1
|
Li Z, Peng X, Zhu X, Spanos M, Wu L. Traditional Chinese Medicine Monomers Are Potential Candidate Drugs for Cancer-Induced Cardiac Cachexia. Pharmacology 2024:1-13. [PMID: 39250889 DOI: 10.1159/000540915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Cardiovascular diseases are now the second leading cause of death among cancer patients. Heart injury in patients with terminal cancer can lead to significant deterioration of left ventricular morphology and function. This specific heart condition is known as cancer-induced cardiac cachexia (CICC) and is characterized by cardiac dysfunction and wasting. However, an effective pharmacological treatment for CICC remains elusive. SUMMARY The development and progression of CICC are closely related to pathophysiological processes, such as protein degradation, oxidative responses, and inflammation. Traditional Chinese medicine (TCM) monomers offer unique advantages in reversing heart injury, which is the end-stage manifestation of CICC except the regular treatment. This review outlines significant findings related to the impact of eleven TCM monomers, namely Astragaloside IV, Ginsenosides Rb1, Notoginsenoside R1, Salidroside, Tanshinone II A, Astragalus polysaccharides, Salvianolate, Salvianolic acids A and B, and Ginkgolide A and B, on improving heart injury. These TCM monomers are potential therapeutic agents for CICC, each with specific mechanisms that could potentially reverse the pathological processes associated with CICC. Advanced drug delivery strategies, such as nano-delivery systems and exosome-delivery systems, are discussed as targeted administration options for the therapy of CICC. KEY MESSAGE This review summarizes the pathological mechanisms of CICC and explores the pharmacological treatment of TCM monomers that promote anti-inflammation, antioxidation, and pro-survival. It also considers pharmaceutical strategies for administering TCM monomers, highlighting their potential as therapies for CICC.
Collapse
Affiliation(s)
- Zhizheng Li
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Peng
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Zhu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Clinic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lan Wu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
2
|
Hobai IA. MECHANISMS OF CARDIAC DYSFUNCTION IN SEPSIS. Shock 2023; 59:515-539. [PMID: 36155956 DOI: 10.1097/shk.0000000000001997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Studies in animal models of sepsis have elucidated an intricate network of signaling pathways that lead to the dysregulation of myocardial Ca 2+ handling and subsequently to a decrease in cardiac contractile force, in a sex- and model-dependent manner. After challenge with a lethal dose of LPS, male animals show a decrease in cellular Ca 2+ transients (ΔCa i ), with intact myofilament function, whereas female animals show myofilament dysfunction, with intact ΔCa i . Male mice challenged with a low, nonlethal dose of LPS also develop myofilament desensitization, with intact ΔCa i . In the cecal ligation and puncture (CLP) model, the causative mechanisms seem similar to those in the LPS model in male mice and are unknown in female subjects. ΔCa i decrease in male mice is primarily due to redox-dependent inhibition of sarco/endoplasmic reticulum Ca 2+ ATP-ase (SERCA). Reactive oxygen species (ROS) are overproduced by dysregulated mitochondria and the enzymes NADPH/NADH oxidase, cyclooxygenase, and xanthine oxidase. In addition to inhibiting SERCA, ROS amplify cardiomyocyte cytokine production and mitochondrial dysfunction, making the process self-propagating. In contrast, female animals may exhibit a natural redox resilience. Myofilament dysfunction is due to hyperphosphorylation of troponin I, troponin T cleavage by caspase-3, and overproduction of cGMP by NO-activated soluble guanylate cyclase. Depleted, dysfunctional, or uncoupled mitochondria likely synthesize less ATP in both sexes, but the role of energy deficit is not clear. NO produced by NO synthase (NOS)-3 and mitochondrial NOSs, protein kinases and phosphatases, the processes of autophagy and sarco/endoplasmic reticulum stress, and β-adrenergic insensitivity may also play currently uncertain roles.
