1
|
Catalão CHR, da Costa LHA, Dos Santos JR, Alberici LC, Falconi-Sobrinho LL, Coimbra NC, Dominguini D, Dal-Pizzol F, Barichello T, Rocha MJA. Mitigating neuroinflammation in cognitive areas: exploring the impact of HMG-CoA reductase inhibitor. Biochem J 2024; 481:1585-1602. [PMID: 39466125 DOI: 10.1042/bcj20240217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
Existing literature suggests that infection-specific mechanisms may play a significant role in the onset and progression of dementia, as opposed to the broader phenomenon of systemic inflammation. In addition, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors have been proposed as a potential therapeutic approach for sepsis, given their anti-inflammatory and antioxidant properties. We investigated the neuroprotective effect of an HMG-CoA reductase inhibitor (simvastatin) by analyzing neurodegenerative markers, mitochondrial respiration, and neuronal tracing in the prefrontal cortex (PFC) and thalamic nucleus reuniens (RE) of sepsis survivor animals. Adult Wistar rats were subjected to sepsis by cecal ligation and puncture or left non-manipulated. The animals were treated with simvastatin or vehicle for 4 days before and 10 days after surgery. The treatment preserved the non-associative memory (P < 0.05), recovered expression of Smad-3 in the hippocampus (P < 0.05), and prevented increased expression of calpain-1 (hippocampus: P < 0.0001; PFC: P < 0.05) and GSKβ (hippocampus: P < 0.0001; PFC: P < 0.0001) in the brain structures of the sepsis survivor animals. These animals also showed mitochondrial dysfunction and decreased axon terminals in the RE. Simvastatin seems to restore energy metabolism by improving the electron transfer system (ETS) values in the hippocampus (P < 0.01) and the oxidative phosphorylation/ETS (P/E) ratio in the PFC (P < 0.05), in addition to preventing the reduction of axon terminals in survivor animals. These results suggest a potential neuroprotective effect and the importance of considering HMG-CoA reductase inhibitors as a possible adjuvant therapy in sepsis.
Collapse
Affiliation(s)
- Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Department of Psychology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Luis Henrique Angenendt da Costa
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Jonathas Rodrigo Dos Santos
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | | | - Norberto Cysne Coimbra
- Department of Pharmacology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maria José Alves Rocha
- Department of Psychology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| |
Collapse
|
2
|
Lin L, Qiu D, Yang F, Xia Y, Cai S, Liao X, Deng W, Wu C. HYDROGEN-RICH SALINE UPREGULATES THE SIRT1/NF-ΚB SIGNALING PATHWAY AND REDUCES VASCULAR ENDOTHELIAL GLYCOCALYX SHEDDING IN SEPSIS-INDUCED ACUTE KIDNEY INJURY. Shock 2024; 62:416-425. [PMID: 38888497 DOI: 10.1097/shk.0000000000002404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT Sepsis causes dysfunction in different organs, but the pathophysiological mechanisms behind it are similar and mainly involve complex hemodynamic and cellular dysfunction. The importance of microcirculatory dysfunction in sepsis is becoming increasingly evident, in which endothelial dysfunction and glycocalyx degradation play a major role. This study aimed to investigate the effects of hydrogen-rich saline (HRS) on renal microcirculation in septic renal failure, and whether Sirt1 was involved in the renoprotective effects of HRS. Rats model of sepsis was established by cecal ligation and puncture, and septic rats were intraperitoneal injected with HRS (10 mL/kg). We found that in sepsis, the degree of glycocalyx shedding was directly proportional to the severity of sepsis. The seven-day survival rate of rats in the HRS+CLP group (70%) was higher than that of the CLP group (30%). HRS improved acidosis and renal function and reduced the release of inflammatory factors (TNF, IL-1β, and IL-6). The endothelial glycocalyx of capillaries in the HRS+CLP group (115 nm) was observed to be significantly thicker than that in the CLP group (44 nm) and EX527 (67.2 nm) groups by electron microscopy, and fewer glycocalyx metabolites (SDC-1, HS, HA, and MMP9) were found in the blood. Compared with the CLP group, HRS reduced renal apoptosis and upregulated Sirt1 expression, and inhibited the NF-κB/MMP9 signaling pathway. In addition, HRS did not damage immune function in septic rats as well. Generally speaking, our results suggest that HRS can alleviate the inflammatory response, inhibit glycocalyx shedding, improve septic kidney injury, and enhance survival rate.
Collapse
Affiliation(s)
| | - Deliang Qiu
- Department of Anesthesiology, The First People's Hospital of Longquanyi District Chengdu, Chengdu, China
| | | | | | - Siyuan Cai
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaojun Liao
- Department of Anesthesiology, The First People's Hospital of Longquanyi District Chengdu, Chengdu, China
| | - Wanxin Deng
- Department of Anesthesiology, The First People's Hospital of Longquanyi District Chengdu, Chengdu, China
| | - Changxue Wu
- Department of Cardiothoracic Surgery, People's Hospital of Deyang City, Deyang, China
| |
Collapse
|
3
|
Joaquim LS, Steiner B, Farias B, Machado RS, Danielski LG, Mathias K, Stork S, Lanzzarin E, Novaes L, Bonfante S, Generoso JDS, Alano CG, Lemos I, Dominguini D, Giustina AD, Catalão CHR, Streck EL, Giridharan VV, Dal-Pizzol F, Barichello T, de Bitencourt RM, Petronilho F. Sepsis compromises post-ischemic stroke neurological recovery and is associated with sex differences. Life Sci 2024; 349:122721. [PMID: 38754813 DOI: 10.1016/j.lfs.2024.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
AIMS Infection is a complication after stroke and outcomes vary by sex. Thus, we investigated if sepsis affects brain from ischemic stroke and sex involvement. MAIN METHODS Male and female Wistar rats, were submitted to middle cerebral artery occlusion (MCAO) and after 7 days sepsis to cecal ligation and perforation (CLP). Infarct size, neuroinflammation, oxidative stress, and mitochondrial activity were quantified 24 h after CLP in the prefrontal cortex and hippocampus. Survival and neurological score were assessed up to 15 days after MCAO or 8 days after CLP (starting at 2 h after MCAO) and memory at the end. KEY FINDINGS CLP decreased survival, increased neurological impairments in MCAO females. Early, in male sepsis following MCAO led to increased glial activation in the brain structures, and increased TNF-α and IL-1β in the hippocampus. All groups had higher IL-6 in both tissues, but the hippocampus had lower IL-10. CLP potentiated myeloperoxidase (MPO) in the prefrontal cortex of MCAO male and female. In MCAO+CLP, only male increased MPO and nitrite/nitrate in hippocampus. Males in all groups had protein oxidation in the prefrontal cortex, but only MCAO+CLP in the hippocampus. Catalase decreased in the prefrontal cortex and hippocampus of all males and females, and MCAO+CLP only increased this activity in males. Female MCAO+CLP had higher prefrontal cortex complex activity than males. In MCAO+CLP-induced long-term memory impairment only in females. SIGNIFICANCE The parameters evaluated for early sepsis after ischemic stroke show a worse outcome for males, while females are affected during long-term follow-up.
Collapse
Affiliation(s)
- Larissa Silva Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Beatriz Steiner
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Brenno Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lucineia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil; Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Solange Stork
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Everton Lanzzarin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Linerio Novaes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Jaqueline da Silva Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Carolina Giassi Alano
- Laboratory of Experimental Biomedicine, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Isabela Lemos
- Laboratory of Experimental Biomedicine, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Amanda Della Giustina
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, ON, Canada
| | - Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Emilio Luiz Streck
- Laboratory of Experimental Biomedicine, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil; Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Rafael Mariano de Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
4
|
Ferreira FM, Gomes SV, Carvalho LCF, de Alcantara AC, da Cruz Castro ML, Perucci LO, Pio S, Talvani A, de Abreu Vieira PM, Calsavara AJC, Costa DC. Potential of piperine for neuroprotection in sepsis-associated encephalopathy. Life Sci 2024; 337:122353. [PMID: 38104862 DOI: 10.1016/j.lfs.2023.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
AIMS Sepsis-associated encephalopathy (SAE) is a common complication that increases mortality and leads to long-term cognitive impairment in sepsis survivors. However, no specific or effective therapy has been identified for this complication. Piperine is an alkaloid known for its anti-inflammatory, antioxidant, and neuroprotective properties, which are important characteristics for treatment of SAE. The objective of this study was to evaluate the neuroprotective effect of piperine on SAE in C57BL/6 mice that underwent cecum ligation and perforation surgery (CLP). MAIN METHODS C57BL/6 male mice were randomly assigned to groups that underwent SHAM surgery or CLP. Mice in the CLP group were treated with piperine at doses of 20 or 40 mg/kg for short- (5 days) or long-term (10 days) periods after CLP. KEY FINDINGS Our results revealed that untreated septic animals exhibited increased concentrations of IL-6, TNF, VEGF, MMP-9, TBARS, and NLRP3, and decreased levels of BDNF, sulfhydryl groups, and catalase in the short term. Additionally, the levels of carbonylated proteins and degenerated neuronal cells were increased at both time points. Furthermore, short-term and visuospatial memories were impaired. Piperine treatment reduced MMP-9 activity in the short term and decreased the levels of carbonylated proteins and degenerated neuronal cells in the long term. It also lowered IL-6 and TBARS levels at both time points evaluated. Moreover, piperine increased short-term catalase and long-term BDNF factor levels and improved memory at both time points. SIGNIFICANCE In conclusion, our data demonstrate that piperine exerts a neuroprotective effect on SAE in animals that have undergone CLP.
Collapse
Affiliation(s)
- Flavia Monteiro Ferreira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Sttefany Viana Gomes
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Luana Cristina Faria Carvalho
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Ana Carolina de Alcantara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Maria Laura da Cruz Castro
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Luiza Oliveira Perucci
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Sirlaine Pio
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Paula Melo de Abreu Vieira
- Morphopathology Laboratory, Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Allan Jefferson Cruz Calsavara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Dong J, Wang S, Hu Z, Gong L. Extracellular proteins as potential biomarkers in Sepsis-related cerebral injury. Front Immunol 2023; 14:1128476. [PMID: 37901226 PMCID: PMC10611492 DOI: 10.3389/fimmu.2023.1128476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/13/2023] [Indexed: 10/31/2023] Open
Abstract
Background Sepsis can cause brain damage known as septic encephalopathy (SAE), which is linked to higher mortality and poorer outcomes. Objective clinical markers for SAE diagnosis and prognosis are lacking. This study aimed to identify biomarkers of SAE by investigating genes and extracellular proteins involved in sepsis-induced brain injury. Methods Extracellular protein differentially expressed genes (EP-DEGs) from sepsis patients' brain tissue (GSE135838) were obtained from Gene Expression Omnibus (GEO) and evaluated by protein annotation database. The function and pathways of EP-DEGs were examined using GO and KEGG. Protein-protein interaction (PPI) networks were built and crucial EP-DEGs were screened using STRING, Cytoscape, MCODE, and Cytohubba. The diagnostic and prognostic accuracy of key EP-DEGs was assessed in 31 sepsis patients' blood samples and a rat cecal ligation and puncture (CLP)-induced sepsis model. Cognitive and spatial memory impairment was evaluated 7-11 days post-CLP using behavioral tests. Blood and cerebrospinal fluid from 26 rats (SHAM n=14, CLP n=12) were collected 6 days after CLP to analyze key EP-DEGs. Results Thirty-one EP-DEGs from DEGs were examined. Bone marrow leukocytes, neutrophil movement, leukocyte migration, and reactions to molecules with bacterial origin were all enhanced in EP-DEGs. In comparison to the sham-operated group, sepsis rats had higher levels of MMP8 and S100A8 proteins in their venous blood (both p<0.05) and cerebrospinal fluid (p=0.0506, p<0.0001, respectively). Four important extracellular proteins, MMP8, CSF3, IL-6, and S100A8, were identified in clinical peripheral blood samples. MMP8 and S100A8 levels in the peripheral blood of sepsis patients were higher in SAE than in non-SAE. In comparison to MMP8, S100A8 had a higher area under the curve (AUC: 0.962, p<0.05) and a higher sensitivity and specificity (80% and 100%, respectively) than MMP8 (AUC: 0.790, p<0.05). High levels of S100A8 strongly correlated with 28-day mortality and the Glasgow Coma Scale (GCS) scores. Conclusion The extracellular proteins MMP8, CSF3, IL-6, and S100A8 may be crucial in the pathophysiology of SAE. S100A8 and MMP8 are possible biomarkers for SAE's onset and progression. This research may help to clarify the pathogenesis of SAE and improve the diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
| | | | - Zhonghua Hu
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Gong
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Bai Y, Mi W, Meng X, Dong B, Jiang Y, Lu Y, Yu Y. Hydrogen alleviated cognitive impairment and blood‒brain barrier damage in sepsis-associated encephalopathy by regulating ABC efflux transporters in a PPARα-dependent manner. BMC Neurosci 2023; 24:37. [PMID: 37474902 PMCID: PMC10360271 DOI: 10.1186/s12868-023-00795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/30/2023] [Indexed: 07/22/2023] Open
Abstract
Hydrogen (H2) can protect against blood‒brain barrier (BBB) damage in sepsis-associated encephalopathy (SAE), but the mechanism is still unclear. We examined whether it is related to PPARα and its regulatory targets, ABC efflux transporters. After injection with DMSO/GW6471 (a PPARα inhibitor), the mice subjected to sham/caecal ligation and puncture (CLP) surgery were treated with H2 for 60 min postoperation. Additionally, bEnd.3 cells were grown in DMSO/GW6471-containing or saline medium with LPS. In addition to the survival rates, cognitive function was assessed using the Y-maze and fear conditioning tests. Brain tissues were stained with TUNEL and Nissl staining. Additionally, inflammatory mediators (TNF-α, IL-6, HMGB1, and IL-1β) were evaluated with ELISA, and PPARα, ZO-1, occludin, VE-cadherin, P-gp, BCRP and MRP2 were detected using Western blotting. BBB destruction was assessed by brain water content and Evans blue (EB) extravasation. Finally, we found that H2 improved survival rates and brain dysfunction and decreased inflammatory cytokines. Furthermore, H2 decreased water content in the brain and EB extravasation and increased ZO-1, occludin, VE-cadherin and ABC efflux transporters regulated by PPARα. Thus, we concluded that H2 decreases BBB permeability to protect against brain dysfunction in sepsis; this effect is mediated by PPARα and its regulation of ABC efflux transporters.
