1
|
Khonglim K, Chuenjitkuntaworn B, Tamura Y, Fuangtharnthip P. Effects of Capsaicin on Migration and Alkaline Phosphatase Activity of Dental Pulp Cells. Eur J Dent 2024; 18:1157-1163. [PMID: 38698615 PMCID: PMC11479730 DOI: 10.1055/s-0044-1782191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVES Dental pulp, a specialized mesenchymal tissue within teeth, is pivotal in dental health and tissue repair. Capsaicin, the primary pungent component of chili peppers, is known for its diverse pharmacological properties. While capsaicin's effects on various cell types have been studied, its impact on dental pulp cells remains relatively unexplored. This study investigated the influence of pure capsaicin extract on dental pulp cell behavior, focusing on cell viability, proliferation, migration, and alkaline phosphatase (ALP) activity. MATERIALS AND METHODS Capsaicin solution was prepared and diluted to various concentrations (1 nM, 0.01 µM, 0.1 µM, 1 µM, 10 µM, and 100 µM), then was tested on rat dental pulp cells (RPC-C2A). Cell viability and proliferation were assessed using the MTT assay. Boyden chamber tests and wound healing were used for evaluating cell migration. The activity of ALP was determined to show cell function during dental pulp repair. STATISTICAL ANALYSIS The data were analyzed using a one-way analysis of variance or an independent-sample Kruskal-Wallis, followed by multiple comparison tests. RESULTS Capsaicin of 100 µM exhibited cytotoxicity, whereas those with lower concentrations stimulated cell proliferation. Wound healing assays revealed increased cell migration, particularly when cultured with 1 nM capsaicin (p = 0.002). Boyden chamber assays demonstrated enhanced cell invasion without statistical significance. ALP activity of dental pulp cells increased significantly at 1 nM (p < 0.001) and 1 µM (p = 0.021) capsaicin concentrations, indicating potential dentinogenesis and pulp repair. CONCLUSION Capsaicin of lower concentrations, less than 10 µM, is likely to promote proliferation, migration, and ALP activity of dental pulp cells. Our findings offer potential applications for capsaicin as a medication for dental pulp repair.
Collapse
Affiliation(s)
- Kittipot Khonglim
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Ratchathewi, Bangkok, Thailand
| | | | - Yukihiko Tamura
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Pornpoj Fuangtharnthip
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Ratchathewi, Bangkok, Thailand
| |
Collapse
|
2
|
Álvarez-Vásquez JL, Castañeda-Alvarado CP. Dental pulp fibroblast: A star Cell. J Endod 2022; 48:1005-1019. [DOI: 10.1016/j.joen.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022]
|
3
|
Blockage of ventrolateral periaqueductal gray matter cannabinoid 1 receptor increases dental pulp pain and pain-related subsequent learning and memory deficits in rats. Behav Pharmacol 2020; 33:165-174. [PMID: 32483053 DOI: 10.1097/fbp.0000000000000566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cannabinoid 1 receptor (CB1R) signaling has a pivotal role in the modulation of both pain and cognitive responses. This study aims at investigating the role of CB1R in the ventrolateral periaqueductal gray matter (vlPAG) on both pulpal pain and pain-related subsequent changes in learning and memory performances in rats. The adult male Wistar rats were cannulated in the vlPAG. The rats were pretreated by intra-vlPAG administration of selective CB1R antagonist AM-251 (2, 4 and 8 µg/rat) and vehicle dimethylsulfoxide. The drugs were microinjected 20 min before the induction of capsaicin-induced pulpalgia. The nociceptive behaviors were recorded for 40 min. Then, passive avoidance and spatial learning and memory were assessed using the shuttle box and Morris water maze tests, respectively. Following the administration of intradental capsaicin, there was a significant nociceptive response that increased after an induced blockage of CB1R by AM-251 at 4 and 8 µg. In addition, capsaicin impaired passive avoidance and spatial memory performance of rats. Microinjection of AM-251, prior to capsaicin, could dose-dependently exaggerate capsaicin-related learning and memory deficits in both tests. The present data indicated that the vlPAG endocannabinoid system is involved in the modulation of pain signals from dental pulp. It was also accompanied by learning and memory impairments.
Collapse
|
4
|
Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J. The Role of Transient Receptor Potential (TRP) Channels in the Transduction of Dental Pain. Int J Mol Sci 2019; 20:ijms20030526. [PMID: 30691193 PMCID: PMC6387147 DOI: 10.3390/ijms20030526] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Dental pain is a common health problem that negatively impacts the activities of daily living. Dentine hypersensitivity and pulpitis-associated pain are among the most common types of dental pain. Patients with these conditions feel pain upon exposure of the affected tooth to various external stimuli. However, the molecular mechanisms underlying dental pain, especially the transduction of external stimuli to electrical signals in the nerve, remain unclear. Numerous ion channels and receptors localized in the dental primary afferent neurons (DPAs) and odontoblasts have been implicated in the transduction of dental pain, and functional expression of various polymodal transient receptor potential (TRP) channels has been detected in DPAs and odontoblasts. External stimuli-induced dentinal tubular fluid movement can activate TRP channels on DPAs and odontoblasts. The odontoblasts can in turn activate the DPAs by paracrine signaling through ATP and glutamate release. In pulpitis, inflammatory mediators may sensitize the DPAs. They could also induce post-translational modifications of TRP channels, increase trafficking of these channels to nerve terminals, and increase the sensitivity of these channels to stimuli. Additionally, in caries-induced pulpitis, bacterial products can directly activate TRP channels on DPAs. In this review, we provide an overview of the TRP channels expressed in the various tooth structures, and we discuss their involvement in the development of dental pain.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Marina Mohd Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Farhana Yahya
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
5
|
Corneal Nerve Fiber Structure, Its Role in Corneal Function, and Its Changes in Corneal Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3242649. [PMID: 29238714 PMCID: PMC5697388 DOI: 10.1155/2017/3242649] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/27/2017] [Accepted: 10/15/2017] [Indexed: 01/04/2023]
Abstract
Recently, in vivo confocal microscopy is used to examine the human corneal nerve fibers morphology. Corneal nerve fiber architecture and its role are studied in healthy and pathological conditions. Corneal nerves of rats were studied by nonspecific acetylcholinesterase (NsAchE) staining. NsAchE-positive subepithelial (stromal) nerve fiber has been found to be insensitive to capsaicin. Besides, NsAchE-negative but capsaicin-sensitive subbasal nerve (leash) fibers formed thick mesh-like structure showing close interconnections and exhibit both isolectin B4- and transient receptor potential vanilloid channel 1- (TRPV1-) positive. TRPV1, TRPV3, TRPA (ankyrin) 1, and TRPM (melastatin) 8 are expressed in corneal nerve fibers. Besides the corneal nerve fibers, the expressions of TRPV (1, 3, and 4), TRPC (canonical) 4, and TRPM8 are demonstrated in the corneal epithelial cell membrane. The realization of the importance of TRP channels acting as polymodal sensors of environmental stresses has identified potential drug targets for corneal disease. The pathophysiological conditions of corneal diseases are associated with disruption of normal tissue innervation, especially capsaicin-sensitive small sensory nerve fibers. The relationships between subbasal corneal nerve fiber morphology and neurotrophic keratopathy in corneal diseases are well studied. The recommended treatment for neurotrophic keratopathy is administration of preservative free eye drops.
