1
|
Adhikari S, Marwah V, Choudhary R, Pandey I, Kumar TA, Malik V, Pemmaraju A, Vasudevan S, Kapoor S. Intrapleural Fibrinolysis with Urokinase versus Alteplase in Complicated Pleural Effusions and Empyema: A Prospective Randomized Controlled Trial. Tuberc Respir Dis (Seoul) 2024; 87:378-385. [PMID: 38449316 PMCID: PMC11222100 DOI: 10.4046/trd.2022.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/26/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Intrapleural fibrinolytic therapy (IPFT) has been used as an effective agent since 1949 for managing complicated pleural effusion and empyema. Several agents, such as streptokinase, urokinase (UK), and recombinant tissue plasminogen activator (rt-PA), have been found to be effective with variable effectiveness. However, a head-tohead controlled trial comparing the efficacy of the most frequently used agents, i.e., UK and rt-PA (alteplase) for managing complicated pleural effusion has rarely been reported. METHODS A total of 50 patients were randomized in two intervention groups, i.e., UK and rt-PA. The dose of rt-PA was 10 mg, and that of UK was 1.0 lac units. UK was given thrice daily for 2 days, followed by clamping to allow the retainment of drugs in the pleural space for 2 hours. rt-PA was instilled into the pleural space twice daily for 2 days, and intercostal drainage was clamped for 1 hour. RESULTS A total of 50 patients were enrolled into the study, of which 84% (n=42) were males and 16% (n=8) were females. Among them, 30 (60%) patients received UK, and 20 (40%) patients received alteplase as IPFT agents. The percentage of mean± standard deviation changes in pleural opacity was -33.0%±9.9% in the UK group and -41.0%±14.9% in the alteplase group, respectively (p=0.014). Pain was the most common adverse side effect, occurring in 60% (n=18) of the patients in the UK group and in 40% (n=8) of the patients in the alteplase group (p=0.24), while fever was the second most common side effect. Patients who reported early (within 6 weeks of onset of symptoms) showed a greater response than those who reported late for the intervention. CONCLUSION IPFT is a safe and effective option for managing complicated pleural effusion or empyema, and newer agents, such as alteplase, have greater efficacy and a similar adverse effect profile when compared with conventional agents, such as UK.
Collapse
Affiliation(s)
- Sudipt Adhikari
- Department of Pulmonary, Critical Care and Sleep Medicine, Army Institute of Cardiothoracic Sciences (AICTS), Pune, India
| | - Vikas Marwah
- Department of Pulmonary, Critical Care and Sleep Medicine, Army Institute of Cardiothoracic Sciences (AICTS), Pune, India
| | - Robin Choudhary
- Department of Pulmonary, Critical Care and Sleep Medicine, Army Institute of Cardiothoracic Sciences (AICTS), Pune, India
| | - Indermani Pandey
- Department of Pulmonary, Critical Care and Sleep Medicine, Army Institute of Cardiothoracic Sciences (AICTS), Pune, India
| | - Tentu Ajai Kumar
- Department of Pulmonary, Critical Care and Sleep Medicine, Army Institute of Cardiothoracic Sciences (AICTS), Pune, India
| | - Virender Malik
- Department of Radiology, Army Institute of Cardiothoracic Sciences (AICTS), Pune, India
| | - Arpita Pemmaraju
- Department of Pathology, Army Institute of Cardiothoracic Sciences (AICTS), Pune, India
| | - Shrinath Vasudevan
- Department of Pulmonary, Critical Care and Sleep Medicine, Army Institute of Cardiothoracic Sciences (AICTS), Pune, India
| | - Suraj Kapoor
- Department of Community Medicine, Armed Forces Medical College (AFMC), Pune, India
| |
Collapse
|
2
|
Sridharan K, Sivaramakrishnan G. Intrapleural Thrombolytics for Parapneumonic Effusion: A Network Metaanalysis. Curr Rev Clin Exp Pharmacol 2024; 19:204-212. [PMID: 36173062 DOI: 10.2174/2772432817666220928123845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Intrapleural thrombolytics have been trialed for facilitating pleural fluid drainage in patients with complicated parapneumonic effusion. The present study is a network metaanalysis of randomized clinical trials (RCTs) that have evaluated these thrombolytics. METHODS Electronic databases (Medline, Cochrane CENTRAL, and Google Scholar) were searched for appropriate RCTs evaluating the therapeutic effect of thrombolytics in patients with complicated parapneumonic effusion. Mortality, the proportion of patients referred for surgical intervention, and serious adverse events were the outcome measures. Random-effects model was used for generating direct and mixed treatment comparison pooled estimates. Grading of the evidence for key comparisons was carried out. Odds ratio with 95% confidence intervals was used to represent the pooled estimates. RESULTS Seventy-six studies were retrieved with the search strategy, of which 16 were included. No significant differences were observed in mortality. Compared to normal saline, significantly less proportion of patients was referred for surgical intervention with streptokinase (0.4, 0.2 to 0.8), urokinase (0.4, 0.2 to 0.8), alteplase (0.3, 0.1 to 0.7), and alteplase + DNase (0.2, 0.1 to 0.7). DNase alone increased the risk of referral to surgical intervention (3.4, 1.5 to 7.6). Only streptokinase was observed with an increased risk of serious adverse events compared to