1
|
Nicou CM, Passaglia CL. Effect of Ambient Lighting on Intraocular Pressure Rhythms in Rats. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 39115866 PMCID: PMC11314632 DOI: 10.1167/iovs.65.10.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/21/2024] [Indexed: 08/11/2024] Open
Abstract
Purpose The purpose of this study was to determine the effects of ambient lighting on intraocular pressure (IOP) rhythmicity and variability. Methods IOP was continuously recorded by wireless telemetry from rats under light/dark (LD), dark/light (DL), asymmetric (6L18D and 18D6L), constant dark (DD), and constant light (LL) cycles. In some DD experiments, 1-hour light pulses were presented at varying times. IOP rhythmicity and variability were respectively quantified via cosinor analysis and peak detection algorithms that identified transient and sustained fluctuations. Results Rat IOP peaked at night and troughed during the day with LD amplitude of 8.7 ± 3.4 mm Hg. Rhythmicity persisted in DD and LL with a free-running period of 24.1 ± 0.3 and 25.2 ± 0.4 hours, respectively. Peak-to-trough amplitude was approximately 60% smaller in LL, often disappeared after 1 to 2 weeks as daytime IOP drifted 2.6 ± 1.5 mm Hg higher, and returned to approximately 60% larger in LD. Rhythmicity was similarly impacted but resynchronized to DL over 4 to 6 days. Rhythmicity was unaltered by short photoperiods (6L18D), but the nocturnal IOP elevation was markedly shortened by long photoperiods (18L6D) and temporarily lowered to daytime levels by light pulses during the subjective night. Transient and sustained event rate, amplitude, interval, and energy content were nearly identical in LD, DD, and LL. Conclusions Aqueous humor dynamics of rat eyes are intrinsically configured to set IOP at daytime levels. Circadian clock input modulates these dynamics to elevate IOP at night. Light at night blocks this input, sending IOP back to daytime levels. Effects of abnormal lighting on IOP rhythmicity may contribute to pressure-related ocular neuropathies.
Collapse
Affiliation(s)
- Christina M. Nicou
- Medical Engineering Department, University of South Florida, Tampa, Florida, United States
| | - Christopher L. Passaglia
- Medical Engineering Department, University of South Florida, Tampa, Florida, United States
- Ophthalmology Department, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
2
|
McDowell CM, Kizhatil K, Elliott MH, Overby DR, van Batenburg-Sherwood J, Millar JC, Kuehn MH, Zode G, Acott TS, Anderson MG, Bhattacharya SK, Bertrand JA, Borras T, Bovenkamp DE, Cheng L, Danias J, De Ieso ML, Du Y, Faralli JA, Fuchshofer R, Ganapathy PS, Gong H, Herberg S, Hernandez H, Humphries P, John SWM, Kaufman PL, Keller KE, Kelley MJ, Kelly RA, Krizaj D, Kumar A, Leonard BC, Lieberman RL, Liton P, Liu Y, Liu KC, Lopez NN, Mao W, Mavlyutov T, McDonnell F, McLellan GJ, Mzyk P, Nartey A, Pasquale LR, Patel GC, Pattabiraman PP, Peters DM, Raghunathan V, Rao PV, Rayana N, Raychaudhuri U, Reina-Torres E, Ren R, Rhee D, Chowdhury UR, Samples JR, Samples EG, Sharif N, Schuman JS, Sheffield VC, Stevenson CH, Soundararajan A, Subramanian P, Sugali CK, Sun Y, Toris CB, Torrejon KY, Vahabikashi A, Vranka JA, Wang T, Willoughby CE, Xin C, Yun H, Zhang HF, Fautsch MP, Tamm ER, Clark AF, Ethier CR, Stamer WD. Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 35129590 PMCID: PMC8842499 DOI: 10.1167/iovs.63.2.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.