Collapse
|
6
|
Huang C, Lu F, Li P, Cao C, Liu Z. Tlx3 Function in the Dorsal Root Ganglion is Pivotal to Itch and Pain Sensations. Front Mol Neurosci 2017; 10:205. [PMID: 28701920 PMCID: PMC5487456 DOI: 10.3389/fnmol.2017.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022] Open
Abstract
Itch, a sensation eliciting a desire to scratch, is distinct from but not completely independent of pain. Inspiring achievements have been made in the characterization of itch-related receptors and neurotransmitters, but the molecular mechanisms controlling the development of pruriceptors remain poorly understood. Here, our RNAseq and in situ hybridization data show that the transcription factor Tlx3 is required for the expression of a majority of itch-related molecules in the dorsal root ganglion (DRG). As a result, Tlx3F/F;Nav1.8-cre mice exhibit significantly attenuated acute and dry skin-induced chronic itch. Furthermore, our study indicates that TRPV1 plays a pivotal role in the chronic itch evoked by dry skin and allergic contact dermatitis (ACD). The mutants also display impaired response to cold and inflammatory pain and elevated response to capsaicin, whereas the responses to acute mechanical, thermal stimuli and neuropathic pain remain normal. In Tlx3F/F;Nav1.8-cre mice, TRPV1 is derepressed and expands predominantly into IB4+ non-peptidergic (NP) neurons. Collectively, our data reveal a molecular mechanism in regulating the development of pruriceptors and controlling itch and pain sensations.
Collapse
Affiliation(s)
| | - Fumin Lu
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Ping Li
- Beijing Institute of BiotechnologyBeijing, China
| | - Cheng Cao
- Beijing Institute of BiotechnologyBeijing, China
| | - Zijing Liu
- Beijing Institute of BiotechnologyBeijing, China
| |
Collapse
|
7
|
TRPV1 is crucial for proinflammatory STAT3 signaling and thermoregulation-associated pathways in the brain during inflammation. Sci Rep 2016; 6:26088. [PMID: 27188969 PMCID: PMC4870621 DOI: 10.1038/srep26088] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/25/2016] [Indexed: 01/06/2023] Open
Abstract
Transient receptor potential vanilloid receptor 1 (TRPV1) is a non-selective cation channel that is stimulated by heat (>43 °C), mechanical/osmotic stimuli, and low pH. The importance of TRPV1 in inflammatory responses has been demonstrated, whereas its participation in brains remains unclear. In the present study, the intracerebroventricular (icv) administration of the TRPV1 agonist resiniferatoxin (RTX) induced the activation of signal transducer and activator of transcription 3 (STAT3) in circumventricular organs (CVOs) and thermoregulation-associated brain regions with a similar patttern to the peripheral and icv administration of lipopolysaccharide (LPS). With the peripheral and icv LPS stimuli, STAT3 activation was significantly lower in Trpv1−/− mice than in Trpv1+/+ mice. The icv administration of RTX induced transient hypothermia, whereas that of the TRPV1 antagonist capsazepine enhanced the magnitude and period of LPS-induced hyperthermia. These results indicate that TRPV1 is important for activating proinflammatory STAT3 signaling and thermoregulation-associated brain pathways in the brain.
Collapse
|
8
|
Sulzberger M, Worthmann AC, Holtzmann U, Buck B, Jung K, Schoelermann A, Rippke F, Stäb F, Wenck H, Neufang G, Grönniger E. Effective treatment for sensitive skin: 4-t-butylcyclohexanol and licochalcone A. J Eur Acad Dermatol Venereol 2016; 30 Suppl 1:9-17. [DOI: 10.1111/jdv.13529] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2015] [Indexed: 11/29/2022]
Affiliation(s)
- M. Sulzberger
- Research & Development; Beiersdorf AG; Hamburg Germany
| | | | - U. Holtzmann
- Research & Development; Beiersdorf AG; Hamburg Germany
| | - B. Buck
- Research & Development; Beiersdorf AG; Hamburg Germany
| | - K.A. Jung
- Research & Development; Beiersdorf AG; Hamburg Germany
| | | | - F. Rippke
- Research & Development; Beiersdorf AG; Hamburg Germany
| | - F. Stäb
- Research & Development; Beiersdorf AG; Hamburg Germany
| | - H. Wenck
- Research & Development; Beiersdorf AG; Hamburg Germany
| | - G. Neufang
- Research & Development; Beiersdorf AG; Hamburg Germany
| | - E. Grönniger
- Research & Development; Beiersdorf AG; Hamburg Germany
| |
Collapse
|
9
|
Tokuda M, Tatsuyama S, Fujisawa M, Morimoto-Yamashita Y, Kawakami Y, Shibukawa Y, Torii M. Dentin and pulp sense cold stimulus. Med Hypotheses 2015; 84:442-4. [PMID: 25665859 DOI: 10.1016/j.mehy.2015.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/23/2015] [Indexed: 11/26/2022]
Abstract
Dentin hypersensitivity is a common symptom, and recent convergent evidences have reported transient receptor potential (TRP) channels in odontoblasts act as mechanical and thermal molecular sensor, which detect stimulation applied on the exposed dentin surface, to drive multiple odontoblastic cellular functions, such as sensory transduction and/or dentin formation. In the present study, we confirmed expression of TRP melastatin subfamily member-8 (TRPM8) channels in primary cultured cells derived from human dental pulp cells (HPCs) and mouse odontoblast-lineage cells (OLCs) as well as in dentin matrix protein-1 (DMP-1) and dentin sialoprotein (DSP) positive acutely isolated rat odontoblasts from dental pulp tissue slice culture by immunohistochemical analyses. In addition, we detected TRPM8 channel expression on HPCs and OLCs by RT-PCR and Western blotting analyses. These results indicated that both odontoblasts and dental pulp cells express TRPM8 channels in rat, mouse and human, and therefore we hypothesize they may contribute as cold sensor in tooth.