Collapse
Affiliation(s)
- Ion A Hobai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
3
|
Barker G, Leeuwenburgh C, Brusko T, Moldawer L, Reddy ST, Guirgis FW. Lipid and Lipoprotein Dysregulation in Sepsis: Clinical and Mechanistic Insights into Chronic Critical Illness. J Clin Med 2021; 10:1693. [PMID: 33920038 PMCID: PMC8071007 DOI: 10.3390/jcm10081693] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to their well-characterized roles in metabolism, lipids and lipoproteins have pleiotropic effects on the innate immune system. These undergo clinically relevant alterations during sepsis and acute inflammatory responses. High-density lipoprotein (HDL) plays an important role in regulating the immune response by clearing bacterial toxins, supporting corticosteroid release, decreasing platelet aggregation, inhibiting endothelial cell apoptosis, reducing the monocyte inflammatory response, and inhibiting expression of endothelial cell adhesion molecules. It undergoes quantitative as well as qualitative changes which can be measured using the HDL inflammatory index (HII). Pro-inflammatory, or dysfunctional HDL (dysHDL) lacks the ability to perform these functions, and we have also found it to independently predict adverse outcomes and organ failure in sepsis. Another important class of lipids known as specialized pro-resolving mediators (SPMs) positively affect the escalation and resolution of inflammation in a temporal fashion. These undergo phenotypic changes in sepsis and differ significantly between survivors and non-survivors. Certain subsets of sepsis survivors go on to have perilous post-hospitalization courses where this inflammation continues in a low grade fashion. This is associated with immunosuppression in a syndrome of persistent inflammation, immunosuppression, and catabolism syndrome (PICS). The continuous release of tissue damage-related patterns and viral reactivation secondary to immunosuppression feed this chronic cycle of inflammation. Animal data indicate that dysregulation of endogenous lipids and SPMs play important roles in this process. Lipids and their associated pathways have been the target of many clinical trials in recent years which have not shown mortality benefit. These results are limited by patient heterogeneity and poor animal models. Considerations of sepsis phenotypes and novel biomarkers in future trials are important factors to be considered in future research. Further characterization of lipid dysregulation and chronic inflammation during sepsis will aid mortality risk stratification, detection of sepsis, and inform individualized pharmacologic therapies.
Collapse
Affiliation(s)
- Grant Barker
- Department of Emergency Medicine, College of Medicine-Jacksonville, University of Florida, 655 West 8th Street, Jacksonville, FL 32209, USA;
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL 32603, USA;
| | - Todd Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA;
| | - Lyle Moldawer
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Srinivasa T. Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Faheem W. Guirgis
- Department of Emergency Medicine, College of Medicine-Jacksonville, University of Florida, 655 West 8th Street, Jacksonville, FL 32209, USA;
| |
Collapse
|
4
|
Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock 2015; 43:3-15. [PMID: 25186837 DOI: 10.1097/shk.0000000000000261] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis-induced cardiomyopathy (SIC) develops as the result of myocardial calcium (Ca) dysregulation. Here we reviewed all published studies that quantified the dysfunction of intracellular Ca transporters and the myofilaments in animal models of SIC. Cardiomyocytes isolated from septic animals showed, invariably, a decreased twitch amplitude, which is frequently caused by a decrease in the amplitude of cellular Ca transients (ΔCai) and sarcoplasmic reticulum (SR) Ca load (CaSR). Underlying these deficits, the L-type Ca channel is downregulated, through mechanisms that may involve adrenomedullin-mediated redox signaling. The SR Ca pump is also inhibited, through oxidative modifications (sulfonylation) of one reactive thiol group (on Cys) and/or modulation of phospholamban. Diastolic Ca leak of ryanodine receptors is frequently increased. In contrast, Na/Ca exchange inhibition may play a partially compensatory role by increasing CaSR and ΔCai. The action potential is usually shortened. Myofilaments show a bidirectional regulation, with decreased Ca sensitivity in milder forms of disease (due to troponin I hyperphosphorylation) and an increase (redox mediated) in more severe forms. Most deficits occurred similarly in two different disease models, induced by either intraperitoneal administration of bacterial lipopolysaccharide or cecal ligation and puncture. In conclusion, substantial cumulative evidence implicates various Ca transporters and the myofilaments in SIC pathology. What is less clear, however, are the identity and interplay of the signaling pathways that are responsible for Ca transporters dysfunction. With few exceptions, all studies we found used solely male animals. Identifying sex differences in Ca dysregulation in SIC becomes, therefore, another priority.