normal saline (2.8, 1.1 to 7.1) and alteplase (6.7, 1.1 to 39.9). Moderate quality of evidence was observed for streptokinase with normal saline for the proportion of patients referred for surgical intervention, while either low or very low quality strength was observed for all other comparisons. CONCLUSION Streptokinase, urokinase, alteplase, and alteplase + DNase were observed in patients referred for surgical interventions when used intrapleural in patients with parapneumonic effusion. Alteplase + DNase is likely to outperform others as it was observed with the least risk of patients referred for surgical interventions. Until additional data emerges that changes the pooled estimates, thrombolytics other than streptokinase are preferred due to the increased risk of serious adverse events.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology & Therapeutics, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | | |
Collapse
|
3
|
Tucker TA, Idell S. The Contribution of the Urokinase Plasminogen Activator and the Urokinase Receptor to Pleural and Parenchymal Lung Injury and Repair: A Narrative Review. Int J Mol Sci 2021; 22:ijms22031437. [PMID: 33535429 PMCID: PMC7867090 DOI: 10.3390/ijms22031437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
Pleural and parenchymal lung injury have long been characterized by acute inflammation and pathologic tissue reorganization, when severe. Although transitional matrix deposition is a normal part of the injury response, unresolved fibrin deposition can lead to pleural loculation and scarification of affected areas. Within this review, we present a brief discussion of the fibrinolytic pathway, its components, and their contribution to injury progression. We review how local derangements of fibrinolysis, resulting from increased coagulation and reduced plasminogen activator activity, promote extravascular fibrin deposition. Further, we describe how pleural mesothelial cells contribute to lung scarring via the acquisition of a profibrotic phenotype. We also discuss soluble uPAR, a recently identified biomarker of pleural injury, and its diagnostic value in the grading of pleural effusions. Finally, we provide an in-depth discussion on the clinical importance of single-chain urokinase plasminogen activator (uPA) for the treatment of loculated pleural collections.
Collapse
Affiliation(s)
| | - Steven Idell
- Correspondence: ; Tel.: +1-903-877-7556; Fax: +1-903-877-7316
| |
Collapse
|
4
|
Altmann ES, Crossingham I, Wilson S, Davies HR. Intra-pleural fibrinolytic therapy versus placebo, or a different fibrinolytic agent, in the treatment of adult parapneumonic effusions and empyema. Cochrane Database Syst Rev 2019; 2019:CD002312. [PMID: 31684683 PMCID: PMC6819355 DOI: 10.1002/14651858.cd002312.pub4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Pleural infection, including parapneumonic effusions and thoracic empyema, may complicate lower respiratory tract infections. Standard treatment of these collections in adults involves antibiotic therapy, effective drainage of infected fluid and surgical intervention if conservative management fails. Intrapleural fibrinolytic agents such as streptokinase and alteplase have been hypothesised to improve fluid drainage in complicated parapneumonic effusions and empyema and therefore improve treatment outcomes and prevent the need for thoracic surgical intervention. Intrapleural fibrinolytic agents have been used in combination with DNase, but this is beyond the scope of this review. OBJECTIVES To assess the benefits and harms of adding intrapleural fibrinolytic therapy to standard conservative therapy (intercostal catheter drainage and antibiotic therapy) in the treatment of complicated parapneumonic effusions and empyema. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and Embase, ClinicalTrials.gov and the World Health Organization (WHO) trials portal. We contacted trial authors for further information and requested details regarding the possibility of unpublished trials. The most recent search was conducted on 28 August 2019. SELECTION CRITERIA Parallel-group randomised controlled trials (RCTs) in adult patients with post-pneumonic empyema or complicated parapneumonic effusions (excluding tuberculous effusions) who had not had prior surgical intervention or trauma comparing an intrapleural fibrinolytic agent (streptokinase, alteplase or urokinase) versus placebo or a comparison of two fibrinolytic agents. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data. We contacted study authors for further information. We used odds ratios (OR) for dichotomous data and reported 95% confidence intervals (CIs). We used Cochrane's standard methodological procedures of meta-analysis. We applied the GRADE approach to summarise results and to assess the overall certainty of evidence. MAIN RESULTS We included in this review a total of 12 RCTs. Ten studies assessed fibrinolytic agents versus placebo (993 participants); one study compared streptokinase with urokinase (50 participants); and one compared alteplase versus urokinase (99 participants). The primary outcomes were death, requirement for surgical intervention, overall treatment failure and serious adverse effects. All studies were in the inpatient setting. Outcomes were measured at