Collapse
Affiliation(s)
- Yuanyuan Bai
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Wen Mi
- Department of Anesthesiology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, China
| | - Xiaoyin Meng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Yuechun Lu
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China.
| |
Collapse
|
7
|
Imamura Y, Matsumoto H, Imamura J, Matsumoto N, Yamakawa K, Yoshikawa N, Murakami Y, Mitani S, Nakagawa J, Yamada T, Ogura H, Oda J, Shimazu T. Ultrasound stimulation of the vagal nerve improves acute septic encephalopathy in mice. Front Neurosci 2023; 17:1211608. [PMID: 37529234 PMCID: PMC10388538 DOI: 10.3389/fnins.2023.1211608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023] Open
Abstract
Septic encephalopathy (SE) is characterized by symptoms such as coma, delirium, and cognitive dysfunction, and effective therapeutic interventions for SE remain elusive. In this study, we aimed to investigate the potential alleviating effects of vagal nerve stimulation (VNS) on SE-associated signs. To evaluate our hypothesis, we utilized a mouse model of SE induced by intraperitoneal injection of lipopolysaccharide (0.3 mg per mouse) and administered noninvasive, high-frequency ultrasound VNS. To assess the efficacy of ultrasound VNS, we measured inflammation-related molecules, including the α7 nicotinic acetylcholine receptor (α7nAChR) expression in peritoneal macrophages and plasma interleukin 1β (IL-1β) levels. Consistent with our hypothesis, SE mice exhibited reduced α7nAChR expression in macrophages and elevated IL-1β levels in the blood. Remarkably, VNS in SE mice restored α7nAChR expression and IL-1β levels to those observed in control mice. Furthermore, we evaluated the effects of VNS on survival rate, body temperature, and locomotor activity. SE mice subjected to VNS demonstrated a modest, yet significant, improvement in survival rate, recovery from hypothermia, and increased locomotor activity. To investigate the impact on the brain, we examined the hippocampus of SE mice. In control mice, VNS increased the expression of c-fos, a marker of neuronal electrical excitability, in the hippocampus. In SE mice, VNS led to the restoration of aberrant firing patterns in hippocampal neurons. Additionally, proteomic analysis of hippocampal tissue in SE mice revealed abnormal increases in two proteins, tissue factor (TF) and acyl-CoA dehydrogenase family member 9 (ACAD9), which returned to control levels following VNS. Collectively, our findings support the value of exploring the beneficial effects of ultrasound VNS on SE.
Collapse
Affiliation(s)
- Yukio Imamura
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan
- Department of Architectural and Environmental Planning, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Department of Hygiene and Public Health, Kansai Medical University, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jun Imamura
- Molex Corporation, Ltd., Yamato, Kanagawa, Japan
| | - Naoya Matsumoto
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuma Yamakawa
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Emergency Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Nao Yoshikawa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, Osaka, Japan
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoko Mitani
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Faculty of Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Kyoto, Japan
| | - Junichiro Nakagawa
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Yamada
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jun Oda
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
D’Amico R, Tomasello M, Impellizzeri D, Cordaro M, Siracusa R, Interdonato L, Abdelhameed AS, Fusco R, Calabrese V, Cuzzocrea S, Di Paola R. Mechanism of Action of Natural Compounds in Peripheral Multiorgan Dysfunction and Hippocampal Neuroinflammation Induced by Sepsis. Antioxidants (Basel) 2023; 12:antiox12030635. [PMID: 36978883 PMCID: PMC10045853 DOI: 10.3390/antiox12030635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Bacterial sepsis induces the production of excessive pro-inflammatory cytokines and oxidative stress, resulting in tissue injury and hyperinflammation. Patients recovering from sepsis have increased rates of central nervous system (CNS) morbidities, which are linked to long-term cognitive impairment, such as neurodegenerative pathologies. This paper focuses on the tissue injury and hyperinflammation observed in the acute phase of sepsis and on the development of long-term neuroinflammation associated with septicemia. Here we evaluate the effects of Coriolus versicolor administration as a novel approach to treat polymicrobial sepsis. Rats underwent cecal ligation and perforation (CLP), and Coriolus versicolor (200 mg/kg in saline) was administered daily by gavage. Survival was monitored, and tissues from vital organs that easily succumb to infection were harvested after 72 h to evaluate the histological changes. Twenty-eight days after CLP, behavioral analyses were performed, and serum and brain (hippocampus) samples were harvested at four weeks from surgery. Coriolus versicolor increased survival and reduced acute tissue injury. Indeed, it reduced the release of pro-inflammatory cytokines in the bloodstream, leading to a reduced chronic inflammation. In the hippocampus, Coriolus versicolor administration restored tight junction expressions, reduce cytokines accumulation and glia activation. It also reduced toll-like receptor 4 (TLR4) and neuronal nitric oxide synthase (nNOS) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome components expression. Coriolus versicolor showed antioxidant activities, restoring glutathione (GSH) levels and catalase and superoxide dismutase (SOD) activities and reducing lipid peroxidation, nitrite and reactive oxygen species (ROS) levels. Importantly, Coriolus versicolor reduced amyloid precursor protein (APP), phosphorylated-Tau (p-Tau), pathologically phosphorylated tau (PHF1), phosphorylated tau (Ser202 and Thr205) (AT8), interferon-induced transmembrane protein 3 (IFITM3) expression, and β-amyloid accumulation induced by CLP. Indeed, Coriolus versicolor restored synaptic dysfunction and behavioral alterations. This research shows the effects of Coriolus versicolor administration on the long-term development of neuroinflammation and brain dysfunction induced by sepsis. Overall, our results demonstrated that Coriolus versicolor administration was able to counteract the degenerative process triggered by sepsis.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 14451, Saudi Arabia
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Vererinary Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
9
|
Peng LS, Xu Y, Wang QS. YY1 PROMOTES MICROGLIA M2 POLARIZATION THROUGH THE MIR-130A-3P/TREM-2 AXIS TO ALLEVIATE SEPSIS-ASSOCIATED ENCEPHALOPATHY. Shock 2022; 58:128-136. [PMID: 35234205 DOI: 10.1097/shk.0000000000001914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Purpose: Sepsis-associated encephalopathy (SAE) induces cognitive dysfunction via mechanisms that commonly involve neuroinflammation. Yin Yang 1 (YY1) is an important transcription factor that acts as a key role in sepsis and neuroepithelium development. However, the function of YY1 in SAE remains unclear. Our study aimed to probe the intrinsic and concrete molecular mechanism of YY1 in SAE. Methods: SAE cell model and SAE animal model were constructed by lipopolysaccharide (LPS) treatment and cecal ligation and puncture surgery, respectively. Behavioral tests were performed to analyze the cognitive function. The polarization state of mouse microglia (BV-2 cells) was assessed by flow cytometry assay. The mRNA and protein expressions were assessed by qRT-PCR and western blot. Finally, the binding relationships between YY1, miR-130a-3p, andTREM-2were verified by dual luciferase reporter gene assay and/or ChIP assay. Results: Here our results described that YY1 and TREM-2 were downregulated and miR-130a-3p was upregulated in SAE. YY1 overexpression could promote M2 polarization of microglia, and alleviate neuroinflammation and behavioral deficits in vitro and in vivo. YY1 could inhibit miR-130a-3p promoter activity. As expected, miR-130a-3p overexpression abolished the effects of YY1 overexpression on LPS-treated BV-2 cells. Besides, TREM-2 was identified as the target of miR-130a-3p. TREM-2 silencing could reverse the effects of miR-130a-3p inhibition on LPS-treated BV-2 cells. Conclusion: Taken together, YY1 promoted microglia M2 polarization via upregulating TREM-2 by interacting with miR-130a-3p promoter, suggesting YY1 overexpression might be a novel therapeutic strategy of SAE.
Collapse
Affiliation(s)
- Liang-Shan Peng
- The First Affiliated Hospital, Department of Critical Care Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | | | | |
Collapse
|
10
|
Voiriot G, Oualha M, Pierre A, Salmon-Gandonnière C, Gaudet A, Jouan Y, Kallel H, Radermacher P, Vodovar D, Sarton B, Stiel L, Bréchot N, Préau S, Joffre J. Chronic critical illness and post-intensive care syndrome: from pathophysiology to clinical challenges. Ann Intensive Care 2022; 12:58. [PMID: 35779142 PMCID: PMC9250584 DOI: 10.1186/s13613-022-01038-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Post‐intensive care syndrome (PICS) encompasses physical, cognition, and mental impairments persisting after intensive care unit (ICU) discharge. Ultimately it significantly impacts the long‐term prognosis, both in functional outcomes and survival. Thus, survivors often develop permanent disabilities, consume a lot of healthcare resources, and may experience prolonged suffering. This review aims to present the multiple facets of the PICS, decipher its underlying mechanisms, and highlight future research directions. Main text This review abridges the translational data underlying the multiple facets of chronic critical illness (CCI) and PICS. We focus first on ICU-acquired weakness, a syndrome characterized by impaired contractility, muscle wasting, and persisting muscle atrophy during the recovery phase, which involves anabolic resistance, impaired capacity of regeneration, mitochondrial dysfunction, and abnormalities in calcium homeostasis. Second, we discuss the clinical relevance of post-ICU cognitive impairment and neuropsychological disability, its association with delirium during the ICU stay, and the putative role of low-grade long-lasting inflammation. Third, we describe the profound and persistent qualitative and quantitative alteration of the innate and adaptive response. Fourth, we discuss the biological mechanisms of the progression from acute to chronic kidney injury, opening the field for renoprotective strategies. Fifth, we report long-lasting pulmonary consequences of ARDS and prolonged mechanical ventilation. Finally, we discuss several specificities in children, including the influence of the child’s pre-ICU condition, development, and maturation. Conclusions Recent understandings of the biological substratum of the PICS’ distinct features highlight the need to rethink our patient trajectories in the long term. A better knowledge of this syndrome and precipitating factors is necessary to develop protocols and strategies to alleviate the CCI and PICS and ultimately improve patient recovery.