Collapse
Affiliation(s)
- Masayuki Tokuda
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Shoko Tatsuyama
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Mari Fujisawa
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yoko Morimoto-Yamashita
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yoshiko Kawakami
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | - Mistuso Torii
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
10
|
Capsaicin inhibits Porphyromonas gingivalis growth, biofilm formation, gingivomucosal inflammatory cytokine secretion, and in vitro osteoclastogenesis. Eur J Clin Microbiol Infect Dis 2013; 33:211-9. [PMID: 23955115 DOI: 10.1007/s10096-013-1947-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
Abstract
The prevention and treatment of periodontitis requires not only the control of causative pathogens, especially Porphyromonas gingivalis, but also the regulation of inflammatory immune response. Investigating auxiliary drugs for periodontitis during conventional treatments is, thus, quite important. Capsaicin, an agonist for the vanilloid receptor subtype 1 (TRPV1), due to its bacteriostatic activity against Gram-negative bacteria and anti-inflammatory effects, appears to be a promising drug. In this work, the antimicrobial activity of capsaicin against P. gingivalis and biofilm formation, inflammatory cytokine levels in experimental periodontitis, osteoclast precursor proliferation, and osteoclastogenesis in vitro were fully investigated. The results showed that capsaicin inhibited P. gingivalis growth with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 16 and 64 mg/l, respectively. Capsaicin also inhibited P. gingivalis biofilm formation, with minimum biofilm inhibition concentrations MBIC50 and MBIC90 of 16 and 32 mg/l, respectively, and reduced pre-formed biofilms' viability with a minimum biofilm reduction concentration MBRC50 of 64 mg/l, as demonstrated by confocal laser scanning microscopy. In experimental periodontitis, except for IL-10, TNF-α, IL-1β, IL-6, IL-12, and iNOS were depressed after capsaicin treatment. Moreover, capsaicin also suppressed osteoclast precursor proliferation and osteoclastogenesis, as demonstrated by NF-ĸB p65. However, this favorable effect was attenuated by the TRPV1 antagonist, camphor. It, thus, suggests that capsaicin is a potential drug for the auxiliary treatment of periodontitis. TRPV1 activation may involve in beneficial roles of capsaicin on periodontitis.
Collapse
|
11
|
Yang Y, Yang H, Wang Z, Mergler S, Wolosin JM, Reinach PS. Functional TRPV1 expression in human corneal fibroblasts. Exp Eye Res 2013; 107:121-9. [PMID: 23232207 PMCID: PMC3556194 DOI: 10.1016/j.exer.2012.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 12/31/2022]
Abstract
Corneal wound healing in mice subsequent to an alkali burn results in dysregulated inflammation and opacification. Transient receptor potential vanilloid subtype 1 (TRPV1) channel activation in all tissue layers by endogenous ligands contributes to this sight compromising outcome since in TRPV1 knockout mice wound healing results instead in tissue transparency restoration. However, it is not known if primary human stromal fibroblasts exhibit such expression even though functional TRPV1 expression is evident in an immortalized human corneal epithelial cell line. In primary human corneal fibroblasts (HCF), TRPV1 gene expression and localization were identified based on the results of quantitative RT-PCR and immunocytochemistry, respectively. Western blot analysis identified a 100 kD protein corresponding to TRPV1 protein expression in a positive control. Single-cell fluorescence imaging detected in fura2-AM loaded cells Ca(2+) transients that rose 1.8-fold above the baseline induced by a selective TRPV1 agonist, capsaicin (CAP), which were blocked by a TRPV1 antagonist, capsazepine (CPZ) or exposure to a Ca(2+) free medium. The whole-cell mode of the planar patch-clamp technique identified TRPV1-induced currents that rose 1.76-fold between -60 and +130 mV. CAP-induced time dependent changes in the phosphorylation status of mitogen activated protein kinase (MAPK) signaling mediators that led to a 2.5-fold increase in IL-6 release after 24 h. This rise did not occur either in TRPV1 siRNA gene silenced cells or during exposure to SB203580 (10 μM), a selective p38 MAPK inhibitor. Taken together, identification of functional TRPV1 expression in HCF suggests that in vivo its activation by injury contributes to corneal opacification and inflammation during wound healing. These undesirable effects may result in part from increases in IL-6 expression mediated by p-p38 MAPK signaling.
Collapse
Affiliation(s)
- Yuanquan Yang
- Department of Biological Sciences, State University of New York, State College of Optometry,, New York, NY 10036
| | - Hua Yang
- Department of Biological Sciences, State University of New York, State College of Optometry,, New York, NY 10036
| | - Zheng Wang
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029
| | - Stefan Mergler
- Department of Ophthalmology, Charité, University Berlin, Campus Virchow-Clinic, Berlin, Germany
| | - J. Mario Wolosin
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029
| | - Peter S. Reinach
- Department of Biological Sciences, State University of New York, State College of Optometry,, New York, NY 10036
| |
Collapse
|
12
|
Anti-nociceptive effects of Tanshinone IIA (TIIA) in a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain. Brain Res Bull 2012; 88:581-8. [DOI: 10.1016/j.brainresbull.2012.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 12/28/2022]
|
13
|
Sooampon S, Manokawinchoke J, Pavasant P. Transient receptor potential vanilloid-1 regulates osteoprotegerin/RANKL homeostasis in human periodontal ligament cells. J Periodontal Res 2012; 48:22-9. [PMID: 22587561 DOI: 10.1111/j.1600-0765.2012.01493.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Increasing evidence has shown the presence of transient receptor potential vanilloid-1 (TRPV1) in a variety of nonneuronal tissues; however, the function of TRPV1 in these cells is not well understood. In this study, we aimed to investigate the expression and function of TRPV1 in human periodontal ligament (HPDL) cells. As HPDL cells are known to play an important role in the bone-remodeling process, we hypothesized that TRPV1 might be implicated in the regulation of osteoprotegerin (OPG) and RANKL expression. MATERIAL AND METHODS TRPV1 expression was examined by western blot analysis. The function of TRPV1 was studied using capsaicin, a well-known TRPV1 agonist. RT-PCR was performed to study the expression of OPG and RANKL mRNAs. The expression of OPG and RANKL proteins was analyzed by ELISA and western blotting, respectively. The mechanisms of capsaicin-induced OPG expression in HPDL cells were studied using inhibitors. RESULTS In this study we found that TRPV1 was present in HPDL cells. Treatment with capsaicin induced OPG expression in a dose-dependent manner but did not affect the expression of RANKL. The increase of the OPG/RANKL ratio was also found in human osteoblasts, but not in MC3T3-E1 cells, a mouse osteoblastic cell line, suggesting species specificity. Capsazepine, the competitive TRPV1 antagonist, significantly abolished the effect of capsaicin on OPG expression in HPDL cells. In addition, studies investigating the effects of a calcium chelator and a phospholipase C inhibitor indicated that calcium ions and phospholipase C were required for the induction. Interestingly, capsaicin was able to increase the OPG/RANKL ratio, even in the presence of prostaglandin E2, a potent inducer of RANKL. CONCLUSION Our study demonstrates that activation of TRPV1 leads to an increase of the OPG/RANKL ratio in HPDL cells. These findings suggest the novel function of TRPV1 in periodontal tissues, at least, as the regulator of the OPG/RANKL axis.