Collapse
|
5
|
Pechánová O, Varga ZV, Cebová M, Giricz Z, Pacher P, Ferdinandy P. Cardiac NO signalling in the metabolic syndrome. Br J Pharmacol 2015; 172:1415-33. [PMID: 25297560 PMCID: PMC4369254 DOI: 10.1111/bph.12960] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/09/2014] [Accepted: 09/28/2014] [Indexed: 02/06/2023] Open
Abstract
It is well documented that metabolic syndrome (i.e. a group of risk factors, such as abdominal obesity, elevated blood pressure, elevated fasting plasma glucose, high serum triglycerides and low cholesterol level in high-density lipoprotein), which raises the risk for heart disease and diabetes, is associated with increased reactive oxygen and nitrogen species (ROS/RNS) generation. ROS/RNS can modulate cardiac NO signalling and trigger various adaptive changes in NOS and antioxidant enzyme expressions/activities. While initially these changes may represent protective mechanisms in metabolic syndrome, later with more prolonged oxidative, nitrosative and nitrative stress, these are often exhausted, eventually favouring myocardial RNS generation and decreased NO bioavailability. The increased oxidative and nitrative stress also impairs the NO-soluble guanylate cyclase (sGC) signalling pathway, limiting the ability of NO to exert its fundamental signalling roles in the heart. Enhanced ROS/RNS generation in the presence of risk factors also facilitates activation of redox-dependent transcriptional factors such as NF-κB, promoting myocardial expression of various pro-inflammatory mediators, and eventually the development of cardiac dysfunction and remodelling. While the dysregulation of NO signalling may interfere with the therapeutic efficacy of conventional drugs used in the management of metabolic syndrome, the modulation of NO signalling may also be responsible for the therapeutic benefits of already proven or recently developed treatment approaches, such as ACE inhibitors, certain β-blockers, and sGC activators. Better understanding of the above-mentioned pathological processes may ultimately lead to more successful therapeutic approaches to overcome metabolic syndrome and its pathological consequences in cardiac NO signalling.
Collapse
Affiliation(s)
- O Pechánová
- Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of SciencesBratislava, Slovak Republic
- Faculty of Natural Sciences, Comenius UniversityBratislava, Slovak Republic
| | - Z V Varga
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | - M Cebová
- Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of SciencesBratislava, Slovak Republic
| | - Z Giricz
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | - P Pacher
- Laboratory of Physiological Studies, National Institutes of Health/NIAAABethesda, MD, USA
| | - P Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
- Pharmahungary GroupSzeged, Hungary
| |
Collapse
|
6
|
Cámara-Lemarroy CR, Guzman-DE LA Garza FJ, Cordero-Perez P, Ibarra-Hernandez JM, Muñoz-Espinosa LE, Fernandez-Garza NE. Gemfibrozil attenuates the inflammatory response and protects rats from abdominal sepsis. Exp Ther Med 2015; 9:1018-1022. [PMID: 25667670 PMCID: PMC4316892 DOI: 10.3892/etm.2015.2190] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 11/28/2014] [Indexed: 01/05/2023] Open
Abstract
Sepsis is a serious condition characterized by an infectious process that induces a severe systemic inflammatory response. In this study, the effects of gemfibrozil (GFZ) on the inflammatory response associated with abdominal sepsis were investigated using a rat model of cecal-ligation and puncture (CLP). Male Wistar rats were randomly divided into three groups: Sham-operated group (sham), where laparotomy was performed, the intestines were manipulated, and the cecum was ligated but not punctured; control group, subjected to CLP; and GFZ group, which received GFZ prior to undergoing CLP. The groups were then subdivided into three different time-points: 2, 4 and 24 h, indicating the time at which blood samples were obtained for analysis. Serum concentrations of tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), malondialdehyde (MDA), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) were determined. The LDH, AST and ALT values were significantly elevated following CLP compared with those in the sham group, and GFZ treatment was able to reduce these elevations. GFZ also reduced the sepsis-induced elevations of TNF-α and IL-1. In conclusion, GFZ treatment was able to attenuate the inflammatory response associated with CLP-induced sepsis, by diminishing the release of inflammatory cytokines, thereby reducing tissue injury and oxidative stress.
