS A low tidal volume, pressure limited approach to mechanical ventilation as established by the Acute Respiratory Distress Syndrome Network investigators, has become the prevailing practice in pediatric intensive care. Studies by these investigators suggest that high positive end expiratory pressure and recruitment maneuvers are not uniformly beneficial. High frequency oscillatory ventilation continues to be evaluated in an attempt to provide 'open lung' ventilation. Airway pressure release ventilation is a newer mode of ventilation that may combine the 'open lung' approach with spontaneous breathing. Prone positioning was demonstrated in a recent pediatric trial to have no effect on outcome, while calfactant was found to potentially improve outcomes in pediatric acute respiratory distress syndrome. Ventilator weaning protocols may not be as useful in pediatrics as in adults. Systemic corticosteroids decrease the incidence of post extubation stridor and may reduce reintubation rates. SUMMARY Mechanical ventilation with pressure limitation and low tidal volumes has become customary in pediatric intensive care units, and this lung protective approach will continue into the foreseeable future. Further investigation is warranted regarding use of high frequency oscillatory ventilation, airway pressure release ventilation, and surfactant to assist pediatric intensivists in application of these therapies.
Collapse
Affiliation(s)
- David A Turner
- Harvard Medical School and Department of Anesthesia, Division of Critical Care Medicine, Children's Hospital, Boston, Massachusetts, USA.
| | | |
Collapse
|
20
|
Abstract
Alveolar recruitment is one of the primary goals of respiratory care for acute lung injury. It is aimed at improving pulmonary gas exchange and, even more important, at protecting the lungs from ventilator-induced trauma. This review addresses the concept of alveolar recruitment for lung protection in acute lung injury. It provides reasons for why atelectasis and atelectrauma should be avoided; it analyses current and future approaches on how to achieve and preserve alveolar recruitment; and it discusses the possibilities of detecting alveolar recruitment and derecruitment. The latter is of particular clinical relevance because interventions aimed at lung recruitment are often undertaken without simultaneous verification of their effectiveness.
Collapse
Affiliation(s)
- G Mols
- Department of Anaesthesia and Critical Care Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany.
| | | | | |
Collapse
|
21
|
Gentile MA, Cheifetz IM. Optimal positive end-expiratory pressure: The search for the Holy Grail continues. Crit Care Med 2005; 32:2553-4. [PMID: 15599172 DOI: 10.1097/01.ccm.0000148227.39274.2a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|