Collapse
Affiliation(s)
- S Sooampon
- Department of Pharmacology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
14
|
Miyashita K, Oyama T, Sakuta T, Tokuda M, Torii M. Anandamide induces matrix metalloproteinase-2 production through cannabinoid-1 receptor and transient receptor potential vanilloid-1 in human dental pulp cells in culture. J Endod 2012; 38:786-90. [PMID: 22595113 DOI: 10.1016/j.joen.2012.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Anandamide (N-arachidonoylethanolamine [AEA]) is one of the main endocannabinoids. Endocannabinoids are implicated in various physiological and pathologic functions, inducing not only nociception but also regeneration and inflammation. The role of the endocannabinoid system in peripheral organs was recently described. The aim of this study was to investigate the effect of AEA on matrix metalloproteinase (MMP)-2 induction in human dental pulp cells (HPC). METHODS We examined AEA-induced MMP-2 production and the expression of AEA receptors (cannabinoid [CB] receptor-1, CB2, and transient receptor potential vanilloid-1 [TRPV1]) in HPC by Western blot. MMP-2 concentrations in supernatants were determined by enzyme-linked immunosorbent assay. We then investigated the role of the AEA receptors and mitogen-activated protein kinase in AEA-induced MMP-2 production in HPC. RESULTS AEA significantly induced MMP-2 production in HPC. HPC expressed all 3 types of AEA receptor (CB1, CB2, and TRPV1). AEA-induced MMP-2 production was blocked by CB1 or TRPV1 antagonists and by small interfering RNA for CB1 or TRPV1. Furthermore, c-Jun N-terminal kinase inhibitor also reduced MMP-2 production. CONCLUSIONS We demonstrated for the first time that AEA induced MMP-2 production via CB1 and TRPV1 in HPC.
Collapse
Affiliation(s)
- Keiko Miyashita
- Department of Restorative Dentistry and Endodontology, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
15
|
Sadofsky LR, Ramachandran R, Crow C, Cowen M, Compton SJ, Morice AH. Inflammatory stimuli up-regulate transient receptor potential vanilloid-1 expression in human bronchial fibroblasts. Exp Lung Res 2012; 38:75-81. [PMID: 22242698 DOI: 10.3109/01902148.2011.644027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lung fibroblasts are involved in interstitial lung disease, chronic asthma, and chronic obstructive pulmonary disease (COPD). The expanded fibroblast population in airway disease leads to airway remodeling and contributes to the inflammatory process seen in these diseases. The cation channel transient receptor potential vanilloid-1 (TRPV1) is activated by noxious stimuli, including capsaicin, protons, and high temperatures and is thought to have a role in inflammation. Although TRPV1 expression is primarily reported to be neuronal, some extraneuronal expression has been reported. The authors therefore sought to determine whether human primary bronchial fibroblasts (HPBFs) express TRPV1 and whether inflammatory mediators can induce TRPV1 expression. The authors show that fibroblasts are predominantly TRPV1 negative; however, following stimulation with 3 common inflammatory mediators, tumor necrosis factor α (TNF-α), lipopolysaccharide (LPS), and interleukin-1α (IL-1α), TRPV1 mRNA was observed at 24 and 48 hours post treatment with all 3 mediators. Using Western blotting an increase in TRPV1 expression with all 3 inflammatory mediators was detected with significant increases seen at 72 hours post LPS and IL-1α treatment. In stark contrast to the untreated fibroblasts, significant calcium signaling in response to capsaicin and resiniferatoxin in HPBFs treated for 24 and 48 hours with TNF-α, LPS, or IL-1α was also observed. These results indicate that TRPV1 can be expressed on bronchial fibroblasts in situations where an underlying inflammatory stimulus exists, as is the case in airway diseases such as asthma and COPD.
Collapse
Affiliation(s)
- Laura R Sadofsky
- Cardiovascular and Respiratory Studies, University of Hull, Castle Hill Hospital, Cottingham, East Yorkshire, UK.
| | | | | | | | | | | |
Collapse
|
16
|
TRP-channel-specific cutaneous eicosanoid release patterns. Pain 2011; 152:2765-2772. [PMID: 21962912 DOI: 10.1016/j.pain.2011.08.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 08/16/2011] [Accepted: 08/29/2011] [Indexed: 12/26/2022]
Abstract
Analyzing mechanisms and key players in peripheral nociception nonneuronal skin cells are getting more and more into focus. Herein we investigated the functional expression of TRPV1 and TRPA1 in human keratinocytes and fibroblasts and assessed proinflammatory lipid mediator release upon their stimulation as well as sensory effects after topical application, combining in vitro and in vivo approaches. In vitro, the expression of functional TRPV1 and TRPA1 channels on fibroblasts and keratinocytes was confirmed via immunofluorescence, qualitative real time (RT) polymerase chain reaction, and cellular Ca(2+) influx measurements. Additionally, the agonists allyl isothiocyanate (TRPA1) and capsaicin (TRPV1) induce a differential secretion pattern of the eicosanoids PGE(2) and LTB(4) in human dermal fibroblasts and keratinocytes, which was also detectable invivo, analyzing suction blister fluid at various times after short-term topical application. Capsaicin provoked the release of LTB(4) at 2 and 24 hours. In contrast, PGE(2) levels were reduced upon stimulation. Allyl isothiocyanate, however, increased PGE(2) levels only at 24 hours, but did not alter LTB(4) levels. In parallel, heat pain thresholds were reduced by both agents after short-term topical application, but only AITC provoked a long-lasting local erythema. In conclusion, the agonist-induced activation of nociceptors by TRPA1 and TRPV1 elicits painful sensations, whereas nonneuronal tissue cells respond with differential release of inflammatory mediators, thus influencing local vasodilatation and neuronal sensitization. These results have implications for the application of transient receptor potential antagonists to improve inflammatory skin conditions and pain management.