Collapse
Affiliation(s)
- Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | | | - Michael H. Elliott
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Darryl R. Overby
- Department of Bioengineering, Imperial College London, United Kingdom
| | | | - J. Cameron Millar
- Department of Pharmacology & Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences and Institute for Vision Research, The University of Iowa; Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | - Gulab Zode
- Department of Pharmacology & Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ted S. Acott
- Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Michael G. Anderson
- Department of Molecular Physiology and Biophysics and Department of Ophthalmology and Visual Sciences, The University of Iowa; Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | | | - Jacques A. Bertrand
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Terete Borras
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | | | - Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - John Danias
- SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| | - Michael Lucio De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
| | - Jennifer A. Faralli
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | | | - Peter Humphries
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Simon W. M. John
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Paul L. Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Mary J. Kelley
- Department of Ophthalmology and Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States
| | - Ruth A. Kelly
- Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David Krizaj
- Department of Ophthalmology, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, California, United States
| | - Raquel L. Lieberman
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Paloma Liton
- Department of Ophthalmology and Department of Pathology, Duke University, Durham, North Carolina, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Katy C. Liu
- Duke Eye Center, Duke Health, Durham, North Carolina, United States
| | - Navita N. Lopez
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, United States
| | - Weiming Mao
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Timur Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Fiona McDonnell
- Duke Eye Center, Duke Health, Durham, North Carolina, United States
| | - Gillian J. McLellan
- Department of Surgical Sciences and Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Philip Mzyk
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Andrews Nartey
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Gaurang C. Patel
- Ophthalmology Research, Regeneron Pharmaceuticals, Tarreytown, New York, United States
| | | | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | | | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Naga Rayana
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Urmimala Raychaudhuri
- Department of Neurobiology, University of California, Irvine, Irvine, California, United States
| | - Ester Reina-Torres
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ruiyi Ren
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Douglas Rhee
- Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - John R. Samples
- Washington State University, Floyd Elson College of Medicine, Spokane, Washington, United States
| | | | - Najam Sharif
- Santen Inc., Emeryville, California, United States
| | - Joel S. Schuman
- Department of Ophthalmology and Department of Physiology and Neuroscience, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States; Departments of Biomedical Engineering and Electrical and Computer Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States; Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States
| | - Val C. Sheffield
- Department of Pediatrics and Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Cooper H. Stevenson
- Department of Pharmacology & Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Avinash Soundararajan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | | | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yang Sun
- Veterans Affairs Palo Alto Health Care System, Stanford University, Palo Alto, California, United States
| | - Carol B. Toris
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States; Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, Ohio, United States
| | | | - Amir Vahabikashi
- Cell and Developmental Biology Department, Northwestern University, Chicago, Illinois, United States
| | - Janice A. Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Ting Wang
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Colin E. Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Chen Xin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hao F. Zhang
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, United States
| | - Michael P. Fautsch
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, United States
| | | | - Abbot F. Clark
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology; Emory University School of Medicine, Emory University, Atlanta, Georgia, United States
| | - W. Daniel Stamer
- Duke Ophthalmology, Duke University, Durham, North Carolina, United States
| |
Collapse
|
3
|
Pang JJ, Gao F, Wu SM. Generators of Pressure-Evoked Currents in Vertebrate Outer Retinal Neurons. Cells 2021; 10:cells10061288. [PMID: 34067375 PMCID: PMC8224636 DOI: 10.3390/cells10061288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: High-tension glaucoma damages the peripheral vision dominated by rods. How mechanosensitive channels (MSCs) in the outer retina mediate pressure responses is unclear. (2) Methods: Immunocytochemistry, patch clamp, and channel fluorescence were used to study MSCs in salamander photoreceptors. (3) Results: Immunoreactivity of transient receptor potential channel vanilloid 4 (TRPV4) was revealed in the outer plexiform layer, K+ channel TRAAK in the photoreceptor outer segment (OS), and TRPV2 in some rod OS disks. Pressure on the rod inner segment evoked sustained currents of three components: (A) the inward current at <-50 mV (Ipi), sensitive to Co2+; (B) leak outward current at ≥-80 mV (Ipo), sensitive to intracellular Cs+ and ruthenium red; and (C) cation current reversed at ~10 mV (Ipc). Hypotonicity induced slow currents like Ipc. Environmental pressure and light increased the FM 1-43-identified open MSCs in the OS membrane, while pressure on the OS with internal Cs+ closed a Ca2+-dependent current reversed at ~0 mV. Rod photocurrents were thermosensitive and affected by MSC blockers. (4) Conclusions: Rods possess depolarizing (TRPV) and hyperpolarizing (K+) MSCs, which mediate mutually compensating currents between -50 mV and 10 mV, serve as an electrical cushion to minimize the impact of ocular mechanical stress.
