1
|
González‐López P, Álvarez‐Villarreal M, Ruiz‐Simón R, López‐Pastor AR, de Ceniga MV, Esparza L, Martín‐Ventura JL, Escribano Ó, Gómez‐Hernández A. Role of miR-15a-5p and miR-199a-3p in the inflammatory pathway regulated by NF-κB in experimental and human atherosclerosis. Clin Transl Med 2023; 13:e1363. [PMID: 37605307 PMCID: PMC10442475 DOI: 10.1002/ctm2.1363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) prevalence has significantly increased in the last decade and atherosclerosis development is the main trigger. MicroRNAs (miRNAs) are non-coding RNAs that negatively regulate gene expression of their target and their levels are frequently altered in CVDs. METHODS By RT-qPCR, we analysed miR-9-5p, miR-15a-5p, miR-16-5p and miR-199a-3p levels in aorta from apolipoprotein knockout (ApoE-/- ) mice, an experimental model of hyperlipidemia-induced atherosclerosis, and in human aortic and carotid atherosclerotic samples. By in silico studies, Western blot analysis and immunofluorescence studies, we detected the targets of the altered miRNAs. RESULTS Our results show that miR-15a-5p and miR-199a-3p are significantly decreased in carotid and aortic samples from patients and mice with atherosclerosis. In addition, we found an increased expression in targets of both miRNAs that participate in the inflammatory pathway of nuclear factor kappa B (NF-κB), such as IKKα, IKKβ and p65. In human vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs), the overexpression of miR-15a-5p or miR-199a-3p decreased IKKα, IKKβ and p65 protein levels as well as NF-κB activation. On the other hand, miR-15a-5p and miR-199a-3p overexpression reduced ox-LDL uptake and the inflammation regulated by NF-κB in VSMCs. Moreover, although miR-15a-5p and miR-199a-3p were significantly increased in exosomes from patients with advanced carotid atherosclerosis, only in the ROC analyses for miR-15a-5p, the area under the curve was 0.8951 with a p value of .0028. CONCLUSIONS Our results suggest that the decrease of miR-199a-3p and miR-15a-5p in vascular samples from human and experimental atherosclerosis could be involved in the NF-κB activation pathway, as well as in ox-LDL uptake by VSMCs, contributing to inflammation and progression atherosclerosis. Finally, miR-15a-5p could be used as a novel diagnostic biomarker for advanced atherosclerosis.
Collapse
Affiliation(s)
- Paula González‐López
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Marta Álvarez‐Villarreal
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Rubén Ruiz‐Simón
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Andrea R. López‐Pastor
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular SurgeryHospital of Galdakao‐UsansoloGaldakaoBizkaiaSpain
- Biocruces Bizkaia Health Research InstituteBarakaldoBizkaiaSpain
| | - Leticia Esparza
- Department of Angiology and Vascular SurgeryHospital of Galdakao‐UsansoloGaldakaoBizkaiaSpain
- Biocruces Bizkaia Health Research InstituteBarakaldoBizkaiaSpain
| | | | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Almudena Gómez‐Hernández
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| |
Collapse
|
2
|
Gan J, Guo L, Zhang X, Yu Q, Yang Q, Zhang Y, Zeng W, Jiang X, Guo M. Anti-inflammatory therapy of atherosclerosis: focusing on IKKβ. J Inflamm (Lond) 2023; 20:8. [PMID: 36823573 PMCID: PMC9951513 DOI: 10.1186/s12950-023-00330-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic low-grade inflammation has been identified as a major contributor in the development of atherosclerosis. Nuclear Factor-κappa B (NF-κB) is a critical transcription factors family of the inflammatory pathway. As a major catalytic subunit of the IKK complex, IκB kinase β (IKKβ) drives canonical activation of NF-κB and is implicated in the link between inflammation and atherosclerosis, making it a promising therapeutic target. Various natural product derivatives, extracts, and synthetic, show anti-atherogenic potential by inhibiting IKKβ-mediated inflammation. This review focuses on the latest knowledge and current research landscape surrounding anti-atherosclerotic drugs that inhibit IKKβ. There will be more opportunities to fully understand the complex functions of IKKβ in atherogenesis and develop new effective therapies in the future.