Collapse
Affiliation(s)
- Carlos R Cámara-Lemarroy
- Department of Internal Medicine, University Hospital 'José Eleuterio González', Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | | | - Paula Cordero-Perez
- Liver Unit, Department of Internal Medicine, University Hospital 'José Eleuterio González', Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Juan M Ibarra-Hernandez
- Department of Physiology, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Linda E Muñoz-Espinosa
- Liver Unit, Department of Internal Medicine, University Hospital 'José Eleuterio González', Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Nancy E Fernandez-Garza
- Department of Physiology, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| |
Collapse
|
7
|
Hobai IA, Buys ES, Morse JC, Edgecomb J, Weiss EH, Armoundas AA, Hou X, Khandelwal AR, Siwik DA, Brouckaert P, Cohen RA, Colucci WS. SERCA Cys674 sulphonylation and inhibition of L-type Ca2+ influx contribute to cardiac dysfunction in endotoxemic mice, independent of cGMP synthesis. Am J Physiol Heart Circ Physiol 2013; 305:H1189-200. [PMID: 23934853 DOI: 10.1152/ajpheart.00392.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The goal of this study was to identify the cellular mechanisms responsible for cardiac dysfunction in endotoxemic mice. We aimed to differentiate the roles of cGMP [produced by soluble guanylyl cyclase (sGC)] versus oxidative posttranslational modifications of Ca(2+) transporters. C57BL/6 mice [wild-type (WT) mice] were administered lipopolysaccharide (LPS; 25 μg/g ip) and euthanized 12 h later. Cardiomyocyte sarcomere shortening and Ca(2+) transients (ΔCai) were depressed in LPS-challenged mice versus baseline. The time constant of Ca(2+) decay (τCa) was prolonged, and sarcoplasmic reticulum Ca(2+) load (CaSR) was depressed in LPS-challenged mice (vs. baseline), indicating decreased activity of sarco(endo)plasmic Ca(2+)-ATPase (SERCA). L-type Ca(2+) channel current (ICa,L) was also decreased after LPS challenge, whereas Na(+)/Ca(2+) exchange activity, ryanodine receptors leak flux, or myofilament sensitivity for Ca(2+) were unchanged. All Ca(2+)-handling abnormalities induced by LPS (the decrease in sarcomere shortening, ΔCai, CaSR, ICa,L, and τCa prolongation) were more pronounced in mice deficient in the sGC main isoform (sGCα1(-/-) mice) versus WT mice. LPS did not alter the protein expression of SERCA and phospholamban in either genotype. After LPS, phospholamban phosphorylation at Ser(16) and Thr(17) was unchanged in WT mice and was increased in sGCα1(-/-) mice. LPS caused sulphonylation of SERCA Cys(674) (as measured immunohistochemically and supported by iodoacetamide labeling), which was greater in sGCα1(-/-) versus WT mice. Taken together, these results suggest that cardiac Ca(2+) dysregulation in endotoxemic mice is mediated by a decrease in L-type Ca(2+) channel function and oxidative posttranslational modifications of SERCA Cys(674), with the latter (at least) being opposed by sGC-released cGMP.
Collapse
Affiliation(s)
- Ion A Hobai
- Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mandard S, Patsouris D. Nuclear control of the inflammatory response in mammals by peroxisome proliferator-activated receptors. PPAR Res 2013; 2013:613864. [PMID: 23577023 PMCID: PMC3614066 DOI: 10.1155/2013/613864] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/14/2013] [Accepted: 01/29/2013] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that play pivotal roles in the regulation of a very large number of biological processes including inflammation. Using specific examples, this paper focuses on the interplay between PPARs and innate immunity/inflammation and, when possible, compares it among species. We focus on recent discoveries establishing how inflammation and PPARs interact in the context of obesity-induced inflammation and type 2 diabetes, mostly in mouse and humans. We illustrate that PPAR γ ability to alleviate obesity-associated inflammation raises an interesting pharmacologic potential. In the light of recent findings, the protective role of PPAR α and PPAR β / δ against the hepatic inflammatory response is also addressed. While PPARs agonists are well-established agents that can treat numerous inflammatory issues in rodents and humans, surprisingly very little has been described in other species. We therefore also review the implication of PPARs in inflammatory bowel disease; acute-phase response; and central, cardiac, and endothelial inflammation and compare it along different species (mainly mouse, rat, human, and pig). In the light of the data available in the literature, there is no doubt that more studies concerning the impact of PPAR ligands in livestock should be undertaken because it may finally raise unconsidered health and sanitary benefits.