Collapse
Affiliation(s)
- Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Hôpital Tenon, Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP, Centre - Paris University, Paris, France
| | - Alexandre Pierre
- Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, 59000, Lille, France.,Department of Intensive Care Medicine, Critical Care Center, CHU Lille, 59000, Lille, France.,Faculté de Médecine de Tours, Centre d'Etudes des Pathologies Respiratoires, INSERM U1100, University Lille, Tours, France
| | - Charlotte Salmon-Gandonnière
- Service de Médecine Intensive Réanimation, CHRU de Tours, Réseau CRICS-TRIGGERSEP F-CRIN Research Network, Tours, France
| | - Alexandre Gaudet
- Department of Intensive Care Medicine, Critical Care Center, CHU Lille, 59000, Lille, France.,Faculté de Médecine de Tours, Centre d'Etudes des Pathologies Respiratoires, INSERM U1100, University Lille, Tours, France.,Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Youenn Jouan
- Service de Médecine Intensive Réanimation, CHRU de Tours, Réseau CRICS-TRIGGERSEP F-CRIN Research Network, Tours, France
| | - Hatem Kallel
- Service de Réanimation, Centre Hospitalier de Cayenne, French Guiana, Cayenne, France
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, 89070, Ulm, Germany
| | - Dominique Vodovar
- Centre AntiPoison de Paris, Hôpital Fernand Widal, APHP, 75010, Paris, France.,Faculté de Pharmacie, UMRS 1144, 75006, Paris, France.,Université de Paris, UFR de Médecine, 75010, Paris, France
| | - Benjamine Sarton
- Critical Care Unit, University Hospital of Purpan, Toulouse, France.,Toulouse NeuroImaging Center, ToNIC, Inserm 1214, Paul Sabatier University, Toulouse, France
| | - Laure Stiel
- Service de Réanimation Médicale, Groupe Hospitalier de la Région Mulhouse Sud Alsace, Mulhouse, France.,INSERM, LNC UMR 1231, FCS Bourgogne Franche Comté LipSTIC LabEx, Dijon, France
| | - Nicolas Bréchot
- Service de Médecine Intensive Réanimation, Sorbonne Université, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,College de France, Center for Interdisciplinary Research in Biology (CIRB)-UMRS INSERM U1050 - CNRS 7241, Paris, France
| | - Sébastien Préau
- Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, 59000, Lille, France.,Service de Médecine Intensive Réanimation, CHRU de Tours, Réseau CRICS-TRIGGERSEP F-CRIN Research Network, Tours, France
| | - Jérémie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, 94143, USA. .,Medical Intensive Care Unit, Saint Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France. .,Sorbonne University, Centre de Recherche Saint-Antoine INSERM U938, 75012, Paris, France.
| | | |
Collapse
|
11
|
PPARα contributes to the therapeutic effect of hydrogen gas against sepsis-associated encephalopathy with the regulation to the CREB-BDNF signaling pathway and hippocampal neuron plasticity-related gene expression. Brain Res Bull 2022; 184:56-67. [DOI: 10.1016/j.brainresbull.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 01/24/2023]
|
12
|
Reis PA, Castro-Faria-Neto HC. Systemic Response to Infection Induces Long-Term Cognitive Decline: Neuroinflammation and Oxidative Stress as Therapeutical Targets. Front Neurosci 2022; 15:742158. [PMID: 35250433 PMCID: PMC8895724 DOI: 10.3389/fnins.2021.742158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
In response to pathogens or damage signs, the immune system is activated in order to eliminate the noxious stimuli. The inflammatory response to infectious diseases induces systemic events, including cytokine storm phenomenon, vascular dysfunction, and coagulopathy, that can lead to multiple-organ dysfunction. The central nervous system (CNS) is one of the major organs affected, and symptoms such as sickness behavior (depression and fever, among others), or even delirium, can be observed due to activation of endothelial and glial cells, leading to neuroinflammation. Several reports have been shown that, due to CNS alterations caused by neuroinflammation, some sequels can be developed in special cognitive decline. There is still no any treatment to avoid cognitive impairment, especially those developed due to systemic infectious diseases, but preclinical and clinical trials have pointed out controlling neuroinflammatory events to avoid the development of this sequel. In this minireview, we point to the possible mechanisms that triggers long-term cognitive decline, proposing the acute neuroinflammatory events as a potential therapeutical target to treat this sequel that has been associated to several infectious diseases, such as malaria, sepsis, and, more recently, the new SARS-Cov2 infection.
Collapse
Affiliation(s)
- Patricia Alves Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Biochemistry Department, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Patricia Alves Reis,
| | | |
Collapse
|
13
|
Jun G, Yong Y, Lu L, Gao H, Yin Z, Wei P, Sun L, Ruan W, Zou Y, He H, Song W, Tong Q, Wang X, Wang Y, Song J. Electroacupuncture treatment ameliorated the long-term cognitive impairment via activating eNOS/NO pathway and related Aβ downregulation in sepsis-survivor mice. Physiol Behav 2022; 243:113646. [PMID: 34780728 DOI: 10.1016/j.physbeh.2021.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Sepsis is a major challenge in intensive care unit worldwide and the septic survivors are left with long-term cognitive deficits. This work aims to explore the effects of electroacupuncture (EA) on long-term cognitive function and its underlying mechanism in sepsis-survivor mice. METHODS Sepsis was induced by cecal ligation and puncture in C57BL/6 male mice. Seven days post-surgery, sepsis-survivor mice were treated with EA or nonacupoint EA for 17 days twice daily. Then, cognitive function was evaluated by Morris water maze task. The hippocampus tissue were collected from the mice at 30 days post-surgery. The level of nitric oxide and the expression of endothelial nitric oxide (eNOS), phospho-eNOS (p-eNOS), and amyloid β-peptide (Aβ) were measured. RESULTS Compared with the sham-operated control, sepsis-survivors had significant cognitive deficits evidenced by the increased time of escape latency and reduced crossing number in Morris water maze task, as well as lower NO and p-eNOS level and higher Aβ level. EA treatment at GV20 and ST36 acupoints but not at a nonacupoint improved the cognitive function, increased the NO and p-eNOS level, and decreased Aβ generation; while eNOS inhibitor (l-NAME) undermined the efficacy of EA treatment. CONCLUSION In conclusion, repeated EA treatment could ameliorate the long-term cognitive impairment via manipulating the expression of p-eNOS and related Aβ in sepsis-survivor mice.
Collapse
Affiliation(s)
- Guo Jun
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yue Yong
- Research Institute of Acupuncture Anesthesia, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Liyue Lu
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Hao Gao
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zhiyu Yin
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Pan Wei
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Long Sun
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Wenqing Ruan
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yinghua Zou
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - He He
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Wei Song
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Qiuyu Tong
- Research Institute of Acupuncture Anesthesia, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| | - Yongqiang Wang
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| | - Jiangang Song
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| |
Collapse
|
14
|
Yunnan Black Tea Flavonoids Can Improve Cognitive Dysfunction in Septic Mice by Activating SIRT1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5775040. [PMID: 34721636 PMCID: PMC8556089 DOI: 10.1155/2021/5775040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
This study explored the effect and mechanism of Yunnan black tea flavonoids (YBTF) on cognitive dysfunction in septic mice. The mice were induced sepsis, the serum was determined using kits, and the tissue was determined by qPCR assay. The Yunnan black tea flavonoids were checked using HPLC. The test results showed that compared with the model group, YBTF could increase the survival rate of the mice; meanwhile, YBTF could also increase the total distance travelled, number of stands, and number of groomings, as well as the number of times crossing the area in the target quadrant. Detection of nerve cells showed that YBTF could reduce the rate of nerve cell apoptosis caused by sepsis. YBTF also reduced the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and malondialdehyde (MDA) in the hippocampus of septic mice and increased the activity of superoxide dismutase (SOD) and catalase (CAT) enzymes. YBTF could also upregulate the mRNA expression of SOD1, SOD2, CAT, and forkhead box O1 (FOXO1) and downregulate the mRNA expression of TNF-α, IL-1β, nuclear factor kappa-B (NF-κB), p53, and SIRT1 in the hippocampus of septic mice. The animal experiment results showed that YBTF could improve the cognitive dysfunction of septic mice. The effect of YBTF was weaker than that of dexamethasone, but it could enhance the improvement effect when used in conjunction with dexamethasone. The component analysis results showed that YBTF contained 9 compounds, including catechin, gallocatechin gallate, rutin, hyperoside, epicatechin gallate, dihydroquercetin, quercetin, myricetin, and sulphuretin. From these results, YBTF could activate SIRT1 through its active compound components to improve the cognitive dysfunction of septic mice.
Collapse
|
15
|
Detailed Characterization of Brain Dysfunction in a Long-Term Rodent Model of Critical Illness. Neurochem Res 2021; 47:613-621. [PMID: 34674138 DOI: 10.1007/s11064-021-03470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
Critical illness encompasses a wide spectrum of life-threatening clinical conditions requiring intensive care. Our objective was to evaluate cognitive, inflammatory and cellular metabolism alterations in the central nervous system in an animal model of critical illness induced by zymosan. For this Wistar rats that were divided into Sham and zymosan. Zymozan was administered once intraperitoneally (30 g/100 g body weight) diluted in mineral oil. The animals were submitted to behavioral tests of octagonal maze, inhibitory avoidance and elevated plus maze. Brain structures (cortex, prefrontal and hippocampus) were removed at 24 h, 4, 7 and 15 days after zymosan administration for analysis of cytokine levels (TNF-α, IL-1b, IL-6 and IL-10), oxidative damage and oxygen consumption. Zymosan-treated animals presented mild cognitive impairment both in aversive (inhibitory avoidance) and non-aversive (octagonal maze) tasks by day 15. However, they did not show increase in anxiety (elevated-plus maze). The first neurochemical alteration found was an increase in brain pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) at day 4th in the hippocampus. In cortex, a late (7 and 15 days) increase in TNF-α was also noted, while the anti-inflammatory cytokine IL-10 decrease from 4 to 15 days. Oxygen consumption was decreased in the hippocampus and pre-frontal, but not cortex, only at 7 days. Additionally, it was observed a late (15 days) increase in oxidative damage parameters. This characterization of brain dysfunction in rodent model of critical illness reproduces some of the alterations reported in humans such neuropsychiatric disorders, especially depression, memory loss and cognitive changes and can add to the nowadays used models.