Collapse
Affiliation(s)
- Jiali Gan
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Guo
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qun Yu
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuyue Yang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- grid.459559.10000 0004 9344 2915Oncology department, Ganzhou People’s Hospital, Ganzhou, Jiangxi China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
3
|
Rodrigues‐Diez RR, Tejera‐Muñoz A, Marquez‐Exposito L, Rayego‐Mateos S, Santos Sanchez L, Marchant V, Tejedor Santamaria L, Ramos AM, Ortiz A, Egido J, Ruiz‐Ortega M. Statins: Could an old friend help in the fight against COVID-19? Br J Pharmacol 2020; 177:4873-4886. [PMID: 32562276 PMCID: PMC7323198 DOI: 10.1111/bph.15166] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has overwhelmed healthcare systems requiring the rapid development of treatments, at least, to reduce COVID-19 severity. Drug repurposing offers a fast track. Here, we discuss the potential beneficial effects of statins in COVID-19 patients based on evidence that they may target virus receptors, replication, degradation, and downstream responses in infected cells, addressing both basic research and epidemiological information. Briefly, statins could modulate virus entry, acting on the SARS-CoV-2 receptors, ACE2 and CD147, and/or lipid rafts engagement. Statins, by inducing autophagy activation, could regulate virus replication or degradation, exerting protective effects. The well-known anti-inflammatory properties of statins, by blocking several molecular mechanisms, including NF-κB and NLRP3 inflammasomes, could limit the "cytokine storm" in severe COVID-19 patients which is linked to fatal outcome. Finally, statin moderation of coagulation response activation may also contribute to improving COVID-19 outcomes. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Raul R. Rodrigues‐Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Antonio Tejera‐Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Laura Marquez‐Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Sandra Rayego‐Mateos
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
- GE‐06 Pathophysiology of Renal and Vascular Damage Laboratory, Maimonides Biomedical Research Institute of Cordoba (IMIBIC)University of CórdobaCórdobaSpain
| | - Laura Santos Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Lucía Tejedor Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Adrian M. Ramos
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
- Laboratory of Nephrology and HypertensionFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
- Laboratory of Nephrology and HypertensionFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz Universidad AutónomaMadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Marta Ruiz‐Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
4
|
González F, Considine RV, Abdelhadi OA, Acton AJ. Inflammation Triggered by Saturated Fat Ingestion Is Linked to Insulin Resistance and Hyperandrogenism in Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2020; 105:5788228. [PMID: 32140727 PMCID: PMC7150616 DOI: 10.1210/clinem/dgaa108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022]
Abstract
CONTEXT Inflammation and insulin resistance are often present in polycystic ovary syndrome (PCOS). OBJECTIVE We determined the effect of saturated fat ingestion on mononuclear cell (MNC) nuclear factor-κB (NFκB) activation; NFκB, inhibitory-κBα (IκBα), and tumor necrosis factor-α (TNFα) gene expression; and circulating C-reactive protein (CRP) in women with PCOS. DESIGN Cross-sectional study. SETTING Academic medical center. PATIENTS Twenty reproductive-age women with PCOS (10 lean, 10 with obesity) and 20 ovulatory controls (10 lean, 10 with obesity). MAIN OUTCOME MEASURES Activated NFκB, NFκB heterodimer subunits, IκBα and TNFα messenger ribonucleic acid content and NFκB p65 and IκBα protein content were quantified in mononuclear cells (MNC), and CRP was measured in plasma from blood drawn fasting and 2, 3, and 5 h after saturated fat ingestion. Insulin sensitivity was derived from oral glucose tolerance testing (ISOGTT). Androgen secretion was assessed from blood drawn fasting and 24, 48, and 72 h after human chorionic gonadotropin (HCG) administration. RESULTS In response to saturated fat ingestion, women with PCOS regardless of weight class exhibited lipid-induced increases in activated NFκB, NFκB, and TNFα gene expression and plasma CRP and decreases in IκBα protein compared with lean control subjects. Both PCOS groups exhibited lower ISOGTT and greater HCG-stimulated androgen secretion compared with control subjects. Lipid-stimulated NFκB activation was negatively correlated with ISOGTT, and positively correlated with HCG-stimulated androgen secretion. CONCLUSION In PCOS, increases in NFκB activation and circulating CRP and decreases in IκBα protein following saturated fat ingestion are independent of obesity. Circulating MNC and excess adipose tissue are separate and distinct contributors to inflammation in this disorder.