varying time points from hospital discharge to three months. Seven trials were at low or unclear risk of bias and two at high risk of bias due to inadequate randomisation and inappropriate study design respectively. We found no evidence of difference in overall mortality with fibrinolytic versus placebo (OR 1.16, 95% CI 0.71 to 1.91; 8 studies, 867 participants; I² = 0%; moderate certainty of evidence). We found evidence of a reduction in surgical intervention with fibrinolysis in the same studies (OR 0.37, 95% CI 0.21 to 0.68; 8 studies, 897 participants; I² = 51%; low certainty of evidence); and overall treatment failure (OR 0.16, 95% CI 0.05 to 0.58; 7 studies, 769 participants; I² = 88%; very low certainty of evidence, with evidence of significant heterogeneity). We found no clear evidence of an increase in adverse effects with intrapleural fibrinolysis, although this cannot be excluded (OR 1.28, 95% CI 0.36 to 4.57; low certainty of evidence). In a sensitivity analysis, the reduction in referrals for surgery and overall treatment failure with fibrinolysis disappeared when the analysis was confined to studies at low or unclear risk of bias. In a moderate-risk population (baseline 14% risk of death, 20% risk of surgery, 27% risk of treatment failure), intra-pleural fibrinolysis leads to 19 more deaths (36 fewer to 59 more), 115 fewer surgical interventions (150 fewer to 55 fewer) and 214 fewer overall treatment failures (252 fewer to 93 fewer) per 1000 people. A single study of streptokinase versus urokinase found no clear difference between the treatments for requirement for surgery (OR 1.00, 95% CI 0.13 to 7.72; 50 participants; low-certainty evidence). A single study of alteplase versus urokinase showed no clear difference in requirement for surgery (OR alteplase versus urokinase 0.46, 95% CI 0.04 to 5.24) but an increased rate of adverse effects, primarily bleeding, with alteplase (OR 5.61, 95% CI 1.16 to 27.11; 99 participants; low-certainty evidence). This translated into 154 (6 to 499 more) serious adverse events with alteplase compared with urokinase per 1000 people treated. AUTHORS' CONCLUSIONS In patients with complicated infective pleural effusion or empyema, intrapleural fibrinolytic therapy was associated with a reduction in the requirement for surgical intervention and overall treatment failure but with no evidence of change in mortality. Discordance between the negative largest trial of this therapy and other studies is of concern, however, as is an absence of significant effect when analysing low risk of bias trials only. The reasons for this difference are uncertain but may include publication bias. Intrapleural fibrinolytics may increase the rate of serious adverse events, but the evidence is insufficient to confirm or exclude this possibility.
Collapse
Affiliation(s)
- Emile S Altmann
- John Hunter HospitalDepartment of General MedicineNew Lambton HeightsNew South WalesAustralia
| | | | - Stephen Wilson
- East Lancashire Hospitals NHS TrustBlackburnLancashireUK
| | - Huw R Davies
- Southern Adelaide Local Health Network (SALHN)Respiratory and Sleep ServicesBedford ParkSouth AustraliaAustralia5041
| | | |
Collapse
|
5
|
Beckert L, Brockway B, Simpson G, Southcott AM, Lee YG, Rahman N, Light RW, Shoemaker S, Gillies J, Komissarov AA, Florova G, Ochran T, Bradley W, Ndetan H, Singh KP, Sarva K, Idell S. Phase 1 trial of intrapleural LTI-01; single chain urokinase in complicated parapneumonic effusions or empyema. JCI Insight 2019; 5:127470. [PMID: 30998508 PMCID: PMC6542611 DOI: 10.1172/jci.insight.127470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/12/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Current dosing of intrapleural fibrinolytic therapy (IPFT) in adults with complicated parapneumonic effusion (CPE) / empyema is empiric, as dose-escalation trials have not previously been conducted. We hypothesized that LTI-01 (scuPA), which is relatively resistant to PA inhibitor-1 (PAI-1), would be well-tolerated. METHODS This was an open-label, dose-escalation trial of LTI-01 IPFT at 50,000-800,000 IU daily for up to 3 days in adults with loculated CPE/empyema and failed pleural drainage. The primary objective was to evaluate safety and tolerability, and secondary objectives included assessments of processing and bioactivity of scuPA in blood and pleural fluid (PF), and early efficacy. RESULTS LTI-01 was well tolerated with no bleeding, treatment-emergent adverse events or surgical referrals (n=14 subjects). uPA antigen increased in PFs at 3 hours after LTI-01 (p<0.01) but not in plasma. PF saturated active PAI-1, generated PAI-1-resistant bioactive complexes, increased PA and fibrinolytic activities and D-dimers. There was no systemic fibrinogenolysis, nor increments in plasma D-dimer. Decreased pleural opacities occurred in all but one subject. Both subjects receiving 800,000 IU required two doses to relieve pleural sepsis, with two other subjects similarly responding at lower doses. CONCLUSION LTI-01 IPFT was well-tolerated at these doses with no safety concerns. Bioactivity of LTI-01 IPFT was confirmed, limited to PFs where its processing simulated that previously reported in preclinical studies. Preliminary efficacy signals including reduction of pleural opacity were observed.