Collapse
|
16
|
Kitase Y, Chin EM, Ramachandra S, Burkhardt C, Madurai NK, Lenz C, Hoon AH, Robinson S, Jantzie LL. Sustained peripheral immune hyper-reactivity (SPIHR): an enduring biomarker of altered inflammatory responses in adult rats after perinatal brain injury. J Neuroinflammation 2021; 18:242. [PMID: 34666799 PMCID: PMC8527679 DOI: 10.1186/s12974-021-02291-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background Chorioamnionitis (CHORIO) is a principal risk factor for preterm birth and is the most common pathological abnormality found in the placentae of preterm infants. CHORIO has a multitude of effects on the maternal–placental–fetal axis including profound inflammation. Cumulatively, these changes trigger injury in the developing immune and central nervous systems, thereby increasing susceptibility to chronic sequelae later in life. Despite this and reports of neural–immune changes in children with cerebral palsy, the extent and chronicity of the peripheral immune and neuroinflammatory changes secondary to CHORIO has not been fully characterized. Methods We examined the persistence and time course of peripheral immune hyper-reactivity in an established and translational model of perinatal brain injury (PBI) secondary to CHORIO. Pregnant Sprague–Dawley rats underwent laparotomy on embryonic day 18 (E18, preterm equivalent). Uterine arteries were occluded for 60 min, followed by intra-amniotic injection of lipopolysaccharide (LPS). Serum and peripheral blood mononuclear cells (PBMCs) were collected at young adult (postnatal day P60) and middle-aged equivalents (P120). Serum and PBMCs secretome chemokines and cytokines were assayed using multiplex electrochemiluminescent immunoassay. Multiparameter flow cytometry was performed to interrogate immune cell populations. Results Serum levels of interleukin-1β (IL-1β), IL-5, IL-6, C–X–C Motif Chemokine Ligand 1 (CXCL1), tumor necrosis factor-α (TNF-α), and C–C motif chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) were significantly higher in CHORIO animals compared to sham controls at P60. Notably, CHORIO PBMCs were primed. Specifically, they were hyper-reactive and secreted more inflammatory mediators both at baseline and when stimulated in vitro. While serum levels of cytokines normalized by P120, PBMCs remained primed, and hyper-reactive with a robust pro-inflammatory secretome concomitant with a persistent change in multiple T cell populations in CHORIO animals. Conclusions The data indicate that an in utero inflammatory insult leads to neural–immune changes that persist through adulthood, thereby conferring vulnerability to brain and immune system injury throughout the lifespan. This unique molecular and cellular immune signature including sustained peripheral immune hyper-reactivity (SPIHR) and immune cell priming may be a viable biomarker of altered inflammatory responses following in utero insults and advances our understanding of the neuroinflammatory cascade that leads to perinatal brain injury and later neurodevelopmental disorders, including cerebral palsy.
Collapse
Affiliation(s)
- Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC Building, 6-104A, Baltimore, MD, USA
| | - Eric M Chin
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Sindhu Ramachandra
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC Building, 6-104A, Baltimore, MD, USA
| | - Christopher Burkhardt
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC Building, 6-104A, Baltimore, MD, USA
| | - Nethra K Madurai
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC Building, 6-104A, Baltimore, MD, USA
| | - Colleen Lenz
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Alexander H Hoon
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren L Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC Building, 6-104A, Baltimore, MD, USA. .,Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA. .,Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Persistent Neuroinflammation and Brain-Specific Immune Priming in a Novel Survival Model of Murine Pneumosepsis. Shock 2021; 54:78-86. [PMID: 31415473 DOI: 10.1097/shk.0000000000001435] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pneumonia is the leading cause of sepsis and septic shock. Patients who survive pneumonia are vulnerable to long-term complications including increased risk of neurocognitive dysfunction. This study investigated the immune response and long-term complications of a non-surgical mouse model of Klebsiella pneumoniae pneumosepsis with antibiotic treatment. Pneumosepsis resulted in acutely enhanced expression of inflammatory cytokines, chemokines, and damage-associated molecular patterns in the brain and spleen. Despite resolution of infection, murine pneumosepsis survivors demonstrated a deficit in exploratory locomotor behavior at 2 weeks. This was associated with brain-specific persistent inflammatory gene expression and infiltrating myeloid cells in the brain. The brain inflammatory response was also primed in response to secondary challenge with lipopolysaccharide. The findings of this study demonstrate behavioral and inflammatory outcomes that parallel observations in other models of sepsis, but that have not previously been described in antibiotic-treated pneumonia models, highlighting a common pathway to the development of chronic brain dysfunction in sepsis survival.
Collapse
|
18
|
Zhang L, Zhang X, Wu T, Pan X, Wang Z. Isoflurane reduces septic neuron injury by HO‑1‑mediated abatement of inflammation and apoptosis. Mol Med Rep 2020; 23:155. [PMID: 33355378 PMCID: PMC7789092 DOI: 10.3892/mmr.2020.11794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) frequently occurs in critically ill patients with severe systemic infections. Subanesthetic isoflurane (0.7% ISO) possesses anti-inflammatory, antioxidant and anti-apoptotic properties against a number of human diseases, including brain injury. The activation of heme oxygenase-1 (HO-1) impedes inflammation, oxidation and apoptosis, thus alleviating sepsis-induced brain damage. However, whether 0.7% ISO affords protection against septic neuronal injury involving HO-1 activation is unclear. The present study aimed to investigate the neuroprotective effects of 0.7% ISO and its potential underlying mechanisms in SAE using a mouse model established by cecal ligation and puncture (CLP). The results indicated that the expression and activity of HO-1 in the mouse hippocampus were increased by CLP, and further enhanced by ISO. ISO reduced the death rate, brain water content and blood-brain barrier disruption, but improved the learning and memory functions of CLP-treated mice. ISO significantly decreased the production of pro-inflammatory cytokines and the levels of oxidative indictors in the serum and hippocampus, as well as the number of apoptotic neurons and the expression of pro-apoptotic proteins in the hippocampus. Inversely, anti-inflammatory factors, antioxidative enzymes and anti-apoptotic proteins were markedly increased by ISO administration. However, the neuroprotective effects of ISO were abolished by a HO-1 inhibitor. Overall, these findings suggested that 0.7% ISO alleviated SAE via its anti-inflammatory, antioxidative and anti-apoptotic properties, which involved the activated form of HO-1.
Collapse
Affiliation(s)
- Lina Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xuece Zhang
- Digestive Department, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Ting Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xu Pan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhi Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
19
|
Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T, Dal-Pizzol F, Ritter C. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review. Neurosci Biobehav Rev 2020; 124:386-404. [PMID: 33309906 DOI: 10.1016/j.neubiorev.2020.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/28/2023]
Abstract
Survivors of sepsis often develop long-term cognitive impairments. This review aimed at exploring the results of the behavioral tools and tests which have been used to evaluate cognitive dysfunction in different animal models of sepsis. Two independent investigators searched for sepsis- and cognition-related keywords. 6323 publications were found, of which 355 were selected based on their title, and 226 of these were chosen based on manuscript review. LPS was used to induce sepsis in 171 studies, while CLP was used in 55 studies. Inhibitory avoidance was the most widely used method for assessing aversive memory, followed by fear conditioning and continuous multi-trial inhibitory avoidance. With regard to non-aversive memory, most studies used the water maze, open-field, object recognition, Y-maze, plus maze, and radial maze tests. Both CLP and LPS models of sepsis were effective in inducing short- and long-term behavioral impairment. Our findings help elucidate the mechanisms involved in the pathophysiology of sepsis-induced cognitive changes, as well as the available methods and tests used to study this in animal models.
Collapse
Affiliation(s)
- Felipe Figueredo Savi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Alexandre de Oliveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | | | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France; Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil; Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil.
| |
Collapse
|
20
|
Danielski LG, Giustina AD, Bonfante S, de Souza Goldim MP, Joaquim L, Metzker KL, Biehl EB, Vieira T, de Medeiros FD, da Rosa N, Generoso J, Simoes L, Farias HR, da Silva Lemos I, Giridharan V, Rezin GT, Fortunato JJ, Bitencourt RM, Streck EL, Dal-Pizzol F, Barichello T, Petronilho F. NLRP3 Activation Contributes to Acute Brain Damage Leading to Memory Impairment in Sepsis-Surviving Rats. Mol Neurobiol 2020; 57:5247-5262. [PMID: 32870491 DOI: 10.1007/s12035-020-02089-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Sepsis survivors present acute and long-term cognitive impairment and the pathophysiology of neurological dysfunction in sepsis involves microglial activation. Recently, the involvement of cytosolic receptors capable of forming protein complexes called inflammasomes have been demonstrated to perpetuate neuroinflammation. Thus, we investigated the involvement of the NLRP3 inflammasome activation on early and late brain changes in experimental sepsis. Two-month-old male Wistar rats were submitted to the sepsis model by cecal ligation and perforation (CLP group) or laparotomy only (sham group). Immediately after surgery, the animals received saline or NLRP3 inflammasome formation inhibitor (MCC950, 140 ng/kg) intracerebroventricularly. Prefrontal cortex and hippocampus were isolated for cytokine analysis, microglial and astrocyte activation, oxidative stress measurements, nitric oxide formation, and mitochondrial respiratory chain activity at 24 h after CLP. A subset of animals was followed for 10 days for survival assessment, and then behavioral tests were performed. The administration of MCC950 restored the elevation of IL-1β, TNF-α, IL-6, and IL-10 cytokine levels in the hippocampus. NLRP3 receptor levels increased in the prefrontal cortex and hippocampus at 24 h after sepsis, associated with microglial, but not astrocyte, activation. MCC950 reduced oxidative damage to lipids and proteins as well as preserved the activity of the enzyme SOD in the hippocampus. Mitochondrial respiratory chain activity presented variations in both structures studied. MCC950 reduced microglial activation, decreased acute neurochemical and behavioral alteration, and increased survival after experimental sepsis.
Collapse
Affiliation(s)
- Lucineia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Kiuanne Lobo Metzker
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Erica Bernardo Biehl
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Thaynan Vieira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fabiana Durante de Medeiros
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lutiana Simoes
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Hémelin Resende Farias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Isabela da Silva Lemos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Vijayasree Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jucelia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Rafael Mariano Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Emilio Luiz Streck
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
21
|
Jiang Y, Zhang K, Yu Y, Wang Y, Lian N, Xie K, Yu Y. Molecular hydrogen alleviates brain injury and cognitive impairment in a chronic sequelae model of murine polymicrobial sepsis. Exp Brain Res 2020; 238:2897-2908. [PMID: 33052428 DOI: 10.1007/s00221-020-05950-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023]
Abstract
Sepsis-related encephalopathy (SAE), which causes a series of brain injuries and long-term, potentially irreversible cognitive dysfunction, is closely associated with increased morbidity and mortality. Hydrogen (H2) is a new type of medical gas molecule that has been widely used in the treatment of various diseases in recent years. The aim of the present study was to explore the protective effects of H2 inhalation on brain injury and long-term cognitive impairment in an improved chronic septic mouse model. Male C57BL/6J mice were randomized into four groups: Control, Control + H2, SAE and SAE + H2. The SAE and Control models were established by intraperitoneal injection of human stool suspension or saline in mice. H2 (2%) was inhaled for 60 min at 1 h and 6 h after SAE or Control treatment. The survival rates were recorded for 14 days (days 1-14) and the Morris Water Maze was performed for 7 days (days 8-14). To assess the severity of the brain injury, hematoxylin and eosin staining, Nissl staining, Evans blue (EB) extravasation and the wet/dry weight ratio of brain tissue were detected 24 h after SAE or Control treatment. In addition, inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin 6 (IL-6), high-mobility group box 1 (HMGB1), as well as the protein levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), zonula occludens-1 (ZO-1) and Occludin, were measured 6, 12 and 24 h after SAE or Control treatment. The results showed that H2 treatment increased survival rates, mitigated cognitive impairment, reduced hippocampal histological damage, decreased EB and water content, and decreased the levels of TNF-α, IL-6, HMGB1, Nrf2, HO-1, ZO-1 and Occludin, as compared with the SAE group. These data revealed that 2% H2 could suppress brain damage and improve cognitive function in septic mice by inhibiting oxidative stress, inflammatory response and the sepsis-induced blood-brain barrier (BBB) disruption.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China
| | - Kai Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China
| | - Yang Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China.
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China.
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China
| | - Naqi Lian
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China.
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
22
|
Prospects of molecular hydrogen in perioperative neuroprotection from basic research to clinical application. Curr Opin Anaesthesiol 2020; 33:655-660. [PMID: 32826628 DOI: 10.1097/aco.0000000000000915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The current systematic review summarizes recent, basic clinical achievements regarding the neuroprotective effects of molecular hydrogen in distinct central nervous system conditions. RECENT FINDINGS Perioperative neuroprotection remains a major topic of clinical anesthesia. Various gaseous molecules have previously been explored as a feasible therapeutic option in neurological disorders. Among them, molecular hydrogen, which has emerged as a novel and potential therapy for perioperative neuroprotection, has received much attention. SUMMARY Fundamental and clinical evidence supports the antioxidant, antiinflammation, antiapoptosis and mitochondrial protective effects of hydrogen in the pathophysiology of nervous system diseases. The clinically preventive and therapeutic effects of hydrogen on different neural diseases, however, remain uncertain, and the lack of support by large randomized controlled trials has delayed its clinical application.