Collapse
Affiliation(s)
- Frank González
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL
- Correspondence and Reprint Requests: Frank González, MD, University of Illinois at Chicago College of Medicine, Department of Obstetrics and Gynecology, 820 S. Wood Street m/c 808, CSN 276, Chicago, IL 60612. E-mail:
| | - Robert V Considine
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Ola A Abdelhadi
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | - Anthony J Acton
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
5
|
Campos-Estrada C, Liempi A, González-Herrera F, Lapier M, Kemmerling U, Pesce B, Ferreira J, López-Muñoz R, Maya JD. Simvastatin and Benznidazole-Mediated Prevention of Trypanosoma cruzi-Induced Endothelial Activation: Role of 15-epi-lipoxin A4 in the Action of Simvastatin. PLoS Negl Trop Dis 2015; 9:e0003770. [PMID: 25978361 PMCID: PMC4433340 DOI: 10.1371/journal.pntd.0003770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi is the causal agent of Chagas Disease that is endemic in Latin American, afflicting more than ten million people approximately. This disease has two phases, acute and chronic. The acute phase is often asymptomatic, but with time it progresses to the chronic phase, affecting the heart and gastrointestinal tract and can be lethal. Chronic Chagas cardiomyopathy involves an inflammatory vasculopathy. Endothelial activation during Chagas disease entails the expression of cell adhesion molecules such as E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) through a mechanism involving NF-κB activation. Currently, specific trypanocidal therapy remains on benznidazole, although new triazole derivatives are promising. A novel strategy is proposed that aims at some pathophysiological processes to facilitate current antiparasitic therapy, decreasing treatment length or doses and slowing disease progress. Simvastatin has anti-inflammatory actions, including improvement of endothelial function, by inducing a novel pro-resolving lipid, the 5-lypoxygenase derivative 15-epi-lipoxin A4 (15-epi-LXA4), which belongs to aspirin-triggered lipoxins. Herein, we propose modifying endothelial activation with simvastatin or benznidazole and evaluate the pathways involved, including induction of 15-epi-LXA4. The effect of 5 μM simvastatin or 20 μM benznidazole upon endothelial activation was assessed in EA.hy926 or HUVEC cells, by E-selectin, ICAM-1 and VCAM-1 expression. 15-epi-LXA4 production and the relationship of both drugs with the NFκB pathway, as measured by IKK-IKB phosphorylation and nuclear migration of p65 protein was also assayed. Both drugs were administered to cell cultures 16 hours before the infection with T. cruzi parasites. Indeed, 5 μM simvastatin as well as 20 μM benznidazole prevented the increase in E-selectin, ICAM-1 and VCAM-1 expression in T. cruzi-infected endothelial cells by decreasing the NF-κB pathway. In conclusion, Simvastatin and benznidazole prevent endothelial activation induced by T. cruzi infection, and the effect of simvastatin is mediated by the inhibition of the NFκB pathway by inducing 15-epi-LXA4 production.
Collapse
Affiliation(s)
- Carolina Campos-Estrada
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ana Liempi
- Anatomy and Developmental Biology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fabiola González-Herrera
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Michel Lapier
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Anatomy and Developmental Biology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Barbara Pesce
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Ferreira
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo López-Muñoz
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan D. Maya
- Molecular and Clinical Pharmacology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
6
|
Fernández-Laso V, Sastre C, Egido J, Martín-Ventura JL, Blanco-Colio LM. [Atorvastatin inhibits the atherosclerotic lesion induced by tumor necrosis factor-like weak inducer of apoptosis in apolipoprotein E deficient mice]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2014; 27:17-25. [PMID: 25027757 DOI: 10.1016/j.arteri.2014.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 11/20/2022]
Abstract
AIM Interaction of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) with its receptor Fn14 accelerates atherosclerotic plaque development in ApoE deficient mice (ApoE KO). In this work, an analysis has been made on the effect of an HMG-CoA reductase inhibitor, atorvastatin, on atherosclerotic plaque development accelerated by TWEAK in ApoE KO mice. MATERIALS AND METHODS Eight week-old ApoE KO mice were fed with a high cholesterol diet for 4 weeks. The animals were then randomized into 3 groups: mice injected i.p. with saline, recombinant TWEAK (10 μg/kg/twice a week), or recombinant TWEAK plus atorvastatin (1 mg/kg/day) for 4 weeks. The lesion size, cellular composition, lipid and collagen content were analyzed, as well as inflammatory response in atherosclerotic plaques present in aortic root of mice. RESULTS TWEAK treated mice showed an increase in atherosclerotic plaque size, as well as in collagen/lipid ratio compared with control mice. In addition, macrophage content, MCP-1 and RANTES expression, and NF-κB activation were augmented in atherosclerotic plaques present in aortic root of TWEAK treated mice compared with control mice. Treatment with atorvastatin prevented all these changes induced by TWEAK in atherosclerotic lesions. Atorvastatin treatment also decreased Fn14 expression in the atherosclerotic plaques of ApoE KO mice. CONCLUSIONS Atorvastatin prevents the pro-atherogenic effects induced by TWEAK in ApoE KO mice, which could be related to the inhibition of Fn14 expression. The results of this study provide new information on the beneficial effects of statin treatment in cardiovascular diseases.