Collapse
Affiliation(s)
| | - Ben Brockway
- University of Otago Dunedin School of Medicine, Dunedin, New Zealand
| | | | | | - Y.C. Gary Lee
- Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Najib Rahman
- Nuffield Department of Medicine, University of Oxford, and Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Richard W. Light
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - John Gillies
- Clinical Network Services (CNS), Auckland, New Zealand
| | | | | | | | | | - Harrison Ndetan
- Department of Epidemiology and Biostatistics, School of Community and Rural Health, The University of Texas Health Science Center at Tyler (UTHSCT), Tyler, Texas, USA
| | - Karan P. Singh
- Department of Epidemiology and Biostatistics, School of Community and Rural Health, The University of Texas Health Science Center at Tyler (UTHSCT), Tyler, Texas, USA
| | | | | |
Collapse
|
6
|
Surasarang SH, Sahakijpijarn S, Florova G, Komissarov AA, Nelson CL, Perenlei E, Fukuda S, Wolfson MR, Shaffer TH, Idell S, Williams RO. Nebulization of Single-Chain Tissue-Type and Single-Chain Urokinase Plasminogen Activator for Treatment of Inhalational Smoke-Induced Acute Lung Injury. J Drug Deliv Sci Technol 2018; 48:19-27. [PMID: 30123328 DOI: 10.1016/j.jddst.2018.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Single-chain tissue-type plasminogen activator (sctPA) and single-chain urokinase plasminogen activator (scuPA) have attracted interest as enzymes for the treatment of inhalational smoke-induced acute lung injury (ISALI). In this study, the pulmonary delivery of commercial human sctPA and lyophilized scuPA and their reconstituted solution forms were demonstrated using vibrating mesh nebulizers (Aeroneb® Pro (active) and EZ Breathe® (passive)). Both the Aeroneb® Pro and EZ Breathe® vibrating mesh nebulizers produced atomized droplets of protein solution of similar size of less than about 5 μm, which is appropriate for pulmonary delivery. Enzymatic activities of scuPA and of sctPA were determined after nebulization and both remained stable (88.0% and 93.9%). Additionally, the enzymatic activities of sctPA and tcuPA were not significantly affected by excipients, lyophilization or reconstitution conditions. The results of these studies support further development of inhaled formulations of fibrinolysins for delivery to the lungs following smoke-induced acute pulmonary injury.