Collapse
|
23
|
Yu Y, Feng J, Lian N, Yang M, Xie K, Wang G, Wang C, Yu Y. Hydrogen gas alleviates blood-brain barrier impairment and cognitive dysfunction of septic mice in an Nrf2-dependent pathway. Int Immunopharmacol 2020; 85:106585. [DOI: 10.1016/j.intimp.2020.106585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
|
24
|
Mitochondrial Transplantation Attenuates Brain Dysfunction in Sepsis by Driving Microglial M2 Polarization. Mol Neurobiol 2020; 57:3875-3890. [PMID: 32613465 DOI: 10.1007/s12035-020-01994-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Activation of microglia and mitochondrial dysfunction are two major contributors to the pathogenesis of sepsis-associated brain dysfunction. Mitochondrial dysfunction can alter the immunological profile of microglia favoring to a pro-inflammatory phenotype. Mitochondrial transplantation, as an emerging mitochondria-targeted therapy, possesses considerable therapeutic potential in various central nervous system injuries or diseases. However, the effects of mitochondrial transplantation on microglial polarization and neuroprotection after sepsis remain unclear. In this study, lipopolysaccharide (LPS)/interferon-γ (IFN-γ) and interleukin-4 (IL-4)/interleukin-13 (IL-13) were used to induce different phenotypes of BV2 microglial cells. We observed that mitochondrial content and function were enhanced in IL-4-/IL-13-stimulated microglia. In vitro, mitochondria treatment conferred neuroprotection by enhancing microglial polarization from the M1 phenotype to the M2 phenotype and suppressing microglial-derived inflammatory cytokine release. Furthermore, microglial phenotypes and behavior tests were assessed after mice were subjected to sepsis by cecal ligation and puncture (CLP) followed by intracerebroventricular injection of exogenous functional mitochondria. We found that mitochondrial transplantation induced microglial M2 rather than M1 response 24 h after sepsis. Mitochondrial transplantation improved behavioral deficits by increasing the latency time in inhibitory avoidance test and decreasing the number of crossing and rearing in the test session of open field test 10 days after CLP onset. These findings indicate that mitochondrial transplantation promotes the phenotypic conversion of microglia and improves cognitive impairment in sepsis survivors, supporting the potential use of exogenous mitochondrial transplantation therapy that may be a potential therapeutic opportunity for sepsis-associated brain dysfunction.
Collapse
|
25
|
Simvastatin Prevents Long-Term Cognitive Deficits in Sepsis Survivor Rats by Reducing Neuroinflammation and Neurodegeneration. Neurotox Res 2020; 38:871-886. [PMID: 32524380 DOI: 10.1007/s12640-020-00222-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
Sepsis-associated encephalopathy causes brain dysfunction that can result in cognitive impairments in sepsis survivor patients. In previous work, we showed that simvastatin attenuated oxidative stress in brain structures related to memory in septic rats. However, there is still a need to evaluate the long-term impact of simvastatin administration on brain neurodegenerative processes and cognitive damage in sepsis survivors. Here, we investigated the possible neuroprotective role of simvastatin in neuroinflammation, and neurodegeneration conditions of brain structures related to memory in rats at 10 days after sepsis survival. Male Wistar rats (250-300 g) were submitted to cecal ligation and puncture (CLP, n = 42) or remained as non-manipulated (naïve, n = 30). Both groups were treated (before and after the surgery) by gavage with simvastatin (20 mg/kg) or an equivalent volume of saline and observed for 10 days. Simvastatin-treated rats that survived to sepsis showed a reduction in the levels of nitrate, IL1-β, and IL-6 and an increase in Bcl-2 protein expression in the prefrontal cortex and hippocampus, and synaptophysin only in the hippocampus. Immunofluorescence revealed a reduction of glial activation, neurodegeneration, apoptosis, and amyloid aggregates confirmed by quantification of GFAP, Iba-1, phospho Ser396-tau, total tau, cleaved caspase-3, and thioflavin-S in the prefrontal cortex and hippocampus. In addition, treated animals presented better performance in tasks involving habituation memory, discriminative, and aversive memory. These results suggest that statins exert a neuroprotective role by upregulation of the Bcl-2 and gliosis reduction, which may prevent the cognitive deficit observed in sepsis survivor animals.
Collapse
|
26
|
Zhuang X, Yu Y, Jiang Y, Zhao S, Wang Y, Su L, Xie K, Yu Y, Lu Y, Lv G. Molecular hydrogen attenuates sepsis-induced neuroinflammation through regulation of microglia polarization through an mTOR-autophagy-dependent pathway. Int Immunopharmacol 2020; 81:106287. [DOI: 10.1016/j.intimp.2020.106287] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
|
27
|
Nwafor DC, Chakraborty S, Brichacek AL, Jun S, Gambill CA, Wang W, Engler-Chiurazzi EB, Dakhlallah D, Pinkerton AB, Millán JL, Benkovic SA, Brown CM. Loss of tissue-nonspecific alkaline phosphatase (TNAP) enzyme activity in cerebral microvessels is coupled to persistent neuroinflammation and behavioral deficits in late sepsis. Brain Behav Immun 2020; 84:115-131. [PMID: 31778743 PMCID: PMC7010562 DOI: 10.1016/j.bbi.2019.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a host response to systemic inflammation and infection that may lead to multi-organ dysfunction and eventual death. While acute brain dysfunction is common among all sepsis patients, chronic neurological impairment is prevalent among sepsis survivors. The brain microvasculature has emerged as a major determinant of sepsis-associated brain dysfunction, yet the mechanisms that underlie its associated neuroimmune perturbations and behavioral deficits are not well understood. An emerging body of data suggests that inhibition of tissue-nonspecific alkaline phosphatase (TNAP) enzyme activity in cerebral microvessels may be associated with changes in endothelial cell barrier integrity. The objective of this study was to elucidate the connection between alterations in cerebrovascular TNAP enzyme activity and brain microvascular dysfunction in late sepsis. We hypothesized that the disruption of TNAP enzymatic activity in cerebral microvessels would be coupled to the sustained loss of brain microvascular integrity, elevated neuroinflammatory responses, and behavioral deficits. Male mice were subjected to cecal ligation and puncture (CLP), a model of experimental sepsis, and assessed up to seven days post-sepsis. All mice were observed daily for sickness behavior and underwent behavioral testing. Our results showed a significant decrease in brain microvascular TNAP enzyme activity in the somatosensory cortex and spinal cord of septic mice but not in the CA1 and CA3 hippocampal regions. Furthermore, we showed that loss of cerebrovascular TNAP enzyme activity was coupled to a loss of claudin-5 and increased perivascular IgG infiltration in the somatosensory cortex. Analyses of whole brain myeloid and T-lymphoid cell populations also revealed a persistent elevation of infiltrating leukocytes, which included both neutrophil and monocyte myeloid derived suppressor cells (MDSCs). Regional analyses of the somatosensory cortex, hippocampus, and spinal cord revealed significant astrogliosis and microgliosis in the cortex and spinal cord of septic mice that was accompanied by significant microgliosis in the CA1 and CA3 hippocampal regions. Assessment of behavioral deficits revealed no changes in learning and memory or evoked locomotion. However, the hot plate test uncovered a novel anti-nociceptive phenotype in our septic mice, and we speculate that this phenotype may be a consequence of sustained GFAP astrogliosis and loss of TNAP activity in the somatosensory cortex and spinal cord of septic mice. Taken together, these results demonstrate that the loss of TNAP enzyme activity in cerebral microvessels during late sepsis is coupled to sustained neuroimmune dysfunction which may underlie, in part, the chronic neurological impairments observed in sepsis survivors.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Sreeparna Chakraborty
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Sujung Jun
- Wilmer Eye Institute, John Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Catheryne A. Gambill
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Wei Wang
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA.
| | | | - Duaa Dakhlallah
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA; Cancer Institute, West Virginia University Health Science Center, Morgantown, WV 26506, USA.
| | | | - José Luis Millán
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Stanley A. Benkovic
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Candice M. Brown
- Department of Neuroscience, West Virginia University Health Science Center, Morgantown, WV 26506, USA,Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA,Corresponding Author: Candice M. Brown, Ph.D., Assistant Professor, Neuroscience, 108 Biomedical Road, Box 9303, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University Health Sciences, Morgantown, WV 26506, Phone: 304-293-0589,
| |
Collapse
|
28
|
Zhang Z, Lei Y, Yan C, Mei X, Jiang T, Ma Z, Wang Q. Probenecid Relieves Cerebral Dysfunction of Sepsis by Inhibiting Pannexin 1-Dependent ATP Release. Inflammation 2019; 42:1082-1092. [PMID: 30725252 DOI: 10.1007/s10753-019-00969-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acute brain dysfunction and the following neurological manifestation are common complications in septic patients, which are associated with increased morbidity and mortality. However, the therapeutic strategy of this disorder remains a major challenge. Given the emerging role of a clinically approved drug, probenecid (PRB) has been recently identified as an inhibitor of pannexin 1 (PANX1) channel, which restrains extracellular ATP release-induced purinergic pathway activation and inflammatory response contributing to diverse pathological processes. In this study, we explored whether PRB administration attenuated neuroinflammatory response and cognitive impairment during sepsis. In mice suffered from cecal ligation and puncture (CLP)-induced sepsis, treatment with PRB improved memory retention and lessened behavioral deficits. This neuroprotective effect was coupled with restricted overproduction of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and interleukin (IL)-1β in the hippocampus. Since this damped neuroinflammation was replicated by inhibition of ATP release, it suggested that PANX1 channel modulates a purinergic-related pathway contributing to the neurohistological damage. Therefore, we identified PRB could be a promising therapeutic approach for the therapy of cerebral dysfunction of sepsis.
Collapse
Affiliation(s)
- Zhanqin Zhang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yi Lei
- Department of Anesthesiology, General Hospital of Xinjiang Military Region, Xinjiang, 830000, China
| | - Chaoying Yan
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaopeng Mei
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Jiang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhi Ma
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qiang Wang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
29
|
The Role of Secretase Pathway in Long-term Brain Inflammation and Cognitive Impairment in an Animal Model of Severe Sepsis. Mol Neurobiol 2019; 57:1159-1169. [DOI: 10.1007/s12035-019-01808-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/30/2019] [Indexed: 01/17/2023]
|
30
|
Blockade of IL-17A/IL-17R Pathway Protected Mice from Sepsis-Associated Encephalopathy by Inhibition of Microglia Activation. Mediators Inflamm 2019; 2019:8461725. [PMID: 31686986 PMCID: PMC6800921 DOI: 10.1155/2019/8461725] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/06/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a poorly understood condition that leads to long-term cognitive impairment and increased mortality in survivors. Recent research revealed that IL-17A/IL-17R might serve as a checkpoint in microglia-mediated neuroinflammation. The present study was designed to determine the specific role of IL-17A-mediated microglia activation in the development of SAE. A mouse model of SAE was induced by cecal ligation and puncture (CLP), and behavior performance was evaluated by the inhibitory avoidance test and the open field test. Cytokine expression and microglia activation in brain tissue were determined at 6 h, 12 h, 24 h, 48 h, and day 7 post surgery. Further, septic mice were intracerebral ventricle- (i.c.v.-) injected with recombinant IL-17A, anti-IL-17A ab, anti-IL-17R ab, or isotype controls to evaluate the potential effects of IL-17A/IL-17R blockade in the prevention of SAE. Septic peritonitis induced significant impairment of learning memory and exploratory activity, which was associated with a higher expression of IL-17A, IL-1β, and TNF-α in the brain homogenate. Fluorescence intensity of Iba-1 and IL-17R in the hippocampus was significantly increased following CLP. Treatment with recombinant IL-17A enhanced the neuroinflammation and microglia activation in CLP mice. On the contrary, neutralizing anti-IL-17A or anti-IL-17R antibodies mitigated the CNS inflammation and microglia activation, thus alleviating the cognitive dysfunction. Furthermore, as compared to the sham control, microglia cultured from CLP mice produced significantly higher levels of cytokines and expressed with higher fluorescence intensity of Iba-1 in response to IL-17A or LPS. Pretreatment with anti-IL-17R ab suppressed the Iba-1 expression and cytokine production in microglia stimulated by IL-17A. In conclusion, blockade of the IL-17A/IL-17R pathway inhibited microglia activation and neuroinflammation, thereby partially reversing sepsis-induced cognitive impairment. The present study suggested that the IL-17A/IL-17R signaling pathway had an important, nonredundant role in the development of SAE.