Collapse
Affiliation(s)
- Valvanera Fernández-Laso
- Laboratorio de Patología Vascular, Instituto de Investigación Sanitaria (ISS)-Fundación Jiménez Díaz, Madrid, España
| | - Cristina Sastre
- Laboratorio de Patología Vascular, Instituto de Investigación Sanitaria (ISS)-Fundación Jiménez Díaz, Madrid, España
| | - Jesús Egido
- Laboratorio de Patología Vascular, Instituto de Investigación Sanitaria (ISS)-Fundación Jiménez Díaz, Madrid, España
| | - Jose L Martín-Ventura
- Laboratorio de Patología Vascular, Instituto de Investigación Sanitaria (ISS)-Fundación Jiménez Díaz, Madrid, España
| | - Luis M Blanco-Colio
- Laboratorio de Patología Vascular, Instituto de Investigación Sanitaria (ISS)-Fundación Jiménez Díaz, Madrid, España.
| |
Collapse
|
7
|
Margaritis M, Channon KM, Antoniades C. Statins as regulators of redox state in the vascular endothelium: beyond lipid lowering. Antioxid Redox Signal 2014; 20:1198-215. [PMID: 24111702 PMCID: PMC3934595 DOI: 10.1089/ars.2013.5430] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Endothelial dysfunction and the imbalance between nitric oxide (NO) and reactive oxygen species production in the vascular endothelium are important early steps in atherogenesis, a major socioeconomic health problem. Statins have well-established roles in primary and secondary prevention of cardiovascular disease (CVD), due to both their lipid-lowering capacity and their pleiotropic properties. It is therefore important to understand the mechanisms by which statins can modify endothelial function and affect atherogenesis. RECENT ADVANCES In the last decade, the concept of statin pleiotropy has been reinforced by a large number of cell culture, animal, and translational studies. Statins have been shown to suppress the activity of pro-oxidant enzymes (such as NADPH oxidase) and pro-inflammatory transcriptional pathways in the endothelium. At the same time, they enhance endothelial NO synthase expression and activity while they also improve its enzymatic coupling. This leads to increased NO bioavailability and improved endothelial function. CRITICAL ISSUES Despite significant recent advances, the exact mechanisms of statin pleitropy are still only partially understood. The vast majority of the published literature relies on animal studies, while the actual mechanistic studies in humans are limited. FUTURE DIRECTIONS The success of statins as endothelium redox-modifying agents with a direct impact on clinical outcome highlights the importance of the endothelium as a therapeutic target in CVD. Better understanding of the mechanisms that underlie endothelial dysfunction could lead to the design of novel therapeutic strategies that target the vascular endothelium for the prevention and treatment of CVD.
Collapse
Affiliation(s)
- Marios Margaritis
- Division of Cardiovascular Medicine, University of Oxford , Oxford, United Kingdom
| | | | | |
Collapse
|
8
|
Ouyang YB, Giffard RG. MicroRNAs regulate the chaperone network in cerebral ischemia. Transl Stroke Res 2013; 4:693-703. [PMID: 24323423 PMCID: PMC3864745 DOI: 10.1007/s12975-013-0280-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 01/17/2023]
Abstract
The highly evolutionarily conserved 70 kDa heat shock protein (HSP70) family was first understood for its role in protein folding and response to stress. Subsequently, additional functions have been identified for it in regulation of organelle interaction, of the inflammatory response, and of cell death and survival. Overexpression of HSP70 family members is associated with increased resistance to and improved recovery from cerebral ischemia. MicroRNAs (miRNAs) are important posttranscriptional regulators that interact with multiple target messenger RNAs (mRNA) coordinately regulating target genes, including chaperones. The members of the HSP70 family are now appreciated to work together as networks to facilitate organelle communication and regulate inflammatory signaling and cell survival after cerebral ischemia. This review will focus on the new concept of the role of the chaperone network in the organelle network and its novel regulation by miRNA.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine, 300 Pasteur Drive, S272A and S290, Stanford, CA, 94305-5117, USA,
| | | |
Collapse
|
9
|
Chen LC, Hsu C, Chiueh CC, Lee WS. Ferrous citrate up-regulates the NOS2 through nuclear translocation of NFκB induced by free radicals generation in mouse cerebral endothelial cells. PLoS One 2012; 7:e46239. [PMID: 23029446 PMCID: PMC3460898 DOI: 10.1371/journal.pone.0046239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Previous studies indicate that the inducible nitric oxide synthase 2 (NOS2) of the brain vascular tissue in experimental subarachnoid hemorrhage (SAH) rats is a critical factor for inducing cerebral vasospasm. However, the underlying molecular mechanisms remain to be elucidated. Here, we applied ferrous citrate (FC) complexes to the primary cultured mouse cerebral endothelial cell (CEC) to mimic the SAH conditions and to address the issue how SAH-induced NOS2 up-regulation. Using immunocytochemical staining technique, we demonstrated that NOS2 was expressed in the cultured CEC. Treatment of the CEC with FC induced increases of the intracellular level of ROS, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) nuclear translocation as well as NFκB binding onto the NOS promoter, and the levels of NOS2 mRNA and protein. These effects were abolished by pre-treatment of the cell with N-Acetyl-Cysteine (NAC), a reactive oxygen species (ROS) scavenger. In the present study, two previously predicted NFκB binding sites were confirmed in the NOS2 promoter within the range of −1529 bp to −1516 bp and −1224 bp to −1210 bp. Interestingly, both NFκB binding sites are involved in the FC-activated NOS2 transcriptional activity; the binding site located at −1529 bp to −1516 bp played a greater role than the other binding site located at −1224 bp to −1210 bp in the mouse CEC. These findings highlight the molecular mechanism underlying FC-induced up-regulation of NOS2 in the mouse CEC.