Collapse
|
4
|
Pang JJ. Roles of the ocular pressure, pressure-sensitive ion channel, and elasticity in pressure-induced retinal diseases. Neural Regen Res 2021; 16:68-72. [PMID: 32788449 PMCID: PMC7818868 DOI: 10.4103/1673-5374.286953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The intraocular pressure inside the human eye maintains 10–21 mmHg above the atmospheric pressure. Elevation of intraocular pressure is highly correlated with the retinopathy in glaucoma, and changes in the exterior pressure during mountain hiking, air traveling, and diving may also induce vision decline and retinopathy. The pathophysiological mechanism of these pressure-induced retinal disorders has not been completely clear. Retinal neurons express pressure-sensitive channels intrinsically sensitive to pressure and membrane stretch, such as the transient receptor potential channel (TRP) family permeable to Ca2+ and Na+ and the two-pore domain K channel family. Recent data have shown that pressure excites the primate retinal bipolar cell by opening TRP vanilloid 4 to mediate transient depolarizing currents, and TRP vanilloid 4 agonists enhance the membrane excitability of primate retinal ganglion cells. The eyeball wall is constructed primarily by the sclera and cornea of low elasticity, and the flow rate of the aqueous humor and intraocular pressure both fluctuate, but the mathematical relationship between the ocular elasticity, aqueous humor volume, and intraocular pressure has not been established. This review will briefly review recent literature on the pressure-related retinal pathophysiology in glaucoma and other pressure-induced retinal disorders, the elasticity of ocular tissues, and pressure-sensitive cation channels in retinal neurons. Emerging data support the global volume and the elasticity and thickness of the sclera and cornea as variables to affect the intraocular pressure level like the volume of the aqueous humor. Recent results also suggest some potential routes for TRPs to mediate retinal ganglion cell dysfunction: TRP opening upon intraocular pressure elevation and membrane stretch, enhancing glutamate release from bipolar cells, increasing intracellular Na+, Ca2+ concentration in retinal ganglion cells and extracellular glutamate concentration, inactivating voltage-gated Na+ channels, and causing excitotoxicity and dysfunction of retinal ganglion cells. Further studies on these routes likely identify novel targets and therapeutic strategies for the treatment of pressure-induced retinal disorders.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Species Differences in the Nutrition of Retinal Ganglion Cells among Mammals Frequently Used as Animal Models. Cells 2019; 8:cells8101254. [PMID: 31615137 PMCID: PMC6829614 DOI: 10.3390/cells8101254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 12/23/2022] Open
Abstract
The diffusion rate for proper nutrition of the inner retina depends mainly on four factors which are discussed in this review: 1. The diffusion distance between blood and retinal ganglion cells shows morphological variants in different mammalian species, namely a choroidal nutrition type, a retinal nutrition type, and a mixture of both types. 2. Low oxygen concentration levels in the inner retina force the diffusion of oxygen especially in the choroidal nutrition type. Other nutrients might be supplied by surrounding cells, mainly Müller cells. 3. Diffusion in the eye is influenced by the intraocular pressure, which is vital for the retinal ganglion cells but might also influence their proper function. Again, the nutrition types established might explain the differences in normal intraocular pressure levels among different species. 4. Temperature is a critical feature in the eye which has to be buffered to avoid neuronal damage. The most effective buffer system is the increased blood turnover in the choroid which has to be established in all species.