Collapse
|
31
|
Mitochondrial dysfunction is associated with long-term cognitive impairment in an animal sepsis model. Clin Sci (Lond) 2019; 133:1993-2004. [DOI: 10.1042/cs20190351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
Abstract
Abstract
Background: Several different mechanisms have been proposed to explain long-term cognitive impairment in sepsis survivors. The role of persisting mitochondrial dysfunction is not known. We thus sought to determine whether stimulation of mitochondrial dynamics improves mitochondrial function and long-term cognitive impairment in an experimental model of sepsis.
Methods: Sepsis was induced in adult Wistar rats by cecal ligation and perforation (CLP). Animals received intracerebroventricular injections of either rosiglitazone (biogenesis activator), rilmenidine, rapamycin (autophagy activators), or n-saline (sham control) once a day on days 7–9 after the septic insult. Cognitive impairment was assessed by inhibitory avoidance and object recognition tests. Animals were killed 24 h, 3 and 10 days after sepsis with the hippocampus and prefrontal cortex removed to determine mitochondrial function.
Results: Sepsis was associated with both acute (24 h) and late (10 days) brain mitochondrial dysfunction. Markers of mitochondrial biogenesis, autophagy and mitophagy were not up-regulated during these time points. Activation of biogenesis (rosiglitazone) or autophagy (rapamycin and rilmenidine) improved brain ATP levels and ex vivo oxygen consumption and the long-term cognitive impairment observed in sepsis survivors.
Conclusion: Long-term impairment of brain function is temporally related to mitochondrial dysfunction. Activators of autophagy and mitochondrial biogenesis could rescue animals from cognitive impairment.
Collapse
|
32
|
Milioli MVM, Burger H, Olivieri R, Michels M, Ávila P, Abatti M, Indalécio A, Ritter C, Dal-Pizzol F. The impact of age on long-term behavioral and neurochemical parameters in an animal model of severe sepsis. Neurosci Lett 2019; 708:134339. [DOI: 10.1016/j.neulet.2019.134339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 11/29/2022]
|
33
|
Caspase-1 inhibitor exerts brain-protective effects against sepsis-associated encephalopathy and cognitive impairments in a mouse model of sepsis. Brain Behav Immun 2019; 80:859-870. [PMID: 31145977 DOI: 10.1016/j.bbi.2019.05.038] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) manifested clinically in acute and long-term cognitive impairments and associated with increased morbidity and mortality worldwide. The potential pathological changes of SAE are complex and remain to be elucidated. Pyroptosis, a novel programmed cell death, is executed by caspase-1-cleaved GSDMD N-terminal (GSDMD-NT) and we investigated it in peripheral blood immunocytes of septic patients previously. Here, a caspase-1 inhibitor VX765 was treated with CLP-induced septic mice. Novel object recognition test indicated that VX765 treatment reversed cognitive dysfunction in septic mice. Elevated plus maze, tail suspension test and open field test revealed that depressive-like behaviors of septic mice were relieved. Inhibited caspase-1 suppressed the expressions of GSDMD and its cleavage form GSDMD-NT, and reduced pyroptosis in brain at day 1 and day 7 after sepsis. Meantime, inhibited caspase-1 mitigated the expressions of IL-1β, MCP-1 and TNF-α in serum and brain, diminished microglia activation in septic mice, and reduced sepsis-induced brain-blood barrier disruption and ultrastructure damages in brain as well. Inhibited caspase-1 protected the synapse plasticity and preserved long-term potential, which may be the possible mechanism of cognitive functions protective effects of septic mice. In conclusion, caspase-1 inhibition exerts brain-protective effects against SAE and cognitive impairments in a mouse model of sepsis.
Collapse
|
34
|
Pan C, Si Y, Meng Q, Jing L, Chen L, Zhang Y, Bao H. Suppression of the RAC1/MLK3/p38 Signaling Pathway by β-Elemene Alleviates Sepsis-Associated Encephalopathy in Mice. Front Neurosci 2019; 13:358. [PMID: 31068775 PMCID: PMC6491839 DOI: 10.3389/fnins.2019.00358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/28/2019] [Indexed: 01/22/2023] Open
Abstract
It is still difficult to treat sepsis-associated encephalopathy (SAE) which is a diffuse brain dysfunction caused by sepsis, with excessive activation of microglia as one of the main mechanisms. Ras-related C3 botulinum toxin substrate 1 (RAC1) is proven to be a key molecule in the inflammatory signaling network. By using microglial cell line BV-2 and a mouse model of cecal ligation puncture (CLP), we herein evaluated the effects of β-elemene, an extract of Curcuma zedoaria Rosc., on RAC1 signaling in microglia. β-Elemene decreased the expressions of pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6] and attenuated translocation of nuclear factor-κB (NF-κB) p65 from the cytosol to the nucleus in BV-2 cells after lipopolysaccharide (LPS) treatment. It also inhibited the activation of RAC1, mixed-lineage protein kinase 3 (MLK3) and p38 mitogen-activated protein kinase (MAPK). The phosphorylation of the RAC1 Ser71 site was increased by β-elemene. Moreover, the learning and memory abilities of CLP mice in the water maze test and fear conditioning test were improved after β-elemene treatment. It reduced the expression of the microglial marker IBA1, significantly increased RAC1 Ser71 phosphorylation, and suppressed the RAC1/MLK3/p38 signaling activation and inflammatory response in the hippocampus. In conclusion, β-elemene effectively alleviated SAE in mice and inhibited the RAC1/MLK3/p38 signaling pathway in microglia, and might be an eligible potential candidate for SAE treatment.
Collapse
Affiliation(s)
- Cailong Pan
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yanna Si
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Jing
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yong Zhang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Yang Y, Liang S, Li Y, Gao F, Cao Y, Zhao X, Gao G, Li L. Effects of early administration of insulin-like growth factor-1 on cognitive function in septic encephalopathy. Neuropsychiatr Dis Treat 2019; 15:323-337. [PMID: 30774344 PMCID: PMC6353230 DOI: 10.2147/ndt.s190845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Both protective and therapeutic functions of insulin-like growth factor-1 (IGF-1) in brain injury have been reported, but its effects on cognitive sequelae after septic encephalopathy (SE) remain unclear. MATERIALS AND METHODS This study was divided into three parts, and a septic model was built by cecal ligation and puncture (CLP). First, survival analysis was performed, and IGF-1's effects on long-term cognition and depressive emotion were assessed. Second, the characteristics of IGF-1 function in cognition were evaluated. Finally, cytochrome C, caspase-9, tumor necrosis factor receptor (TNFR), and caspase-8 levels as well as cell apoptosis in the hippocampus were evaluated. RESULTS IGF-1 did not reduce mortality or alleviate depressive symptoms in septic rats, but improved the memory of noxious stimulation and spatial learning and memory. These effects were observed only when IGF-1 was administered within 0-6 hours after CLP. Moreover, cytochrome C and caspase-9 expression levels were increased at 6 hours after CLP in the hippocampus, while TNFR and caspase-8 amounts were not increased until 12 hours after CLP. Cell apoptosis increased at 12 hours after CLP, but was inhibited by IGF-1. CONCLUSION Cognitive impairment in rats recovering from SE is associated with cell apoptosis in the hippocampus. Supplementation of IGF-1 reduces cell apoptosis by preventing the over-expression of cytochrome C and TNFR, and results in improved cognitive function. However, improvement only occurs when IGF-1 is administered at the early stage (within 6 hours) of sepsis. As cytochrome C activation occurs earlier than that of TNFR in this study, cytochrome C may be the main factor inducing apoptosis in early SE.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710038, China, ;
| | - Shengru Liang
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710032, China
| | - Yuqian Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710038, China, ;
| | - Fei Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710038, China, ;
| | - Yuan Cao
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710032, China
| | - Xiaoyu Zhao
- Department of Neurosurgery, The 986th Hospital of Chinese People's Libertation Army, Xi'an, Shaanxi Province 710054, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710038, China, ;
| | - Lihong Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province 710038, China, ;
| |
Collapse
|
36
|
Della Giustina A, Goldim MP, Danielski LG, Florentino D, Garbossa L, Joaquim L, Oliveira Junior AN, Mathias K, Fileti ME, Zarbato GF, da Rosa N, Laurentino AOM, Fortunato JJ, Palandi J, de Oliveira BH, Martins DF, Bonbinski F, Bellettini-Santos T, Garcez M, Budni J, Barichello T, Petronilho F. Fish oil-rich lipid emulsion modulates neuroinflammation and prevents long-term cognitive dysfunction after sepsis. Nutrition 2018; 70:110417. [PMID: 30867119 DOI: 10.1016/j.nut.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Sepsis is a severe organic dysfunction caused by an infection that affects the normal regulation of several organ systems, including the central nervous system. Inflammation and oxidative stress play crucial roles in the development of brain dysfunction in sepsis. The aim of this study was to determine the effect of a fish oil (FO)-55-enriched lipid emulsion as an important anti-inflammatory compound on brain dysfunction in septic rats. METHODS Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) or sham (control) and treated orally with FO (600 µL/kg after CLP) or vehicle (saline; sal). Animals were divided into sham+sal, sham+FO, CLP+sal and CLP+FO groups. At 24 h and 10 d after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of interleukin (IL)-1β and IL-10, blood-brain barrier permeability, nitrite/nitrate concentration, myeloperoxidase activity, thiobarbituric acid reactive species formation, protein carbonyls, superoxide dismutase and catalase activity, and brain-derived neurotrophic factor levels. Behavioral tasks were performed 10 d after surgery. RESULTS FO reduced BBB permeability in the prefrontal cortex and total cortex of septic rats, decreased IL-1β levels and protein carbonylation in all brain structures, and diminished myeloperoxidase activity in the hippocampus and prefrontal cortex. FO enhanced brain-derived neurotrophic factor levels in the hippocampus and prefrontal cortex and prevented cognitive impairment. CONCLUSIONS FO diminishes the negative effect of polymicrobial sepsis in the rat brain by reducing inflammatory and oxidative stress markers.
Collapse
Affiliation(s)
- Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pereira Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Drielly Florentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Leandro Garbossa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Aloir Neri Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Maria Eduarda Fileti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Graciela Freitas Zarbato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Ana Olívia Martins Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Juliete Palandi
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Bruna Hoffmann de Oliveira
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Daniel Fernandes Martins
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Franciane Bonbinski
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Tatiani Bellettini-Santos
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Michele Garcez
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Josiane Budni
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Tatiana Barichello
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
37
|
Zarbato GF, de Souza Goldim MP, Giustina AD, Danielski LG, Mathias K, Florentino D, de Oliveira Junior AN, da Rosa N, Laurentino AO, Trombetta T, Gomes ML, Steckert AV, Moreira AP, Schuck PF, Fortunato JJ, Barichello T, Petronilho F. Dimethyl Fumarate Limits Neuroinflammation and Oxidative Stress and Improves Cognitive Impairment After Polymicrobial Sepsis. Neurotox Res 2018; 34:418-430. [PMID: 29713994 DOI: 10.1007/s12640-018-9900-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022]
Abstract
Sepsis is caused by a dysregulated host response to infection, often associated with acute central nervous system (CNS) dysfunction, which results in long-term cognitive impairment. Dimethyl fumarate (DMF) is an important agent against inflammatory response and reactive species in CNS disorders. Evaluate the effect of DMF on acute and long-term brain dysfunction after experimental sepsis in rats. Male Wistar rats were submitted to the cecal ligation and puncture (CLP) model. The groups were divided into sham (control) + vehicle, sham + NAC, sham + DMF, CLP + vehicle, CLP + NAC, and CLP + DMF. The animals were treated with DMF (15 mg/kg at 0 and 12 h after CLP, per gavage) and the administration of n-acetylcysteine (NAC) (20 mg/kg; 3, 6, and 12 h after CLP, subcutaneously) was used as positive control. Twenty-four hours after CLP, cytokines, myeloperoxidase (MPO), nitrite/nitrate (N/N), oxidative damage to lipids and proteins, and antioxidant enzymes were evaluated in the hippocampus, total cortex, and prefrontal cortex. At 10 days after sepsis induction, behavioral tests were performed to assess cognitive damage. We observed an increase in cytokine levels, MPO activity, N/N concentration, and oxidative damage, a reduction in SOD and GPx activity in the brain structures, and cognitive damage in CLP rats. DMF treatment was effective in reversing these parameters. DMF reduces sepsis-induced neuroinflammation, oxidative stress, and cognitive impairment in rats subjected to the CLP model.