Collapse
Affiliation(s)
- Li-Ching Chen
- Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin Hsu
- Department of Physiology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Piechota-Polanczyk A, Goraca A, Demyanets S, Mittlboeck M, Domenig C, Neumayer C, Wojta J, Nanobachvili J, Huk I, Klinger M. Simvastatin Decreases Free Radicals Formation in the Human Abdominal Aortic Aneurysm Wall via NF-κB. Eur J Vasc Endovasc Surg 2012; 44:133-7. [DOI: 10.1016/j.ejvs.2012.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/21/2012] [Indexed: 01/23/2023]
|
11
|
Li YB, Yin JJ, Wang HJ, Wang J, Tian H, Yang M. Effect of simvastatin on expression of transforming growth factor-β and collagen type IV in rat mesangial cells. Pharmacology 2011; 88:188-92. [PMID: 21952298 DOI: 10.1159/000330739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/21/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Diabetic nephropathy is characterized by the accumulation of extracellular matrix in the glomerular mesangium as a result of an imbalance between matrix synthesis and degradation. Since simvastatin has been proposed to decrease renal interstitial fibrosis, we hypothesized that the protective effect of statins was related to the expression of transforming growth factor-β (TGF-β) and type IV collagen (Col IV). METHODS Cultured rat mesangial cells (RMC) were exposed to high glucose (HG), advanced glycosylation end products (AGE) or H(2)O(2) in the absence and presence of simvastatin. Expression of TGF-β and Col IV was determined by Western blotting. RESULTS Coincubation of RMC with HG, AGE or H(2)O(2) resulted in a significant increase of the expression of TGF-β and Col IV (p < 0.05). Simvastatin significantly inhibited HG-, AGE- or H(2)O(2)-induced expression of TGF-β and Col IV (p < 0.05). Moreover, simvastatin also inhibited HG-, AGE- and H(2)O(2)-induced activation of p38 mitogen-activated protein kinase, which indicated that the preventive effect of simvastatin on TGF-β and Col IV may be associated with p38. CONCLUSION These findings suggest that simvastatin can reduce HG-, AGE- and H(2)O(2)-induced expression of TGF-β and Col IV by inhibition of the p38 pathway.
Collapse
Affiliation(s)
- Yan-Bo Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | | | | | | | | | | |
Collapse
|
12
|
Dąbek J, Kułach A, Gąsior Z. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB): a new potential therapeutic target in atherosclerosis? Pharmacol Rep 2010; 62:778-83. [DOI: 10.1016/s1734-1140(10)70338-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 03/09/2010] [Indexed: 01/04/2023]
|
13
|
Wang L, Gong F, Dong X, Zhou W, Zeng Q. Regulation of vascular smooth muscle cell proliferation by nuclear orphan receptor Nur77. Mol Cell Biochem 2010; 341:159-66. [DOI: 10.1007/s11010-010-0447-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/17/2010] [Indexed: 12/11/2022]
|
14
|
Ozbek E, Cekmen M, Ilbey YO, Simsek A, Polat EC, Somay A. Atorvastatin prevents gentamicin-induced renal damage in rats through the inhibition of p38-MAPK and NF-kappaB pathways. Ren Fail 2010; 31:382-92. [PMID: 19839839 DOI: 10.1080/08860220902835863] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND AND AIMS Gentamicin (GM) is still considered to be an important antibiotic against life-threatening, gram-negative bacterial infections despite its known nephrotoxic effects. We aimed to evaluate the potential protective effect of atorvastatin (ATO) against GM-induced nephrotoxicity in rats. MATERIALS AND METHODS The rats were randomly divided into five groups of six animals each: control, GM (100 mg/kg/day), ATO (10 mg/kg/day), GM + ATO, and GM + Vehicle. Kidney function tests, tissue oxidative stress parameters, and histopathological and immunohistochemical studies clarified GM nephrotoxicity. RESULTS GM caused a marked reduction in renal functions and increased oxidative stress parameters. Histopathological examination revealed tubular necrosis especially in the renal cortex in GM rats. On immunohistochemical evaluation, GM rat showed more intense expressions of mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-kappaB), and inducible nitric oxide synthase (iNOS) compared with control. Kidney function tests and tissue oxidative stress parameters were normalized in the GM + ATO group. Histopathological and immunohistochemical pictures were also greatly ameliorated. CONCLUSIONS ATO acts in the kidney as a potent scavenger of free radicals to prevent the toxic effects of GM via the inhibition of MAPK and NF-kappaB signaling pathways and iNOS expression.