Collapse
Affiliation(s)
- Soraya Hengsawas Surasarang
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Sawittree Sahakijpijarn
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Galina Florova
- The University of Texas Health Science Center at Tyler, School of Medical Biological Sciences, Tyler, TX, USA
| | - Andrey A Komissarov
- The University of Texas Health Science Center at Tyler, School of Medical Biological Sciences, Tyler, TX, USA
| | - Christina L Nelson
- The University of Texas Medical Branch, Translational Intensive Care Unit, Galveston, TX, USA
| | - Enkhbaatar Perenlei
- The University of Texas Medical Branch, Translational Intensive Care Unit, Galveston, TX, USA
| | - Satoshi Fukuda
- The University of Texas Medical Branch, Translational Intensive Care Unit, Galveston, TX, USA
| | - Marla R Wolfson
- Lewis Katz School of Medicine at Temple University, Departments of Physiology, Thoracic Medicine and Surgery, Pediatrics, Philadelphia, PA, USA
| | - Thomas H Shaffer
- Lewis Katz School of Medicine at Temple University, Departments of Physiology, Thoracic Medicine and Surgery, Pediatrics, Philadelphia, PA, USA.,Jefferson Medical College/Thomas Jefferson University, Department of Pediatrics, Philadelphia, PA, USA
| | - Steven Idell
- The University of Texas Health Science Center at Tyler, School of Medical Biological Sciences, Tyler, TX, USA
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| |
Collapse
|
7
|
Komissarov AA, Rahman N, Lee YCG, Florova G, Shetty S, Idell R, Ikebe M, Das K, Tucker TA, Idell S. Fibrin turnover and pleural organization: bench to bedside. Am J Physiol Lung Cell Mol Physiol 2018; 314:L757-L768. [PMID: 29345198 DOI: 10.1152/ajplung.00501.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shed new light on the role of the fibrinolytic system in the pathogenesis of pleural organization, including the mechanisms by which the system regulates mesenchymal transition of mesothelial cells and how that process affects outcomes of pleural injury. The key contribution of plasminogen activator inhibitor-1 to the outcomes of pleural injury is now better understood as is its role in the regulation of intrapleural fibrinolytic therapy. In addition, the mechanisms by which fibrinolysins are processed after intrapleural administration have now been elucidated, informing new candidate diagnostics and therapeutics for pleural loculation and failed drainage. The emergence of new potential interventional targets offers the potential for the development of new and more effective therapeutic candidates.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Najib Rahman
- Oxford Pleural Unit and Oxford Respiratory Trials Unit, University of Oxford, Churchill Hospital; and National Institute of Health Research Biomedical Research Centre , Oxford , United Kingdom
| | - Y C Gary Lee
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital; Pleural Medicine Unit, Institute for Respiratory Health , Perth ; School of Medicine and Pharmacology, University of Western Australia , Perth , Australia
| | - Galina Florova
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Sreerama Shetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Richard Idell
- Department of Behavioral Health, Child and Adolescent Psychiatry, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Kumuda Das
- Department of Translational and Vascular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| |
Collapse
|
8
|
Precision-guided, Personalized Intrapleural Fibrinolytic Therapy for Empyema and Complicated Parapneumonic Pleural Effusions: The Case for the Fibrinolytic Potential. ACTA ACUST UNITED AC 2017; 24:163-169. [PMID: 29081644 DOI: 10.1097/cpm.0000000000000216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Complicated pleural effusions and empyema with loculation and failed drainage are common clinical problems. In adults, intrapleural fibrinolytic therapy is commonly used with variable results and therapy remains empiric. Despite the intrapleural use of various plasminogen activators; fibrinolysins, for about sixty years, there is no clear consensus about which agent is most effective. Emerging evidence demonstrates that intrapleural administration of plasminogen activators is subject to rapid inhibition by plasminogen activator inhibitor-1 and that processing of fibrinolysins is importantly influenced by other factors including the levels and quality of pleural fluid DNA. Current therapy for loculation that accompanies pleural infections also includes surgery, which is invasive and for which patient selection can be problematic. Most of the clinical literature published to date has used flat dosing of intrapleural fibrinolytic therapy in all subjects but little is known about how that strategy influences the processing of the administered fibrinolysin or how this influences outcomes. We developed a new test of pleural fluids ex vivo, which is called the Fibrinolytic Potential or FP, in which a dose of a fibrinolysin is added to pleural fluids ex vivo after which the fibrinolytic activity is measured and normalized to baseline levels. Testing in preclinical and clinical empyema fluids reveals a wide range of responses, indicating that individual patients will likely respond differently to flat dosing of fibrinolysins. The test remains under development but is envisioned as a guide for dosing of these agents, representing a novel candidate approach to personalization of intrapleural fibrinolytic therapy.