Collapse
Affiliation(s)
- Graciela Freitas Zarbato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Drielly Florentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Ana Olivia Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Taina Trombetta
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Maria Luiza Gomes
- Laboratory Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Amanda Valnier Steckert
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Ana Paula Moreira
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Patricia Fernanda Schuck
- Laboratory Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Jucelia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil.,Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil.
| |
Collapse
|
38
|
Barichello T, Sayana P, Giridharan VV, Arumanayagam AS, Narendran B, Della Giustina A, Petronilho F, Quevedo J, Dal-Pizzol F. Long-Term Cognitive Outcomes After Sepsis: a Translational Systematic Review. Mol Neurobiol 2018; 56:186-251. [PMID: 29687346 DOI: 10.1007/s12035-018-1048-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/27/2018] [Indexed: 01/04/2023]
Abstract
Sepsis is systemic inflammatory response syndrome with a life-threatening organ dysfunction that is caused by an unbalanced host immune response in an attempt to eliminate invasive microorganisms. We posed questions, "Does sepsis survivor patients have increased risk of neuropsychiatric manifestations?" and "What is the mechanism by which sepsis induces long-term neurological sequelae, particularly substantial cognitive function decline in survivor patients and in pre-clinical sepsis models?" The studies were identified by searching PubMed/MEDLINE (National Library of Medicine), PsycINFO, EMBASE (Ovid), LILACS (Latin American and Caribbean Health Sciences Literature), IBECS (Bibliographical Index in Spanish in Health Sciences), and Web of Science databases for peer-reviewed journals that were published until January 2018. A total of 3555 papers were included in the primary screening. After that, 130 articles were selected for the study. A number of pre-clinical studies have shown an auto amplification of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 in the first few hours after sepsis induction, also increased blood-brain barrier permeability, elevated levels of matrix metalloproteinases, increased levels of damage-associated molecular patterns were demonstrated. In addition, the rodents presented long-term cognitive impairment in different behavioral tasks that were prevented by blocking the mechanism of action of these inflammatory mediators. Clinical studies have showed that sepsis survivors presented increased bodily symptoms such as fatigue, pain, visual disturbances, gastrointestinal problems, and neuropsychiatric problems compared to before sepsis. Sepsis leaves the survivors with an aftermath of physiological, neuropsychiatric, and functional impairment. Systematic review registration: CRD42017071755.
Collapse
Affiliation(s)
- Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA. .,Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Pavani Sayana
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | | | - Boomadevi Narendran
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Amanda Della Giustina
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA.,Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
39
|
Singer BH, Dickson RP, Denstaedt SJ, Newstead MW, Kim K, Falkowski NR, Erb-Downward JR, Schmidt TM, Huffnagle GB, Standiford TJ. Bacterial Dissemination to the Brain in Sepsis. Am J Respir Crit Care Med 2018; 197:747-756. [PMID: 29232157 PMCID: PMC5855074 DOI: 10.1164/rccm.201708-1559oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Sepsis causes brain dysfunction and neuroinflammation. It is unknown whether neuroinflammation in sepsis is initiated by dissemination of bacteria to the brain and sustained by persistent infection, or whether neuroinflammation is a sterile process resulting solely from circulating inflammatory mediators. OBJECTIVES To determine if gut bacteria translocate to the brain during sepsis, and are associated with neuroinflammation. METHODS Murine sepsis was induced using cecal ligation and puncture, and sepsis survivor mice were compared with sham and unoperated control animals. Brain tissue of patients who died of sepsis was compared with patients who died of noninfectious causes. Bacterial taxa were characterized by 16S ribosomal RNA gene sequencing in both murine and human brain specimens; compared among sepsis and nonsepsis groups; and correlated with levels of S100A8, a marker of neuroinflammation using permutational multivariate ANOVA. MEASUREMENTS AND MAIN RESULTS Viable gut-associated bacteria were enriched in the brains of mice 5 days after surviving abdominal sepsis (P < 0.01), and undetectable by 14 days. The community structure of brain-associated bacteria correlated with severity of neuroinflammation (P < 0.001). Furthermore, bacterial taxa detected in brains of humans who die of sepsis were distinct from those who died of noninfectious causes (P < 0.001) and correlated with S100A8/A9 expression (P < 0.05). CONCLUSIONS Although bacterial translocation is associated with acute neuroinflammation in murine sepsis, bacterial translocation did not result in chronic cerebral infection. Postmortem analysis of patients who die of sepsis suggests a role for bacteria in acute brain dysfunction in sepsis. Further work is needed to determine if modifying gut-associated bacterial communities modulates brain dysfunction after sepsis.
Collapse
Affiliation(s)
- Benjamin H. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, Michigan
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, Michigan
| | - Scott J. Denstaedt
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Michael W. Newstead
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Kwi Kim
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Nicole R. Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - John R. Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Thomas M. Schmidt
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Gary B. Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan; and
| | | |
Collapse
|
40
|
Gomes LM, Scaini G, Carvalho-Silva M, Gomes ML, Malgarin F, Kist LW, Bogo MR, Rico EP, Zugno AI, Deroza PFP, Réus GZ, de Moura AB, Quevedo J, Ferreira GC, Schuck PF, Streck EL. Antioxidants Reverse the Changes in the Cholinergic System Caused by L-Tyrosine Administration in Rats. Neurotox Res 2018; 34:769-780. [PMID: 29417439 DOI: 10.1007/s12640-018-9866-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/30/2017] [Accepted: 01/05/2018] [Indexed: 12/17/2022]
Abstract
Tyrosinemia type II is an inborn error of metabolism caused by a deficiency in the activity of the enzyme tyrosine aminotransferase, leading to tyrosine accumulation in the body. Although the mechanisms involved are still poorly understood, several studies have showed that higher levels of tyrosine are related to oxidative stress and therefore may affect the cholinergic system. Thus, the aim of this study was to investigate the effects of chronic administration of L-tyrosine on choline acetyltransferase activity (ChAT) and acetylcholinesterase (AChE) in the brain of rats. Moreover, we also examined the effects of one antioxidant treatment (N-acetylcysteine (NAC) + deferoxamine (DFX)) on cholinergic system. Our results showed that the chronic administration of L-tyrosine decreases the ChAT activity in the cerebral cortex, while the AChE activity was increased in the hippocampus, striatum, and cerebral cortex. Moreover, we found that the antioxidant treatment was able to prevent the decrease in the ChAT activity in the cerebral cortex. However, the increase in AChE activity induced by L-tyrosine was partially prevented the in the hippocampus and striatum, but not in the cerebral cortex. Our results also showed no differences in the aversive and spatial memory after chronic administration of L-tyrosine. In conclusion, the results of this study demonstrated an increase in AChE activity in the hippocampus, striatum, and cerebral cortex and an increase of ChAT in the cerebral cortex, without cognitive impairment. Furthermore, the alterations in the cholinergic system were partially prevented by the co-administration of NAC and DFX. Thus, the restored central cholinergic system by antioxidant treatment further supports the view that oxidative stress may be involved in the pathophysiology of tyrosinemia type II.
Collapse
Affiliation(s)
- Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Maria L Gomes
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fernanda Malgarin
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Luiza W Kist
- Laboratório de Biologia Genômica e Molecular, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurício R Bogo
- Laboratório de Biologia Genômica e Molecular, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Pacheco Rico
- Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Pedro F P Deroza
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Airam B de Moura
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Gustavo C Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
41
|
Gasparotto J, Girardi CS, Somensi N, Ribeiro CT, Moreira JCF, Michels M, Sonai B, Rocha M, Steckert AV, Barichello T, Quevedo J, Dal-Pizzol F, Gelain DP. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem 2017; 293:226-244. [PMID: 29127203 DOI: 10.1074/jbc.m117.786756] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 11/09/2017] [Indexed: 11/06/2022] Open
Abstract
Patients recovering from sepsis have higher rates of CNS morbidities associated with long-lasting impairment of cognitive functions, including neurodegenerative diseases. However, the molecular etiology of these sepsis-induced impairments is unclear. Here, we investigated the role of the receptor for advanced glycation end products (RAGE) in neuroinflammation, neurodegeneration-associated changes, and cognitive dysfunction arising after sepsis recovery. Adult Wistar rats underwent cecal ligation and perforation (CLP), and serum and brain (hippocampus and prefrontal cortex) samples were obtained at days 1, 15, and 30 after the CLP. We examined these samples for systemic and brain inflammation; amyloid-β peptide (Aβ) and Ser-202-phosphorylated Tau (p-TauSer-202) levels; and RAGE, RAGE ligands, and RAGE intracellular signaling. Serum markers associated with the acute proinflammatory phase of sepsis (TNFα, IL-1β, and IL-6) rapidly increased and then progressively decreased during the 30-day period post-CLP, concomitant with a progressive increase in RAGE ligands (S100B, Nϵ-[carboxymethyl]lysine, HSP70, and HMGB1). In the brain, levels of RAGE and Toll-like receptor 4, glial fibrillary acidic protein and neuronal nitric-oxide synthase, and Aβ and p-TauSer-202 also increased during that time. Of note, intracerebral injection of RAGE antibody into the hippocampus at days 15, 17, and 19 post-CLP reduced Aβ and p-TauSer-202 accumulation, Akt/mechanistic target of rapamycin signaling, levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and behavioral deficits associated with cognitive decline. These results indicate that brain RAGE is an essential factor in the pathogenesis of neurological disorders following acute systemic inflammation.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003 RS, Brazil
| | - Carolina S Girardi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003 RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003 RS, Brazil
| | - Camila T Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003 RS, Brazil
| | - José C F Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003 RS, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Criciúma 88806-000 SC, Brazil
| | - Beatriz Sonai
- Laboratório de Fisiopatologia Experimental, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Criciúma 88806-000 SC, Brazil
| | - Mariane Rocha
- Laboratório de Fisiopatologia Experimental, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Criciúma 88806-000 SC, Brazil
| | - Amanda V Steckert
- Laboratório de Neurociências at Programa de Pós-GraduaçΔo em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense-Criciúma, Criciúma 88806-000 SC, Brazil; Translational Psychiatry Program, University of Texas Health Science Center at Houston, Houston, Texas 77030; Center of Excellence on Mood Disorders at Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; Neuroscience Graduate Program, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Tatiana Barichello
- Laboratório de Neurociências at Programa de Pós-GraduaçΔo em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense-Criciúma, Criciúma 88806-000 SC, Brazil; Translational Psychiatry Program, University of Texas Health Science Center at Houston, Houston, Texas 77030; Center of Excellence on Mood Disorders at Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; Neuroscience Graduate Program, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - JoΔo Quevedo
- Laboratório de Neurociências at Programa de Pós-GraduaçΔo em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense-Criciúma, Criciúma 88806-000 SC, Brazil; Translational Psychiatry Program, University of Texas Health Science Center at Houston, Houston, Texas 77030; Center of Excellence on Mood Disorders at Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; Neuroscience Graduate Program, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Criciúma 88806-000 SC, Brazil
| | - Daniel P Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003 RS, Brazil.