Collapse
Affiliation(s)
- Emin Ozbek
- Bezm-i Alem Valide Sultan Vakif Gureba Research and Education Hospital, Department of Urology, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
15
|
Jajoria P, Murthy V, Papalardo E, Romay-Penabad Z, Gleason C, Pierangeli SS. Statins for the Treatment of Antiphospholipid Syndrome? Ann N Y Acad Sci 2009; 1173:736-45. [DOI: 10.1111/j.1749-6632.2009.04815.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Qi XF, Kim DH, Yoon YS, Li JH, Jin D, Teng YC, Kim SK, Lee KJ. Fluvastatin inhibits expression of the chemokine MDC/CCL22 induced by interferon-gamma in HaCaT cells, a human keratinocyte cell line. Br J Pharmacol 2009; 157:1441-50. [PMID: 19594754 DOI: 10.1111/j.1476-5381.2009.00311.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The macrophage-derived chemokine (MDC/CCL22) is a prototypic Th2-type chemokine intimately involved in Th2-skewed allergic diseases, such as atopic dermatitis and asthma. The statins (3-hydroxy-3-methyl glutaryl coenzyme A reductase inhibitors) have been demonstrated to relieve allergic inflammation. However, the immunological effects and mechanisms of statins against atopic dermatitis remain unknown, at least in vitro. This study aimed to define how different statins affect MDC expression in HaCaT cells, a human keratinocyte cell line. EXPERIMENTAL APPROACH To measure the effects of statins on MDC expression in HaCaT cells, we used a cell viability assay, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay and Western blotting analyses. KEY RESULTS Fluvastatin, but not atorvastatin or simvastatin, inhibited MDC expression induced by interferon (IFN)-gamma and NF-kappaB activation. A NF-kappaB inhibitor, but not a STAT1 inhibitor, suppressed MDC expression in HaCaT cells. Further, inhibition of p38 mitogen-activated protein kinases (MAPKs) significantly suppressed IFN-gamma-induced MDC expression and NF-kappaB activation. Interestingly, fluvastatin suppressed IFN-gamma-induced NF-kappaB activation in parallel with p38 MAPK phosphorylation. CONCLUSIONS AND IMPLICATIONS These results indicate that fluvastatin inhibited expression of the CC chemokine MDC induced by IFN-gamma in HaCaT cells, by inhibiting NF-kappaB activation via the p38 MAPK pathway. This blockade of a Th2 chemokine by fluvastatin may suppress the infiltration of Th2 cells into skin lesions and lessen the skin inflammation seen in atopic dermatitis, suggesting a potential therapeutic use of fluvastatin for this condition.
Collapse
Affiliation(s)
- Xu-Feng Qi
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Montecucco F, Burger F, Pelli G, Poku NK, Berlier C, Steffens S, Mach F. Statins inhibit C-reactive protein-induced chemokine secretion, ICAM-1 upregulation and chemotaxis in adherent human monocytes. Rheumatology (Oxford) 2009; 48:233-42. [DOI: 10.1093/rheumatology/ken466] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Affiliation(s)
- Genovefa D Kolovou
- 1st Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece.