Collapse
|
9
|
Florova G, Azghani A, Karandashova S, Schaefer C, Koenig K, Stewart-Evans K, Declerck PJ, Idell S, Komissarov AA. Targeting of plasminogen activator inhibitor 1 improves fibrinolytic therapy for tetracycline-induced pleural injury in rabbits. Am J Respir Cell Mol Biol 2016; 52:429-37. [PMID: 25140386 DOI: 10.1165/rcmb.2014-0168oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endogenous active plasminogen activator inhibitor 1 (PAI-1) was targeted in vivo with monoclonal antibodies (mAbs) that redirect its reaction with proteinases to the substrate branch. mAbs were used as an adjunct to prourokinase (single-chain [sc] urokinase [uPA]) intrapleural fibrinolytic therapy (IPFT) of tetracycline-induced pleural injury in rabbits. Outcomes of scuPA IPFT (0.25 or 0.0625 mg/kg) with 0.5 mg/kg of mouse IgG or mAbs (MA-33H1F7 and MA-8H9D4) were assessed at 24 hours. Pleural fluid (PF) was collected at 0, 10, 20, and 40 minutes and 24 hours after IPFT and analyzed for plasminogen activating (PA), uPA, fibrinolytic activities, levels of total plasmin/plasminogen, α-macroglobulin (αM), mAbs/IgG antigens, free active uPA, and αM/uPA complexes. Anti-PAI-1 mAbs, but not mouse IgG, delivered with an eightfold reduction in the minimal effective dose of scuPA (from 0.5 to 0.0625 mg/kg), improved the outcome of IPFT (P < 0.05). mAbs and IgG were detectable in PFs at 24 hours. Compared with identical doses of scuPA alone or with IgG, treatment with scuPA and anti-PAI-1 mAbs generated higher PF uPA amidolytic and PA activities, faster formation of αM/uPA complexes, and slower uPA inactivation. However, PAI-1 targeting did not significantly affect intrapleural fibrinolytic activity or levels of total plasmin/plasminogen and αM antigens. Targeting PAI-1 did not induce bleeding, and rendered otherwise ineffective doses of scuPA able to improve outcomes in tetracycline-induced pleural injury. PAI-1-neutralizing mAbs improved IPFT by increasing the durability of intrapleural PA activity. These results suggest a novel, well-tolerated IPFT strategy that is tractable for clinical development.
Collapse
Affiliation(s)
- Galina Florova
- 1 Texas Lung Injury Institute of the University of Texas Health Science Center at Tyler, Tyler, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Komissarov AA, Florova G, Azghani A, Karandashova S, Kurdowska AK, Idell S. Active α-macroglobulin is a reservoir for urokinase after fibrinolytic therapy in rabbits with tetracycline-induced pleural injury and in human pleural fluids. Am J Physiol Lung Cell Mol Physiol 2013; 305:L682-92. [PMID: 23997178 DOI: 10.1152/ajplung.00102.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intrapleural processing of prourokinase (scuPA) in tetracycline (TCN)-induced pleural injury in rabbits was evaluated to better understand the mechanisms governing successful scuPA-based intrapleural fibrinolytic therapy (IPFT), capable of clearing pleural adhesions in this model. Pleural fluid (PF) was withdrawn 0-80 min and 24 h after IPFT with scuPA (0-0.5 mg/kg), and activities of free urokinase (uPA), plasminogen activator inhibitor-1 (PAI-1), and uPA complexed with α-macroglobulin (αM) were assessed. Similar analyses were performed using PFs from patients with empyema, parapneumonic, and malignant pleural effusions. The peak of uPA activity (5-40 min) reciprocally correlated with the dose of intrapleural scuPA. Endogenous active PAI-1 (10-20 nM) decreased the rate of intrapleural scuPA activation. The slow step of intrapleural inactivation of free uPA (t1/2(β) = 40 ± 10 min) was dose independent and 6.7-fold slower than in blood. Up to 260 ± 70 nM of αM/uPA formed in vivo [second order association rate (kass) = 580 ± 60 M(-1)·s(-1)]. αM/uPA and products of its degradation contributed to durable intrapleural plasminogen activation up to 24 h after IPFT. Active PAI-1, active α2M, and α2M/uPA found in empyema, pneumonia, and malignant PFs demonstrate the capacity to support similar mechanisms in humans. Intrapleural scuPA processing differs from that in the bloodstream and includes 1) dose-dependent control of scuPA activation by endogenous active PAI-1; 2) two-step inactivation of free uPA with simultaneous formation of αM/uPA; and 3) slow intrapleural degradation of αM/uPA releasing active free uPA. This mechanism offers potential clinically relevant advantages that may enhance the bioavailability of intrapleural scuPA and may mitigate the risk of bleeding complications.