Collapse
Affiliation(s)
- Stéphane Mandard
- Centre de Recherche INSERM-UMR866 “Lipides, Nutrition, Cancer” Faculté de Médecine, Université de Bourgogne 7, Boulevard Jeanne d'Arc, 21079 Dijon Cedex, France
| | - David Patsouris
- Laboratoire CarMeN, UMR INSERM U1060/INRA 1235, Université Lyon 1, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921 Oullins, France
- Department of Chemical Physiology, The Scripps Research Institute, MB-24, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Kalogeropoulos AP, Georgiopoulou VV, Butler J. From Risk Factors to Structural Heart Disease: The Role of Inflammation. Heart Fail Clin 2012; 8:113-23. [DOI: 10.1016/j.hfc.2011.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
|
11
|
Wang YY, Li HM, Wang HD, Peng XM, Wang YP, Lu DX, Qi RB, Hu CF, Jiang JW. Pretreatment with berberine and yohimbine protects against LPS-induced myocardial dysfunction via inhibition of cardiac I-[kappa]B[alpha] phosphorylation and apoptosis in mice. Shock 2011; 35:322-8. [PMID: 20926983 DOI: 10.1097/shk.0b013e3181facf73] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myocardial dysfunction is a common complication in sepsis and significantly contributes to the mortality of patients with septic shock. Our previous study demonstrated that pretreatment with berberine (Ber) protected against the lethality induced by LPS, which was enhanced by yohimbine, an [alpha]2-adrenergic receptor antagonist, and Ber combined with yohimbine also improved survival in mice subjected to cecal ligation and puncture. However, no studies have examined whether Ber and yohimbine reduce LPS-induced myocardial dysfunction. Here, we report that pretreatment with Ber, Ber combined with yohimbine, or yohimbine significantly reduced LPS-induced cardiac dysfunction in mice. LPS-provoked cardiac apoptosis, I-[kappa]B[alpha] phosphorylation, IL-1[beta], TNF-[alpha], and NO production were attenuated by pretreatment with Ber and/or yohimbine, whereas cardiac Toll-like receptor 4 mRNA expression, malondialdehyde content, and superoxide dismutase activity were not affected. These data demonstrate for the first time that pretreatment with Ber and/or yohimbine prevents LPS-induced myocardial dysfunction in mice through inhibiting myocardial apoptosis, cardiac I-[kappa]B[alpha] phosphorylation, and TNF-[alpha], IL-1[beta], and NO production, suggesting that activation of [alpha]2-adrenergic receptor in vivo may be responsible at least in part for LPS-induced cardiac dysfunction, and Ber in combination with yohimbine may be a potential agent for preventing cardiac dysfunction during sepsis.