Collapse
|
17
|
Human odontoblasts express functional thermo-sensitive TRP channels: Implications for dentin sensitivity. Pain 2011; 152:2211-2223. [DOI: 10.1016/j.pain.2010.10.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/22/2010] [Accepted: 10/12/2010] [Indexed: 11/19/2022]
|
18
|
Kishimoto E, Naito Y, Handa O, Okada H, Mizushima K, Hirai Y, Nakabe N, Uchiyama K, Ishikawa T, Takagi T, Yagi N, Kokura S, Yoshida N, Yoshikawa T. Oxidative stress-induced posttranslational modification of TRPV1 expressed in esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G230-8. [PMID: 21636531 DOI: 10.1152/ajpgi.00436.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human esophageal epithelium is continuously exposed to physical stimuli or to gastric acid that sometimes causes inflammation of the mucosa. Transient receptor potential vanilloid 1 (TRPV1) is a nociceptive, Ca(2+)-selective ion channel activated by capsaicin, heat, and protons. It has been reported that activation of TRPV1 expressed in esophageal mucosa is involved in gastroesophageal reflux disease (GERD) or in nonerosive GERD symptoms. In this study, we examined the expression and function of TRPV1 in the human esophageal epithelial cell line Het1A, focusing in particular on the role of oxidative stress. Interleukin-8 (IL-8) secreted by Het1A cells upon stimulation by capsaicin or acid with/without 4-hydroxy-2-nonenal (HNE) was measured by ELISA. Following capsaicin stimulation, the intracellular production of reactive oxygen species (ROS) was determined using a redox-sensitive fluorogenic probe, and ROS- and HNE-modified proteins were determined by Western blotting using biotinylated cysteine and anti-HNE antibody, respectively. HNE modification of TRPV1 proteins was further investigated by immunoprecipitation after treatment with synthetic HNE. Capsaicin and acid induced IL-8 production in Het1A cells, and this production was diminished by antagonists of TRPV1. Capsaicin also significantly increased the production of intracellular ROS and ROS- or HNE-modified proteins in Het1A cells. Moreover, IL-8 production in capsaicin-stimulated Het1A cells was enhanced by synthetic HNE treatment. Immunoprecipitation studies revealed that TRPV1 was modified by HNE in synthetic HNE-stimulated Het1A cells. We concluded that TRPV1 functions in chemokine production in esophageal epithelial cells, and this function may be regulated by ROS via posttranslational modification of TRPV1.
Collapse
Affiliation(s)
- Etsuko Kishimoto
- Department of Inflammation and Immunology, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Malagarie-Cazenave S, Olea-Herrero N, Vara D, Morell C, Díaz-Laviada I. The vanilloid capsaicin induces IL-6 secretion in prostate PC-3 cancer cells. Cytokine 2011; 54:330-7. [DOI: 10.1016/j.cyto.2011.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/08/2011] [Accepted: 03/15/2011] [Indexed: 11/16/2022]
|
20
|
Diogenes A, Ferraz C, Akopian A, Henry M, Hargreaves K. LPS Sensitizes TRPV1 via Activation of TLR4 in Trigeminal Sensory Neurons. J Dent Res 2011; 90:759-64. [DOI: 10.1177/0022034511400225] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recent studies have demonstrated that the lipopolysaccharide (LPS) receptor (TLR4) is expressed in TRPV1 containing trigeminal sensory neurons. In this study, we evaluated whether LPS activates trigeminal neurons, and sensitizes TRPV1 responses via TLR4. To test this novel hypothesis, we first demonstrated that LPS binds to receptors in trigeminal neurons using competitive binding. Second, we demonstrated that LPS evoked aconcentration-dependent increase in intracellular calcium accumulation (Ca2+)i and inward currents. Third, LPS significantly sensitized TRPV1 to capsaicin measured by (Ca2+)i, release of calcitonin gene-related peptide, and inward currents. Importantly, a selective TLR4 antagonist blocked these effects. Analysis of these data, collectively, demonstrates that LPS is capable of directly activating trigeminal neurons, and sensitizing TRPV1 via a TLR4-mediated mechanism. These findings are consistent with the hypothesis that trigeminal neurons are capable of detecting pathogenic bacterial components leading to sensitization of TRPV1, possibly contributing to the inflammatory pain often observed in bacterial infections.
Collapse
Affiliation(s)
| | - C.C.R. Ferraz
- Department of Endodontics, UNICAMP, Piracicaba, São Paulo, Brazil
| | | | | | - K.M. Hargreaves
- Departments of Endodontics Pharmacology Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Mail Code 7892, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| |
Collapse
|
21
|
Kueper T, Krohn M, Haustedt LO, Hatt H, Schmaus G, Vielhaber G. Inhibition of TRPV1 for the treatment of sensitive skin. Exp Dermatol 2010; 19:980-6. [DOI: 10.1111/j.1600-0625.2010.01122.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Ding Q, Zhang Y, Wang Y, Wang Y, Zhang L, Ding C, Wu L, Yu G. Functional Vanilloid Receptor-1 in Human Submandibular Glands. J Dent Res 2010; 89:711-6. [DOI: 10.1177/0022034510366841] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vanilloid receptor-1 (VR1) was originally found in the nervous system. Recent evidence indicates that VR1 is also expressed in various cell types. We hypothesized that VR1 exists in the human submandibular gland (SMG) and is involved in regulating salivary secretion. VR1 mRNA and protein were expressed in human SMGs and a human salivary intercalated duct cell line. VR1 was mainly located in serous acinar and ductal cells, but not in mucous acinar cells. Capsaicin, an agonist of VR1, increased intracellular free calcium, enhanced phosphorylation of extracellular signal-regulated kinase, and induced the trafficking of aquaporin 5 (AQP5) from the cytoplasm to the plasma membrane. These effects were abolished by pre-treatment with the VR1 antagonist capsazepine. Furthermore, capsaicin cream applied to the skin covering the submandibular area increased salivary secretion. These findings indicated that a functional VR1 is expressed in the human SMG and is involved in regulating salivary secretion by mediating AQP5 trafficking.