| |
Collapse
|
42
|
Hamasaki MY, Machado MCC, Pinheiro da Silva F. Animal models of neuroinflammation secondary to acute insults originated outside the brain. J Neurosci Res 2017; 96:371-378. [DOI: 10.1002/jnr.24184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Mike Yoshio Hamasaki
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP; Universidade de São Paulo; São Paulo SP Brazil
| | | | - Fabiano Pinheiro da Silva
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP; Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
43
|
Taschetto L, Scaini G, Zapelini HG, Ramos ÂC, Strapazzon G, Andrade VM, Réus GZ, Michels M, Dal-Pizzol F, Quevedo J, Schuck PF, Ferreira GC, Streck EL. Acute and long-term effects of intracerebroventricular administration of α-ketoisocaproic acid on oxidative stress parameters and cognitive and noncognitive behaviors. Metab Brain Dis 2017; 32:1507-1518. [PMID: 28550500 DOI: 10.1007/s11011-017-0035-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/16/2017] [Indexed: 01/07/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is biochemically characterized by elevated levels of leucine, isoleucine and valine, as well as their corresponding transaminated branched-chain α-keto acids in tissue and biological fluids. Neurological symptoms and cerebral abnormalities, whose mechanisms are still unknown, are typical of this metabolic disorder. In the present study, we evaluated the early effects (1 h after injection) and long-term effects (15 days after injection) of a single intracerebroventricular administration of α-ketoisocaproic acid (KIC) on oxidative stress parameters and cognitive and noncognitive behaviors. Our results showed that KIC induced early and long-term effects; we found an increase in TBARS levels, protein carbonyl content and DNA damage in the hippocampus, striatum and cerebral cortex both one hour and 15 days after KIC administration. Moreover, SOD activity increased in the hippocampus and striatum one hour after injection, whereas after 15 days, SOD activity decreased only in the striatum. On the other hand, KIC significantly decreased CAT activity in the striatum one hour after injection, but 15 days after KIC administration, we found a decrease in CAT activity in the hippocampus and striatum. Finally, we showed that long-term cognitive deficits follow the oxidative damage; KIC induced impaired habituation memory and long-term memory impairment. From the biochemical and behavioral findings, it we presume that KIC provokes oxidative damage, and the persistence of brain oxidative stress is associated with long-term memory impairment and prepulse inhibition.
Collapse
Affiliation(s)
- Luciane Taschetto
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Hugo G Zapelini
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ândrea C Ramos
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Giulia Strapazzon
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Monique Michels
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
44
|
Vitamin B 6 Reduces Neurochemical and Long-Term Cognitive Alterations After Polymicrobial Sepsis: Involvement of the Kynurenine Pathway Modulation. Mol Neurobiol 2017; 55:5255-5268. [PMID: 28879460 DOI: 10.1007/s12035-017-0706-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/01/2017] [Indexed: 01/03/2023]
Abstract
Neurological dysfunction as a result of neuroinflammation has been reported in sepsis and cause high mortality. High levels of cytokines stimulate the formation of neurotoxic metabolites by kynurenine (KYN) pathway. Vitamin B6 (vit B6) has anti-inflammatory and antioxidant properties and also acts as a cofactor for enzymes of the KYN pathway. Thus, by using a relevant animal model of polymicrobial sepsis, we studied the effect of vit B6 on the KYN pathway, acute neurochemical and neuroinflammatory parameters, and cognitive dysfunction in rats. Male Wistar rats (250-300 g) were submitted to cecal ligation and perforation (CLP) and divided into sham + saline, sham + vit B6, CLP + saline, and CLP + vit B6 (600 mg/kg, s.c.) groups. Twenty-four hours later, the prefrontal cortex and hippocampus were removed for neurochemical and neuroinflammatory analyses. Animals were followed for 10 days to determine survival rate, when cognitive function was assessed by behavioral tests. Vitamin B6 interfered in the activation of kynurenine pathway, which led to an improvement in neurochemical and neuroinflammatory parameters and, consequently, in the cognitive functions of septic animals. Thus, the results indicate that vit B6 exerts neuroprotective effects in acute and late consequences after sepsis.
Collapse
|
45
|
Alpha-lipoic acid attenuates acute neuroinflammation and long-term cognitive impairment after polymicrobial sepsis. Neurochem Int 2017; 108:436-447. [DOI: 10.1016/j.neuint.2017.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 12/17/2022]
|
46
|
Michels M, Sonai B, Dal-Pizzol F. Polarization of microglia and its role in bacterial sepsis. J Neuroimmunol 2017; 303:90-98. [PMID: 28087076 DOI: 10.1016/j.jneuroim.2016.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/04/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Microglial polarization in response to brain inflammatory conditions is a crescent field in neuroscience. However, the effect of systemic inflammation, and specifically sepsis, is a relatively unexplored field that has great interest and relevance. Sepsis has been associated with both early and late harmful events of the central nervous system, suggesting that there is a close link between sepsis and neuroinflammation. During sepsis evolution it is supposed that microglial could exert both neurotoxic and repairing effects depending on the specific microglial phenotype assumed. In this context, here it was reviewed the role of microglial polarization during sepsis-associated brain dysfunction.
Collapse
Affiliation(s)
- Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil.
| | - Beatriz Sonai
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil.
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Medical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
47
|
Brain Barrier Breakdown as a Cause and Consequence of Neuroinflammation in Sepsis. Mol Neurobiol 2017; 55:1045-1053. [DOI: 10.1007/s12035-016-0356-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
|
48
|
Brain-Defective Insulin Signaling Is Associated to Late Cognitive Impairment in Post-Septic Mice. Mol Neurobiol 2016; 55:435-444. [PMID: 27966074 DOI: 10.1007/s12035-016-0307-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/16/2016] [Indexed: 12/26/2022]
Abstract
Sepsis survivors frequently develop late cognitive impairment. Because little is known on the mechanisms of post-septic memory deficits, there are no current effective approaches to prevent or treat such symptoms. Here, we subjected mice to severe sepsis induced by cecal ligation and puncture (CLP) and evaluated the sepsis-surviving animals in the open field, novel object recognition (NOR), and step-down inhibitory avoidance (IA) task at different times after surgery. Post-septic mice (30 days post-surgery) failed in the NOR and IA tests but exhibited normal performance when re-evaluated 45 days after surgery. Cognitive impairment in post-septic mice was accompanied by reduced hippocampal levels of proteins involved in synaptic plasticity, including synaptophysin, cAMP response element-binding protein (CREB), CREB phosphorylated at serine residue 133 (CREBpSer133), and GluA1 phosphorylated at serine residue 845 (GluA1pSer845). Expression of tumor necrosis factor α (TNF-α) was increased and brain insulin signaling was disrupted, as indicated by increased hippocampal IRS-1 phosphorylation at serine 636 (IRS-1pSer636) and decreased phosphorylation of IRS-1 at tyrosine 465 (IRS-1pTyr465), in the hippocampus 30 days after CLP. Phosphorylation of Akt at serine 473 (AktpSer473) and of GSK3 at serine 9 (GSK3βpSer9) were also decreased in hippocampi of post-septic animals, further indicating that brain insulin signaling is disrupted by sepsis. We then treated post-septic mice with liraglutide, a GLP-1 receptor agonist with insulinotropic activity, or TDZD-8, a GSK3β inhibitor, which rescued NOR memory. In conclusion, these results establish that hippocampal inflammation and disrupted insulin signaling are induced by sepsis and are linked to late memory impairment in sepsis survivors.
Collapse
|
49
|
Huerta PT, Robbiati S, Huerta TS, Sabharwal A, Berlin R, Frankfurt M, Volpe BT. Preclinical models of overwhelming sepsis implicate the neural system that encodes contextual fear memory. Mol Med 2016; 22:789-799. [PMID: 27878209 PMCID: PMC5193462 DOI: 10.2119/molmed.2015.00201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/02/2016] [Indexed: 01/06/2023] Open
Abstract
Long-term sepsis survivors sustain cryptic brain injury that leads to cognitive impairment, emotional imbalance, and increased disability burden. Suitable animal models of sepsis, such as cecal ligation and puncture (CLP), have permitted the analysis of abnormal brain circuits that underlie post-septic behavioral phenotypes. For instance, we have previously shown that CLP-exposed mice exhibit impaired spatial memory together with depleted dendritic arbors and decreased spines in the apical dendrites of pyramidal neurons in the CA1 region of the hippocampus. Here we show that contextual fear conditioning, a form of associative memory for fear, is chronically disrupted in CLP mice when compared to SHAM-operated animals. We also find that the excitatory neurons in the basolateral nucleus of the amygdala (BLA) and the granule cells in the dentate gyrus (DG) display significantly fewer dendritic spines in the CLP group relative to the SHAM mice, although the dendritic arbors and gross morphology of the BLA and DG are comparable between the two groups. Moreover, the basal dendrites of CA1 pyramidal neurons are unaffected in the CLP mice. Taken together, our data indicate that the structural damage in the amygdalar-hippocampal network represents the neural substrate for impaired contextual fear memory in long-term sepsis survivors. Further, our data suggest that the brain injury caused by overwhelming sepsis alters the stability of the synaptic connections involved in associative fear. These results likely have implications for the emotional imbalance observed in human sepsis survivors.
Collapse
Affiliation(s)
- Patricio T Huerta
- Laboratory of Immune and Neural Networks, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
- Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, United States of America
| | - Sergio Robbiati
- Laboratory of Immune and Neural Networks, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Tomás S Huerta
- Laboratory of Immune and Neural Networks, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Anchal Sabharwal
- Laboratory of Immune and Neural Networks, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Roseann Berlin
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Maya Frankfurt
- Department of Science Education, Hofstra Northwell School of Medicine, Hempstead, NY, United States of America
| | - Bruce T Volpe
- Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, United States of America
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| |
Collapse
|
50
|
Savio LEB, Andrade MGJ, de Andrade Mello P, Santana PT, Moreira-Souza ACA, Kolling J, Longoni A, Feldbrügge L, Wu Y, Wyse ATS, Robson SC, Coutinho-Silva R. P2X7 Receptor Signaling Contributes to Sepsis-Associated Brain Dysfunction. Mol Neurobiol 2016; 54:6459-6470. [PMID: 27730511 DOI: 10.1007/s12035-016-0168-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022]
Abstract
Sepsis results in unfettered inflammation, tissue damage, and multiple organ failure. Diffuse brain dysfunction and neurological manifestations secondary to sepsis are termed sepsis-associated encephalopathy (SAE). Extracellular nucleotides, proinflammatory cytokines, and oxidative stress reactions are associated with delirium and brain injury, and might be linked to the pathophysiology of SAE. P2X7 receptor activation by extracellular ATP leads to maturation and release of IL-1β by immune cells, which stimulates the production of oxygen reactive species. Hence, we sought to investigate the role of purinergic signaling by P2X7 in a model of sepsis. We also determined how this process is regulated by the ectonucleotidase CD39, a scavenger of extracellular nucleotides. Wild type (WT), P2X7 receptor (P2X7-/-), or CD39 (CD39-/-) deficient mice underwent sham laparotomy or CLP induced by ligation and puncture of the cecum. We noted that genetic deletion of P2X7 receptor decreased markers of oxidative stress in murine brains 24 h after sepsis induction. The pharmacological inhibition or genetic ablation of the P2X7 receptor attenuated the IL-1β and IL-6 production in the brain from septic mice. Furthermore, our results suggest a crucial role for the enzyme CD39 in limiting P2X7 receptor proinflammatory responses since CD39-/- septic mice exhibited higher levels of IL-1β in the brain. We have also demonstrated that P2X7 receptor blockade diminished STAT3 activation in cerebral cortex and hippocampus from septic mice, indicating association of ATP-P2X7-STAT3 signaling axis in SAE during sepsis. Our findings suggest that P2X7 receptor might serve as a suitable therapeutic target to ameliorate brain damage in sepsis.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Mariana G Juste Andrade
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA.,Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Teixeira Santana
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Janaína Kolling
- Laboratory of Neuroprotection and Metabolic Diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Longoni
- Laboratory of Neuroprotection and Metabolic Diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Linda Feldbrügge
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Yan Wu
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simon C Robson
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|