Collapse
Affiliation(s)
- Yi-yang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ceylan-Isik AF, Zhao P, Zhang B, Xiao X, Su G, Ren J. Cardiac overexpression of metallothionein rescues cardiac contractile dysfunction and endoplasmic reticulum stress but not autophagy in sepsis. J Mol Cell Cardiol 2009; 48:367-78. [PMID: 19914257 DOI: 10.1016/j.yjmcc.2009.11.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 10/21/2009] [Accepted: 11/06/2009] [Indexed: 01/01/2023]
Abstract
Sepsis is characterized by systematic inflammation where oxidative damage plays a key role in organ failure. This study was designed to examine the impact of the antioxidant metallothionein (MT) on lipopolysaccharide (LPS)-induced cardiac contractile and intracellular Ca(2+) dysfunction, oxidative stress, endoplasmic reticulum (ER) stress and autophagy. Mechanical and intracellular Ca(2+) properties were examined in hearts from FVB and cardiac-specific MT overexpression mice treated with LPS. Oxidative stress, activation of mitogen-activated protein kinase pathways (ERK, JNK and p38), ER stress, autophagy and inflammatory markers iNOS and TNFalpha were evaluated. Our data revealed enlarged end systolic diameter, decreased fractional shortening, myocyte peak shortening and maximal velocity of shortening/relengthening as well as prolonged duration of relengthening in LPS-treated FVB mice associated with reduced intracellular Ca(2+) release and decay. LPS treatment promoted oxidative stress (reduced glutathione/glutathione disulfide ratio and ROS generation). Western blot analysis revealed greater iNOS and TNFalpha, activation of ERK, JNK and p38, upregulation of ER stress markers GRP78, Gadd153, PERK and IRE1alpha, as well as the autophagy markers Beclin-1, LCB3 and Atg7 in LPS-treated mouse hearts without any change in total ERK, JNK and p38. Interestingly, these LPS-induced changes in echocardiographic, cardiomyocyte mechanical and intracellular Ca(2+) properties, ROS, stress signaling and ER stress (but not autophagy, iNOS and TNFalpha) were ablated by MT. Antioxidant N-acetylcysteine and the ER stress inhibitor tauroursodeoxycholic acid reversed LPS-elicited depression in cardiomyocyte contractile function. LPS activated AMPK and its downstream signaling ACC in conjunction with an elevated AMP/ATP ratio, which was unaffected by MT. Taken together, our data favor a beneficial effect of MT in the management of cardiac dysfunction in sepsis.
Collapse
Affiliation(s)
- Asli F Ceylan-Isik
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
13
|
Zhao P, Turdi S, Dong F, Xiao X, Su G, Zhu X, Scott GI, Ren J. Cardiac-specific overexpression of insulin-like growth factor I (IGF-1) rescues lipopolysaccharide-induced cardiac dysfunction and activation of stress signaling in murine cardiomyocytes. Shock 2009; 32:100-7. [PMID: 18948844 PMCID: PMC2698965 DOI: 10.1097/shk.0b013e31818ec609] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, plays a key role in cardiac dysfunction in sepsis. Low circulating levels of insulin-like growth factor 1 (IGF-1) are found in sepsis, although the influence of IGF-1 on septic cardiac defect is unknown. This study was designed to examine the impact of IGF-1 on LPS-induced cardiac contractile and intracellular Ca2+ dysfunction, activation of stress signal and endoplasmic reticulum (ER) stress. Mechanical and intracellular Ca2+ properties were examined in cardiomyocytes from Fast Violet B and cardiac-specific IGF-1 overexpression mice treated with or without LPS (4 mg kg(-1), 6 h). Reactive oxygen species (ROS), protein carbonyl formation and apoptosis were measured. Activation of mitogen-activated protein kinase pathways (p38, c-jun N-terminal kinase [JNK] and extracellular signal-related kinase [ERK]), ER stress and apoptotic markers were evaluated using Western blot analysis. Our results revealed decreased peak shortening and maximal velocity of shortening/relengthening and prolonged duration of relengthening in LPS-treated Fast Violet B cardiomyocytes associated with reduced intracellular Ca2+ decay. Accumulation of ROS protein carbonyl and apoptosis were elevated after LPS treatment. Western blot analysis revealed activated p38 and JNK, up-regulated Bax, and the ER stress markers GRP78 and Gadd153 in LPS-treated mouse hearts without any change in ERK and Bcl-2. Total protein expression of p38, JNK, and ERK was unaffected by either LPS or IGF-1. Interestingly, these LPS-induced changes in mechanical and intracellular Ca2+ properties, ROS, protein carbonyl, apoptosis, stress signal activation, and ER stress markers were effectively ablated by IGF-1. In vitro LPS exposure (1 microg mL(-1)) produced cardiomyocyte mechanical dysfunction reminiscent of the in vivo setting, which was alleviated by exogenous IGF-1 (50 nM). These data collectively suggested a beneficial of IGF-1 in the management of cardiac dysfunction under sepsis.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, U.S.A