Collapse
Affiliation(s)
- Q.W. Ding
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhong Guan Cun South St., Beijing, 100081, P.R. China
| | - Y. Zhang
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Y. Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhong Guan Cun South St., Beijing, 100081, P.R. China
| | - Y.N. Wang
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - L. Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhong Guan Cun South St., Beijing, 100081, P.R. China
| | - C. Ding
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - L.L. Wu
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - G.Y. Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhong Guan Cun South St., Beijing, 100081, P.R. China
| |
Collapse
|
23
|
Hamza M, Wang XM, Adam A, Brahim JS, Rowan JS, Carmona GN, Dionne RA. Kinin B1 receptors contributes to acute pain following minor surgery in humans. Mol Pain 2010; 6:12. [PMID: 20152050 PMCID: PMC2834653 DOI: 10.1186/1744-8069-6-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 02/13/2010] [Indexed: 01/16/2023] Open
Abstract
Background Kinins play an important role in regulation of pain and hyperalgesia after tissue injury and inflammation by activating two types of G-protein-coupled receptors, the kinin B1 and B2 receptors. It is generally accepted that the B2 receptor is constitutively expressed, whereas the B1 receptor is induced in response to inflammation. However, little is known about the regulatory effects of kinin receptors on the onset of acute inflammation and inflammatory pain in humans. The present study investigated the changes in gene expression of kinin receptors and the levels of their endogenous ligands at an early time point following tissue injury and their relation to clinical pain, as well as the effect of COX-inhibition on their expression levels. Results Tissue injury resulted in a significant up-regulation in the gene expression of B1 and B2 receptors at 3 hours post-surgery, the onset of acute inflammatory pain. Interestingly, the up-regulation in the gene expression of B1 and B2 receptors was positively correlated to pain intensity only after ketorolac treatment, signifying an interaction between prostaglandins and kinins in the inflammatory pain process. Further, the gene expression of both B1 and B2 receptors were correlated. Following tissue injury, B1 ligands des-Arg9-BK and des-Arg10-KD were significantly lower at the third hour compared to the first 2 hours in both the placebo and the ketorolac treatment groups but did not differ significantly between groups. Tissue injury also resulted in the down-regulation of TRPV1 gene expression at 3 hours post-surgery with no significant effect by ketorolac treatment. Interestingly, the change in gene expression of TRPV1 was correlated to the change in gene expression of B1 receptor but not B2 receptor. Conclusions These results provide evidence at the transcriptional level in a clinical model of tissue injury that up-regulation of kinin receptors are involved in the development of the early phase of inflammation and inflammatory pain. The up-regulation of B1 receptors may contribute to acute inflammatory pain through TRPV1 activation.
Collapse
Affiliation(s)
- May Hamza
- NINR/NIH, 10 Center drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Expression of metabotropic glutamate receptor mGluR5 in human dental pulp. J Endod 2009; 35:690-4. [PMID: 19410084 DOI: 10.1016/j.joen.2009.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/03/2009] [Accepted: 02/17/2009] [Indexed: 01/23/2023]
Abstract
Accumulating evidence indicates that the metabotropic glutamate receptor mGluR5 is involved in the peripheral mechanisms of inflammatory nociception. To investigate whether mGluR5 may mediate the inflammatory pain and thermal hyperalgesia in the dental pulp, we examined the expression of mGluR5 and transient receptor potential vanilloid 1 (TRPV1) in human dental pulp by immunohistochemistry and electron microscopy; mGluR5-immunopositive (+) axons were observed in nerve bundles and branched extensively within the peripheral coronal pulp. Most of the mGluR5+ axons were unmyelinated. A large fraction of these axons (36.5%) were immunostained for TRPV1. Immunoreactivity for mGluR5 and TRPV1 was also observed in odontoblasts. These results support the possibility that the nerve fibers in the dental pulp mediate inflammatory pain and thermal hyperalgesia through coactivation of mGluR5 and TRPV1 and also suggest a possible role for odontoblasts in the transduction of nociceptive signals via mGluR5-mediated mechanism.
Collapse
|
25
|
Marincsák R, Tóth BI, Czifra G, Márton I, Rédl P, Tar I, Tóth L, Kovács L, Bíró T. Increased expression of TRPV1 in squamous cell carcinoma of the human tongue. Oral Dis 2009; 15:328-35. [PMID: 19320840 DOI: 10.1111/j.1601-0825.2009.01526.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Recent reports have unambiguously identified the presence and the growth-modulatory role of transient receptor potential vanilloid-1 (TRPV1), a central integrator of pain sensation, on numerous non-neuronal cell types and, of great importance, in certain malignancies. In this study, we have investigated the molecular expression of TRPV1 in the human tongue and its high-incidence malignant (squamous cell carcinoma, SCC) and premalignant (leukoplakia) conditions. METHODS Immunohistochemistry, Western blotting and quantitative 'real-time' Q-PCR were performed to define the expression of TRPV1. RESULTS A weak and sparse TRPV1-specific immunoreactivity was identified in the basal layers of the healthy human tongue epithelium. By contrast, we observed a dramatically elevated TRPV1-immunoreactivity in all layers of the epithelium both in precancerous and malignant samples. Furthermore, statistical analysis revealed that the marked overexpression of TRPV1 found in all grades of SCC showed no correlation with the degree of malignancy of the tumours. Finally, the molecular expression of TRPV1 was also identified in an SCC-derived cell line and was shown to be increased in parallel with the accelerated growth of the cells. CONCLUSION Collectively, our findings identify TRPV1 as a novel, promising target molecule in the supportive treatment and diagnosis of human tongue SCC.
Collapse
Affiliation(s)
- R Marincsák
- Department of Physiology, University of Debrecen, Medical and Health Science Centre, Research Centre for Molecular Medicine, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sadofsky LR, Campi B, Trevisani M, Compton SJ, Morice AH. Transient receptor potential vanilloid-1-mediated calcium responses are inhibited by the alkylamine antihistamines dexbrompheniramine and chlorpheniramine. Exp Lung Res 2009; 34:681-93. [PMID: 19085565 DOI: 10.1080/01902140802339623] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
American guidelines, unlike European guidelines, support the use of antihistamines as a first line of treatment for some causes of chronic cough. Transient receptor potential vanilloid-1 (TRPV1) is an ion channel activated by the tussive agents capsaicin, resiniferatoxin, and protons. It is predominantly expressed by C-fiber and some Adelta -fiber sensory neurons and is thought to be a cough receptor. By measuring increases in intracellular calcium as an indicator of TRPV1 activation, the authors sought to determine whether antihistamines could antagonise TRPV1 permanently expressed in HEK and Pro5 cells and TRPV1 endogenously expressed in rat dorsal root ganglia neurons. In human TRPV1-expressing HEK cells (hTRPV1-HEK), diphenhydramine and fexofenadine failed to inhibit capsaicin-triggered calcium responses. However, both dexbrompheniramine and chlorpheniramine significantly inhibited capsaicin-evoked responses in hTRPV1-HEK. Dexbrompheniramine also inhibited activation of rat TRPV1 expressed in HEK and Pro5 cells, without interfering with TRPA1 and proteinase-activated receptor-2 (PAR(2)) activation. Finally, in rat dorsal root ganglia neuron preparations, dexbrompheniramine dose-dependently inhibited capsaicin-evoked calcium responses. Thus, the inhibition of TRPV1 activation by dexbrompheniramine may provide one potential mechanism whereby this antihistamine exerts its therapeutic effect in chronic cough.