| | | | | | | |
Collapse
|
19
|
Yang X, Wang L, Zeng H, Dubey L, Zhou N, Pu J. Effects of simvastatin on NF-kappaB-DNA binding activity and monocyte chemoattractant protein-1 expression in a rabbit model of atherosclerosis. ACTA ACUST UNITED AC 2008; 26:194-8. [PMID: 16850745 DOI: 10.1007/bf02895814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To observe the effects of simvastatin on nuclear factor kappaB (NF-kappaB)-DNA binding activity and on the expression of monocyte chemoattractant protein-1 (MCP-1) in atherosclerotic plaque in rabbits and to explore the anti-atherosclerotic properties beyond its lipid-lowering effects. Thirty-six New Zealand male rabbits were randomly divided into low-cholesterol group (LC), high-cholesterol group (HC), high-cholesterol+simvastatin group (HC+S) and then were fed for 12 weeks. At the end of the experiment, standard enzymatic assays, electrophoretic mobility shiftassay (EMSA), immunohistochemical staining, and morphometry were performed to observe serum lipids, NF-kappaB-DNA binding activity, MCP-1 protein expression, intima thickness and plaque area of aorta respectively in all three groups. Our results showed that the serum lipids, NF-kappaB-DNA binding activity, expression of MCP-1 protein, intima thickness, and plaque area of aorta in the LC and HC+S groups were significantly lower than those in the HC group (P<0.05). There was no significant difference in the serum lipids between the LC and HC+S groups (P>0.05), but the NF-kappaB-DNA binding activity, the expression of MCP-1 protein and the intima thickness and plaque area of aorta in the HC+S group were significantly decreased as compared to the LC group (P<0.05). This study demonstrated that simvastatin could decrease atherosclerosis by inhibiting the NF-kappaB-DNA binding activity and by reducing the expression of MCP-1 protein.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Department of Cardiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
20
|
Aberg M, Wickström M, Siegbahn A. Simvastatin induces apoptosis in human breast cancer cells in a NFkappaB-dependent manner and abolishes the anti-apoptotic signaling of TF/FVIIa and TF/FVIIa/FXa. Thromb Res 2007; 122:191-202. [PMID: 18031796 DOI: 10.1016/j.thromres.2007.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/17/2007] [Accepted: 09/18/2007] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Statins have benefits independent of the plasma cholesterol properties among cancer patients and tissue factor (TF)/FVIIa induce PI3-kinase/AKT dependent anti-apoptosis during serum starvation. We analyzed how simvastatin induces apoptosis in human breast cancer cells and the influence of FVIIa and/or FXa on the proposed apoptosis. MATERIALS AND METHODS MDA-MB-231 cells were serum starved or treated with 5 microM simvastatin and incubated with 10 and 100 nM FVIIa or 5/130 nM FVIIa/FX. RhoA was analyzed by confocal microscopy and caspase-3, nuclear fragmentation, and NFkappaB translocation were measured using the ArrayScan microscope. mRNA for BCL-2, AKT1 and TF were analyzed with RT-PCR or TaqMan. Protein levels and phosphorylation of PKB/AKT were determined by western blotting. RESULTS AND CONCLUSIONS Simvastatin-induced apoptosis was recorded at 48 h in the MDA-MB-231 cells. Addition of FVIIa to the cells induced PKB/AKT phosphorylation at 24 h and rescued serum-deprived cells from apoptosis. However, in the presence of simvastatin we were unable to report any phosphorylation of PKB/AKT or anti-apoptotic effect mediated by the TF/FVIIa or TF/FVIIa/FXa complexes. This was due to a RhoA-dependent retention of NFkappaB to the cytosol at 12 h which led to a transcriptional down-regulation of the anti-apoptotic protein BCL-2 as well as reduced AKT1 mRNA production at 24 h and thus diminished levels of PKB/AKT protein. A transcriptional down-regulation of TF at 12 h possibly also contributed to the absent anti-apoptotic signaling. These results thereby support a role for simvastatin in cancer treatment and emphasize the importance of PKB/AKT in TF-signaling.
Collapse
Affiliation(s)
- Mikael Aberg
- Department of Medical Sciences, Clinical Chemistry and Pharmacology, Akademiska Hospital, S-751 85 Uppsala, Sweden
| | | | | |
Collapse
|
21
|
Clarke RM, Lyons A, O'Connell F, Deighan BF, Barry CE, Anyakoha NG, Nicolaou A, Lynch MA. A pivotal role for interleukin-4 in atorvastatin-associated neuroprotection in rat brain. J Biol Chem 2007; 283:1808-17. [PMID: 17981803 DOI: 10.1074/jbc.m707442200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammatory changes, characterized by an increase in pro-inflammatory cytokine production and up-regulation of the corresponding signaling pathways, have been described in the brains of aged rats and rats treated with the potent immune modulatory molecule lipopolysaccharide (LPS). These changes have been coupled with a deficit in long-term potentiation (LTP) in hippocampus. The evidence suggests that anti-inflammatory agents, which attenuate the LPS-induced and age-associated increase in hippocampal interleukin-1beta (IL-1beta) concentration, lead to restoration of LTP. Here we report that atorvastatin, a member of the family of agents that act as inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase, exerts powerful anti-inflammatory effects in brain and that these effects are mediated by IL-4 and independent of its cholesterol-lowering actions. Treatment of rats with atorvastatin increased IL-4 concentration in hippocampal tissue prepared from LPS-treated and aged rats and abrogated the age-related and LPS-induced increases in pro-inflammatory cytokines, interferon-gamma (IFNgamma) and IL-1beta, and the accompanying deficit in LTP. The effect of atorvastatin on the LPS-induced increases in IFNgamma and IL-1beta was absent in tissue prepared from IL-4(-/-) mice. The increase in IL-1beta in LPS-treated and aged rats is associated with increased microglial activation, assessed by analysis of major histocompatibility complex II expression, and the evidence suggests that IFNgamma may trigger this activation. We propose that the primary effect of atorvastatin is to increase IL-4, which antagonizes the effects of IFNgamma, the associated increase in microglial activation, and the subsequent cascade of events.