| | - Subat Turdi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, U.S.A
| | - Feng Dong
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, U.S.A
| | - Xiaoyan Xiao
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
| | - Guohai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, People’s Republic of China
| | - Xinglei Zhu
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China
| | - Glenda I. Scott
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, U.S.A
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, U.S.A
| |
Collapse
|
14
|
Differential protection against oxidative stress and nitric oxide overproduction in cardiovascular and pulmonary systems by propofol during endotoxemia. J Biomed Sci 2009; 16:8. [PMID: 19272174 PMCID: PMC2653513 DOI: 10.1186/1423-0127-16-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/15/2009] [Indexed: 12/16/2022] Open
Abstract
Background Both overproduction of nitric oxide (NO) and oxidative injury of cardiovascular and pulmonary systems contribute to fatal cardiovascular depression during endotoxemia. We investigated in the present study the relative contribution of oxidative stress and NO to cardiovascular depression during different stages of endotoxemia, and delineated their roles in cardiovascular protective effects of a commonly used anesthetic propofol during endotoxemia. Methods Experimental endotoxemia was induced by systemic injection of E. coli lipopolysaccharide (LPS, 15 mg/kg) to Sprague-Dawley rats that were maintained under propofol (15 or 30 mg/kg/h, i.v.) anesthesia. Mean systemic arterial pressure (MSAP) and heart rate (HR) were monitored for 6 h after the endotoxin. Tissue level of NO was measured by chemical reduction-linked chemiluminescence and oxidative burst activity was determined using dihydroethidium method. Expression of NO synthase (NOS) was determined by immunoblotting. The Scheffé multiple range test was used for post hoc statistical analysis. Results Systemic injection of LPS (15 mg/kg) induced biphasic decreases in MSAP and HR. In the heart, lung and aorta, an abrupt increase in lipid peroxidation, our experimental index of oxidative tissue injury, was detected in early stage and sustained during late stage cardiovascular depression. LPS injection, on the other hand, induced a gradual increase in tissue nitrite and nitrate levels in the same organs that peaked during late stage endotoxemia. Propofol infusion (15 or 30 mg/kg/h, i.v.) significantly attenuated lipid peroxidation in the heart, lung and aorta during early and late stage endotoxemia. High dose (30 mg/kg/h, i.v.) propofol also reversed the LPS-induced inducible NO synthase (iNOS) upregulation and NO production in the aorta, alongside a significant amelioration of late stage cardiovascular depression and increase in survival time during endotoxemia. Conclusion Together these results suggest that oxidative injury and NO may play a differential role in LPS-induced cardiovascular depression. Oxidative tissue injury is associated with both early and late stage; whereas NO is engaged primarily in late stage cardiovascular depression. Moreover, propofol anesthesia may protect against fatal cardiovascular depression during endotoxemia by attenuating the late stage NO surge in the aorta, possibly via inhibition of iNOS upregulation by the endotoxin.
Collapse
|
15
|
Bibliography. Current world literature. Lipid metabolism. Curr Opin Lipidol 2008; 19:314-21. [PMID: 18460925 DOI: 10.1097/mol.0b013e328303e27e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Mebazaa A. Are platelets a 'forgotten' source of sepsis-induced myocardial depressing factor(s)? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:110. [PMID: 18254931 PMCID: PMC2374606 DOI: 10.1186/cc6220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanism of sepsis-induced cardiac failure was initially thought to be related to the presence of 'myocardial depressant' substances that directly alter heart function. Exosomes released by platelets and identified in the plasma are suggested to, at least partially, explain myocardial depression in sepsis. This hypothesis needs to be evaluated by clinical studies.
Collapse
|
17
|
Spray DC, Tanowitz HB. Pathology of mechanical and gap junctional co-coupling at the intercalated disc: Is sepsis a junctionopathy? Crit Care Med 2007; 35:2231-2. [PMID: 17713381 DOI: 10.1097/01.ccm.0000281460.33497.56] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
|