Collapse
Affiliation(s)
- Laura R Sadofsky
- Division of Cardiovascular and Respiratory Studies, Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, United Kingdom.
| | | | | | | | | |
Collapse
|
27
|
Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 2008; 136:202-10. [PMID: 18337008 DOI: 10.1016/j.pain.2008.01.024] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/26/2007] [Accepted: 01/22/2008] [Indexed: 02/06/2023]
Abstract
The vanilloid receptor TRPV1 has been identified as a molecular target for the treatment of pain associated with inflammatory diseases and cancer. Hence, TRPV1 antagonists have been considered for therapeutic evaluation in such diseases. During Phase I clinical trials with AMG 517, a highly selective TRPV1 antagonist, we found that TRPV1 blockade elicited marked, but reversible, and generally plasma concentration-dependent hyperthermia. Similar to what was observed in rats, dogs, and monkeys, hyperthermia was attenuated after repeated dosing of AMG 517 (at the highest dose tested) in humans during a second Phase I trial. However, AMG 517 administered after molar extraction (a surgical cause of acute pain) elicited long-lasting hyperthermia with maximal body temperature surpassing 40 degrees C, suggesting that TRPV1 blockade elicits undesirable hyperthermia in susceptible individuals. Mechanisms of AMG 517-induced hyperthermia were then studied in rats. AMG 517 caused hyperthermia by inducing tail skin vasoconstriction and increasing thermogenesis, which suggests that TRPV1 regulates vasomotor tone and metabolic heat production. In conclusion, these results demonstrate that: (a) TRPV1-selective antagonists like AMG 517 cannot be developed for systemic use as stand alone agents for treatment of pain and other diseases, (b) individual susceptibility influences magnitude of hyperthermia observed after TRPV1 blockade, and (c) TRPV1 plays a pivotal role as a molecular regulator for body temperature in humans.
Collapse
|
28
|
Zhang F, Yang H, Wang Z, Mergler S, Liu H, Kawakita T, Tachado SD, Pan Z, Capó-Aponte JE, Pleyer U, Koziel H, Kao WWY, Reinach PS. Transient receptor potential vanilloid 1 activation induces inflammatory cytokine release in corneal epithelium through MAPK signaling. J Cell Physiol 2007; 213:730-9. [PMID: 17508360 DOI: 10.1002/jcp.21141] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In certain epithelial tissues, activation of transient receptor potential (TRP) vanilloid subtype 1 (TRPV1) by noxious stimuli induces pro-inflammatory cytokine release, which helps to mitigate the challenge. While the corneal epithelium elicits such responses to a variety of challenges, it remains unknown whether TRPV1 mediates pro-inflammatory cytokine secretion. Accordingly, we probed for TRPV1 expression and function in human (HCEC) and rabbit corneal epithelial cell (RCEC) lines, in their primary counterparts, and in human and mouse corneal epithelium in situ. Cell membrane and perinuclear TRPV1 expression was detected in all preparations and its identity verified by Western blot analysis. Capsaicin (CAP) (1-10 microM) increased nonselective cation channel whole cell currents (2.5-fold +/- 0.5-fold between -60 and 130 mV), resulting in calcium transients that were fully blocked by the TRPV1 antagonists capsazepine (CPZ) and ruthenium red, or removal of extracellular calcium. Another signaling event involved transient activation of global mitogen-activated protein kinase (MAPK) superfamily, which was followed by up to 3.3- and 9-fold increases in interleukins (IL)-6 and -8 release, respectively. Such increases in inflammatory mediators' release were suppressed by exposure to CPZ or MAPK inhibitors, or removal of Ca2+. Taken together, TRPV1 receptors may play a role in mediating corneal epithelial inflammatory mediator secretion and subsequent hyperalgesia.
Collapse
Affiliation(s)
- Fan Zhang
- Biological Sciences, the State University of New York, College of Optometry, New York, New York 10036, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wells JE, Bingham V, Rowland KC, Hatton J. Expression of Nav1.9 Channels in Human Dental Pulp and Trigeminal Ganglion. J Endod 2007; 33:1172-6. [PMID: 17889684 DOI: 10.1016/j.joen.2007.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 11/28/2022]
Abstract
There is a higher incidence of local anesthetic failure in endodontic patients experiencing pulpal hyperalgesia. Up-regulation of Nav1.9, a voltage-gated sodium channel isoform, might play a key role in local anesthetic failure because Nav1.9 channels increase neuronal excitability and have low sensitivity to blockade by local anesthetics. Immunocytochemistry was used to examine Nav1.9 channel expression in axons of symptomatic (painful) versus asymptomatic human dental pulp and to determine Nav1.9 expression levels in neuronal somata of the human trigeminal ganglion. Nav1.9 channel immunoreactivity on pulpal axons was significantly increased in painful teeth. Nav1.9 channels were expressed in membranes and cytoplasm of human trigeminal ganglion neurons, with the highest expression in small neuronal somata. Nav1.9 expression in the trigeminal ganglion coupled with increased expression in symptomatic pulp might contribute to hypersensitivity of inflamed pulps and local anesthetic failure. Furthermore, the present study suggests that Nav1.9 channels are potential targets for novel anesthetics.