Collapse
Affiliation(s)
- Rachael M Clarke
- Trinity College Institute for Neuroscience, Physiology Department, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Perez-Martinez P, Lopez-Miranda J, Blanco-Colio L, Bellido C, Jimenez Y, Moreno JA, Delgado-Lista J, Egido J, Perez-Jimenez F. The chronic intake of a Mediterranean diet enriched in virgin olive oil, decreases nuclear transcription factor κB activation in peripheral blood mononuclear cells from healthy men. Atherosclerosis 2007; 194:e141-6. [PMID: 17204269 DOI: 10.1016/j.atherosclerosis.2006.11.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 11/24/2006] [Accepted: 11/27/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Nuclear transcription factor kappaB (NF-kappaB) plays a key role in the inflammatory response and can be modulate by dietary fat. We have examined the effect of three diets, with different fat composition, on the activation of NF-kappaB on peripheral blood mononuclear cells (PBMCs). METHODS Sixteen healthy men followed three 4-week diets, in a randomised crossover design: a Western diet, rich in saturated fat (SFA) [22% SFA, 12% monounsaturated fat (MUFA) and 0, 4 alpha-linolenic acid]; a Mediterranean diet [<10% SFA, 24% MUFA and 0.4% alpha-linolenic acid], and a low fat diet enriched in alpha-linolenic acid [<10% SFA, 12% MUFA and 2% alpha-linolenic acid]. NF-kappaB (electrophoretic mobility shift assay) in mononuclear cells and plasma concentrations (ELISA) of soluble vascular cellular adhesion molecule 1 (VCAM-1) were examined after either diets. RESULTS Western diet increased 2.7-fold NF-kappaB compared with the Mediterranean diet (p=0.038) and 1.79-fold with the alpha-linolenic acid diet (p=0.07). No differences were found between the last two. Furthermore, an increase on plasma VCAM-1 was observed with the Western diet (p<0.05). CONCLUSIONS The Mediterranean diet diminished NF-kappaB activation in mononuclear cells, compared with Western diet, supporting its cardioprotective properties. The effect of the n-3 enriched diet was intermediate.
Collapse
Affiliation(s)
- Pablo Perez-Martinez
- Lipids and Atherosclerosis Research Unit, Hospital Universitario Reina Sofía, Avenida Menéndez Pidal s/n, 14004-Córdoba, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality in people with diabetes. Vascular abnormalities can be observed long before atherosclerosis develops and in sites not usually prone to atherosclerosis. These vascular abnormalities are known to be due to endothelial dysfunctions, one of the most frequent of which is depressed endothelium-dependent dilation. In patients with diabetes, this is mainly linked to decreased bioavailability of nitric oxide. Although inactivation of tetrahydrobiopterin, a co-factor of NO-synthase, may depress nitric oxide production, the latter is more likely due to the inactivation of nitric oxide by superoxide anions: enhanced oxidative stress increases their production in people with diabetes. Moreover, hyperglycemia directly activates oxidative stress, which in turn depresses endothelium-dependent vasodilation. Glycemia and oxidative stress are positively correlated in people with diabetes. However, while depression of endothelium-dependent dilation may be a visible functional manifestation of oxidative stress, the oxidative stress itself is mainly responsible for the cascade of endothelial events that play a key role in development of vascular atherosclerosis and its complications. Especially important among these events are the activation of NF-kappaB and the oxidation of LDL-cholesterol. Although antioxidants provide short-term improvement of endothelial function in humans, all studies of the effectiveness of preventive antioxidant therapy have been disappointing. Control of hyperglycemia thus remains the best way to improve endothelial function and to prevent atherosclerosis and other cardiovascular complications of diabetes.
Collapse
Affiliation(s)
- A Nitenberg
- Service de physiologie et d'explorations fonctionnelles, Hôpital Jean Verdier, avenue du 14-Juillet, 93143 Bondy Cedex.
| |
Collapse
|