Collapse
Affiliation(s)
- Andrey A Komissarov
- The Univ. of Texas Health Science Center at Tyler, 11937 US Highway 271, Lab C-6, Tyler, TX 75708. or
| | | | | | | | | | | |
Collapse
|
11
|
Komissarov AA, Florova G, Idell S. Effects of extracellular DNA on plasminogen activation and fibrinolysis. J Biol Chem 2011; 286:41949-41962. [PMID: 21976662 DOI: 10.1074/jbc.m111.301218] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increased levels of extracellular DNA found in a number of disorders involving dysregulation of the fibrinolytic system may affect interactions between fibrinolytic enzymes and inhibitors. Double-stranded (ds) DNA and oligonucleotides bind tissue-(tPA) and urokinase (uPA)-type plasminogen activators, plasmin, and plasminogen with submicromolar affinity. The binding of enzymes to DNA was detected by EMSA, steady-state, and stopped-flow fluorimetry. The interaction of dsDNA/oligonucleotides with tPA and uPA includes a fast bimolecular step, followed by two monomolecular steps, likely indicating slow conformational changes in the enzyme. DNA (0.1-5.0 μg/ml), but not RNA, potentiates the activation of Glu- and Lys-plasminogen by tPA and uPA by 480- and 70-fold and 10.7- and 17-fold, respectively, via a template mechanism similar to that known for fibrin. However, unlike fibrin, dsDNA/oligonucleotides moderately affect the reaction between plasmin and α(2)-antiplasmin and accelerate the inactivation of tPA and two chain uPA by plasminogen activator inhibitor-1 (PAI-1), which is potentiated by vitronectin. dsDNA (0.1-1.0 μg/ml) does not affect the rate of fibrinolysis by plasmin but increases by 4-5-fold the rate of fibrinolysis by Glu-plasminogen/plasminogen activator. The presence of α(2)-antiplasmin abolishes the potentiation of fibrinolysis by dsDNA. At higher concentrations (1.0-20 μg/ml), dsDNA competes for plasmin with fibrin and decreases the rate of fibrinolysis. dsDNA/oligonucleotides incorporated into a fibrin film also inhibit fibrinolysis. Thus, extracellular DNA at physiological concentrations may potentiate fibrinolysis by stimulating fibrin-independent plasminogen activation. Conversely, DNA could inhibit fibrinolysis by increasing the susceptibility of fibrinolytic enzymes to serpins.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154.
| | - Galina Florova
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154
| | - Steven Idell
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154
| |
Collapse
|
12
|
Idell S, Jun Na M, Liao H, Gazar AE, Drake W, Lane KB, Koenig K, Komissarov A, Tucker T, Light RW. Single-chain urokinase in empyema induced by Pasturella multocida. Exp Lung Res 2010; 35:665-81. [PMID: 19895321 DOI: 10.3109/01902140902833277] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intrapleural fibrin deposition and subsequent fibrosis characterize evolving empyema and contribute to the morbidity associated with this condition. Single-chain urokinase (scuPA) is proenzyme form of the urokinase plasminogen activator, which has recently been shown to effectively clear intrapleural loculation in tetracycline-induced pleurodesis in rabbits. The authors therefore hypothesized that scuPA could likewise improve intrapleural injury associated with empyema. The authors used a rabbit model of empyema induced by intrapleural administration of Pasturella multocida to test this hypothesis and determined the effects of intrapleural scuPA on pleural fluids indices of inflammation and intrapleural fibrosis. The authors found that intrapleural administration of scuPA was well tolerated, generated readily detectable fibrinolytic activity in the empyema fluids and did not induce intrapleural or systemic bleeding. Pleural fluid volume, intrapleural protein, and D-dimer concentrations were increased at 24 and 48 hours (P < .01, respectively) after induction of empyema. Intrapleural loculation did not occur in the scuPA- or vehicle control-treated animals and there was no significant change in the pleural empyema or thickening scores. These findings confirm that intrapleural scuPA generates fibrinolysis in empyema fluids but does not alter fibrotic repair at the pleural surface or the intensity of intrapleural inflammation in this empyema model.
Collapse
Affiliation(s)
- Steven Idell
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Komissarov AA, Mazar AP, Koenig K, Kurdowska AK, Idell S. Regulation of intrapleural fibrinolysis by urokinase-alpha-macroglobulin complexes in tetracycline-induced pleural injury in rabbits. Am J Physiol Lung Cell Mol Physiol 2009; 297:L568-77. [PMID: 19666776 DOI: 10.1152/ajplung.00066.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The proenzyme single-chain urokinase plasminogen activator (scuPA) more effectively resolved intrapleural loculations in rabbits with tetracycline (TCN)-induced loculation than a range of clinical doses of two-chain uPA (Abbokinase) and demonstrated a trend toward greater efficacy than single-chain tPA (Activase) (Idell S et al., Exp Lung Res 33: 419, 2007.). scuPA more slowly generates durable intrapleural fibrinolytic activity than Abbokinase or Activase, but the interactions of these agents with inhibitors in pleural fluids (PFs) have been poorly understood. PFs from rabbits with TCN-induced pleural injury treated with intrapleural scuPA, its inactive Ser195Ala mutant, Abbokinase, Activase, or vehicle, were analyzed to define the mechanism by which scuPA induces durable fibrinolysis. uPA activity was elevated in PFs of animals treated with scuPA, correlated with the ability to clear pleural loculations, and resisted (70-80%) inhibition by PAI-1. Alpha-macroglobulin (alphaM) but not urokinase receptor complexes immunoprecipitated from PFs of scuPA-treated rabbits retained uPA activity that resists PAI-1 and activates plasminogen. Conversely, little plasminogen activating or enzymatic activity resistant to PAI-1 was detectable in PFs of rabbits treated with Abbokinase or Activase. Consistent with these findings, PAI-1 interacts with scuPA much slower than with Activase or Abbokinase in vitro. An equilibrium between active and inactive scuPA (k(on) = 4.3 h(-1)) limits the rate of its inactivation by PAI-1, favoring formation of complexes with alphaM. These observations define a newly recognized mechanism that promotes durable intrapleural fibrinolysis via formation of alphaM/uPA complexes. These complexes promote uPA-mediated plasminogen activation in scuPA-treated rabbits with TCN-induced pleural injury.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Texas Lung Injury Institute of The University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA.
| | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Organization of parapneumonic effusions may complicate pneumonia, and, annually, thousands of patients require procedures to treat intrapleural loculation and fibrosis. Surgical procedures are often used for the treatment, as fibrinolytic therapy is now not a routine and is undergoing reassessment. Investigation of mechanisms that underlie intrapleural loculation and fibrosis is therefore timely, as are studies on new strategies to medically address these problems with improved efficacy and safety. RECENT FINDINGS Contributions made over the past year include basic and translational studies unified by their broad focus on mechanisms by which the pleural compartment undergoes repair. Intrapleural single-chain urokinase was reported to effectively reverse intrapleural loculation when compared with commercially available agents in rabbits with tetracycline-induced pleurodesis. The ability of exogenous sclerosants to produce intrapleural loculation and fibrosis was compared. Overexpression of transforming growth factor beta in the pleural mesothelium promoted subpleural fibrosis, implicating the mesothelial cell in the pathogenesis of this lesion. A new model of pleurodesis in mice was reported, which could facilitate the use of transgenic animals to study the pathogenesis of pleural injury. SUMMARY New findings consolidate and extend the view that common mechanisms by which intrapleural organization occurs can be exploited to either generate pleurodesis or effectively reverse intrapleural loculation and fibrosis.
Collapse
|
15
|
Cameron R, Davies HR. Intra-pleural fibrinolytic therapy versus conservative management in the treatment of adult parapneumonic effusions and empyema. Cochrane Database Syst Rev 2008:CD002312. [PMID: 18425881 DOI: 10.1002/14651858.cd002312.pub3] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Pleural effusions and empyema may complicate lower respiratory tract infections. Treatment of these collections of pus includes surgical drainage and the use of intra-pleural fibrinolysis to break down fibrin bands that may cause loculation. OBJECTIVES To conduct a systematic review of the benefit of adding intrapleural fibrinolytic therapy to intercostal tube drainage in the treatment of complicated para pneumonic effusions and empyema to reduce mortality or the need for subsequent surgical debridement of the pleural space. SEARCH STRATEGY We searched the Cochrane Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE. Trial authors were contacted for further information and details regarding the possibility of unpublished trials was requested. The most recent search was conducted in November 2006. SELECTION CRITERIA All studies in the review were Randomised Controlled Trials in adult patients with post-pneumonic empyema or complicated parapneumonic effusions who had not had prior surgical intervention or trauma. The intervention was an intrapleural fibrinolytic agent (streptokinase or urokinase) via an intercostal chest drain (ICD) versus control, or a comparison of the two agents. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data . Study authors were contacted for further information. MAIN RESULTS Seven studies met the eligibility criteria of the review, recruiting 761 participants. The only consistent end points in all trials were treatment failure, as gauged by the requirement for additional intervention including surgery or death. In studies where patients had either loculation and empyema, there was no significant difference in the risk of death with fibrinolytics (RR 1.08; 95% CI 0.69 to 1.68). When treatment failure was considered as surgical intervention, fibrinolytics reduced the risk of this outcome (RR 0.63; 95% CI 0.46 to 0.85), but there is discordance between earlier positive studies and the more recent negative study by Maskell. AUTHORS' CONCLUSIONS Intrapleural fibrinolytic therapy confers significant benefit in reducing the requirement for surgical intervention for patients in the early studies included in this review but not in the more recently published Maskell study. The reasons for this difference are uncertain. Separate subgroup analysis of proven loculated/septated effusions from the available data in our meta-analysis suggests a potential overall treatment benefit with fibrinolytics, but these results should be treated with caution as the data are incomplete and the benefit is not significant in the subgroup of high quality trials (Cochrane Grade A). Intrapleural fibrinolytics have not been shown to significantly increase adverse events, but the confidence interval is too wide to firmly exclude this possibility.
Collapse
Affiliation(s)
- R Cameron
- Northern Sydney Central Coast Area Health Service, NSW, Australia.
| | | |
Collapse
|