Collapse
Affiliation(s)
- Jason E Wells
- Southern Illinois University School of Dental Medicine, Alton, Illinois 62002, USA.
| | | | | | | |
Collapse
|
30
|
Alvarado LT, Perry GM, Hargreaves KM, Henry MA. TRPM8 Axonal expression is decreased in painful human teeth with irreversible pulpitis and cold hyperalgesia. J Endod 2007; 33:1167-71. [PMID: 17889683 PMCID: PMC2727874 DOI: 10.1016/j.joen.2007.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 06/22/2007] [Accepted: 06/22/2007] [Indexed: 01/20/2023]
Abstract
Pulpitis pain might be triggered by a cold stimulus, yet the cellular mechanisms responsible for this phenomenon are largely unknown. One possible mechanism involves the direct activation of cold-responsive thermoreceptors. The purpose of this study was to evaluate the possible role of the TRPM8 thermoreceptor in cold-mediated noxious pulpal pain mechanisms by comparing expression patterns in pulpal nerves from healthy control molars to cold-sensitive painful molars with irreversible pulpitis. Samples were identically processed with the indirect immunofluorescence method, and images were obtained with confocal microscopy. The immunofluorescence intensity and area occupied by TRPM8 within N52/PGP9.5-identified nerve fibers were quantified. Results showed that relative to normal samples, TRPM8 nerve area expression was significantly less in the cold-sensitive painful samples (34.9% vs 8%, P <0.03), but with no significant difference in immunofluorescence intensity between the 2 groups. These results suggest that TRPM8 is most likely not involved in cold-mediated noxious pulpal pain mechanisms.
Collapse
Affiliation(s)
- Lisa T Alvarado
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
31
|
Engler A, Aeschlimann A, Simmen BR, Michel BA, Gay RE, Gay S, Sprott H. Expression of transient receptor potential vanilloid 1 (TRPV1) in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Biochem Biophys Res Commun 2007; 359:884-8. [PMID: 17560936 DOI: 10.1016/j.bbrc.2007.05.178] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 05/25/2007] [Indexed: 11/19/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel, which is mainly expressed by nociceptive neurons in dorsal root and trigeminal ganglia. However, there is increasing evidence that TRPV1 expression is not limited to primary afferent neurons but that the receptor is expressed in various cell types throughout the body. Here, we demonstrate the expression of TRPV1 in synovial fibroblasts (SF) from patients with symptomatic osteoarthritis (OA) and rheumatoid arthritis (RA). In addition, the mRNA expression of TRPV1 was shown in PBMCs from healthy controls and from OA patients. The presence of TRPV1 was confirmed at the protein level. Stimulation of cultured OA- and RA-SF with the TRPV1 agonist capsaicin led to increased expression of IL-6 mRNA as well as of IL-6 protein in the cell culture supernatants. IL-6 protein expression could be antagonized with capsazepine. Thus, we hypothesize that TRPV1 may play a role in non-neuronal mechanisms that might modulate nociception in symptomatic OA and RA patients.
Collapse
Affiliation(s)
- Andrea Engler
- Center of Experimental Rheumatology, Department of Rheumatology and Institute of Physical Medicine, University Hospital, Gloriastrasse 25, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Seki N, Shirasaki H, Kikuchi M, Himi T. Capsaicin induces the production of IL-6 in human upper respiratory epithelial cells. Life Sci 2007; 80:1592-7. [PMID: 17306835 DOI: 10.1016/j.lfs.2007.01.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 01/11/2007] [Accepted: 01/18/2007] [Indexed: 11/16/2022]
Abstract
Capsaicin, a type of alkaloid and the pungent component of chili peppers, is used as a therapeutic drug against allergic rhinitis and also as an index of bronchial hypersensitivity. Capsaicin receptor (TRPV1) expression has been identified in non-neuronal cells as well as neuronal cells. In our previous study, both TRPV1 protein and its gene expression on nasal epithelial cells were confirmed by immunohistochemistry and RT-PCR, respectively. In order to clarify whether or not TRPV1 acts as a functional receptor, we examined the effects of capsaicin on the production of IL-6 from primary cultured human airway epithelial cells at both protein and mRNA levels. Human nasal epithelial cells (HNECs) and normal human bronchial/tracheal epithelial cells (NHBE cells) were stimulated with increasing concentrations of capsaicin and/or pretreatment with capsazepine (TRPV1 antagonist) at 37 degrees C. The supernatant and total RNA were collected at 0, 4, 12, 24 and 48 h after treatment. IL-6 concentration and the IL-6 mRNA level were evaluated by ELISA and real-time PCR, respectively. Capsaicin (10 nM-10 muM) induced production of IL-6 from HNECs and NHBE cells and this effect was inhibited by pretreatment with capsazepine. Our findings suggest that topical application of capsaicin to the airway induces IL-6 production from respiratory epithelial cells via activation of TRPV1.
Collapse
Affiliation(s)
- Nobuhiko Seki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo 060-8543, Japan.
| | | | | | | |
Collapse
|
33
|
Biggs JE, Yates JM, Loescher AR, Clayton NM, Boissonade FM, Robinson PP. Vanilloid receptor 1 (TRPV1) expression in lingual nerve neuromas from patients with or without symptoms of burning pain. Brain Res 2006; 1127:59-65. [PMID: 17109831 DOI: 10.1016/j.brainres.2006.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 10/02/2006] [Accepted: 10/02/2006] [Indexed: 11/17/2022]
Abstract
The lingual nerve, a peripheral branch of the trigeminal nerve, can be damaged during the surgical removal of lower third molar teeth. This damage can lead to the development of dysaesthesia, with some patients complaining of burning pain. We investigated the hypothesis that vanilloid receptor 1 (TRPV1), a transducer of noxious heat stimuli, was involved in the development of this burning pain. Neuroma specimens were obtained from patients undergoing microsurgical repair of a damaged lingual nerve. Repair was undertaken where there was little evidence of spontaneous recovery, 7-41 months after the initial injury. Preoperatively the incidence of dysaesthesia was determined by reported symptoms and using visual analogue scales (VAS) for pain, tingling and discomfort. Nine neuromas were studied from patients with burning dysaesthesia and six from patients with a sensory deficit but no dysaesthesia. Indirect immunofluorescence for protein gene product (PGP) 9.5 and TRPV1 was used to quantify the percentage area of PGP 9.5 positive neuronal tissue that also expressed TRPV1. The results showed no significant difference between the mean percentage area of TRPV1 expression in neuromas from patients with or without burning dysaesthesia. Furthermore, there was no correlation between TRPV1 expression and the VAS scores for pain, tingling or discomfort. However, if data from all patients was pooled, there was a negative correlation between the level of TRPV1 expression and the time after initial injury. These data do not rule out involvement of TRPV1 in the aetiology of burning dysaesthesia following lingual nerve injury but suggest that TRPV1 at the injury site does not play a primary role.
Collapse
Affiliation(s)
- James E Biggs
- Department of Oral and Maxillofacial Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, S10 2TA, UK.
| | | | | | | | | | | |
Collapse
|