Collapse
|
6
|
Ziółkowska N, Ziółkowski H, Magda J, Bućko M, Kaczorek-Łukowska E, Lewczuk B. Diurnal and circadian variations in intraocular pressure in goats exposed to different lighting conditions. Chronobiol Int 2019; 36:1638-1645. [PMID: 31495221 DOI: 10.1080/07420528.2019.1660360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effect of constant light and constant darkness on intraocular pressure (IOP) in goats has not been investigated. We hypothesized that IOP variations would differ between goats kept under a cycle of 12 hours of light and 12 hours of darkness (LD), constant darkness (DD), and constant light (LL). To test this hypothesis, goats were exposed to these conditions for five days (LD, 30 goats; DD, 10 goats; LL, 10 goats). IOP was measured by applanation tonometry at 9 a.m. (beginning of photophase in LD) and 9 p.m. (beginning of scotophase in LD) on the fourth and fifth days of exposure. We found that changes in mean IOP from 9 a.m. to 9 p.m. differed significantly between groups (χ2(2) = 23.04, p < .0001). Most goats in LD showed a regular pattern of higher IOP in the morning and lower IOP in the evening, whereas those in DD and LL did not follow this pattern. In LD conditions, mean IOP was 2.4 mm Hg lower at 9 p.m. than at 9 a.m. (95% confidence interval for the difference (CI): -2.8 to -1.9 mm Hg, p < .0001). In DD conditions, mean IOP did not differ between 9 p.m. and 9 a.m. (CI: -0.9 to 0.8 mm Hg, p = .90). In LL conditions, it was 0.6 mm Hg lower at 9 p.m. (CI: -1.5 to 0.2 mm Hg, p = .12). Our results indicate that IOP in goats kept in LD is higher in the morning than in the evening, and that IOP variations are reduced in goats kept in DD and LL. These results suggest that exposure to alternating periods of light and darkness is important for maintaining rhythmic variations in IOP in this species.
Collapse
Affiliation(s)
- Natalia Ziółkowska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Hubert Ziółkowski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Jagoda Magda
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Monika Bućko
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Edyta Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Bogdan Lewczuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
7
|
Yücel YH, Cardinell K, Khattak S, Zhou X, Lapinski M, Cheng F, Gupta N. Active Lymphatic Drainage From the Eye Measured by Noninvasive Photoacoustic Imaging of Near-Infrared Nanoparticles. Invest Ophthalmol Vis Sci 2019; 59:2699-2707. [PMID: 29860456 DOI: 10.1167/iovs.17-22850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To visualize and quantify lymphatic drainage of aqueous humor from the eye to cervical lymph nodes in the dynamic state. Methods A near-infrared tracer was injected into the right eye anterior chamber of 10 mice under general anesthesia. Mice were imaged with photoacoustic tomography before and 20 minutes, 2, 4, and 6 hours after injection. Tracer signal intensity was measured in both eyes and right and left neck lymph nodes at every time point and signal intensity slopes were calculated. Slope differences between right and left eyes and right and left nodes were compared using paired t-test. Neck nodes were examined with fluorescence optical imaging and histologically for the presence of tracer. Results Following right eye intracameral injection of tracer, an exponential decrease in tracer signal was observed from 20 minutes to 6 hours in all mice. Slope differences of the signal intensity between right and left eyes were significant (P < 0.001). Simultaneously, increasing tracer signal was observed in the right neck node from 20 minutes to 6 hours. Slope differences of the signal intensity between right and left neck nodes were significant (P = 0.0051). Ex vivo optical fluorescence imaging and histopathologic examination of neck nodes confirmed tracer presence within submandibular nodes. Conclusions Active lymphatic drainage of aqueous from the eye to cervical lymph nodes was measured noninvasively by photoacoustic imaging of near-infrared nanoparticles. This unique in vivo assay may help to uncover novel drugs that target alternative outflow routes to lower IOP in glaucoma and may provide new insights into lymphatic drainage in eye health and disease.
Collapse
Affiliation(s)
- Yeni H Yücel
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital, Ryerson University, Toronto, Ontario, Canada.,Department of Mechanical Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto, Ontario, Canada
| | - Kirsten Cardinell
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada
| | - Shireen Khattak
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Xun Zhou
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Michael Lapinski
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Fang Cheng
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Neeru Gupta
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Glaucoma Unit, St. Michael's Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Fahrenkrug J, Georg B, Hannibal J, Jørgensen HL. Role of light and the circadian clock in the rhythmic oscillation of intraocular pressure: Studies in VPAC2 receptor and PACAP deficient mice. Exp Eye Res 2018; 169:134-140. [PMID: 29428294 DOI: 10.1016/j.exer.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/27/2022]
Abstract
The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness.
Collapse
Affiliation(s)
- Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Bispebjerg, Bakke 23, DK-2400, København NV, Denmark.
| | - Birgitte Georg
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Bispebjerg, Bakke 23, DK-2400, København NV, Denmark.
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Bispebjerg, Bakke 23, DK-2400, København NV, Denmark.
| | - Henrik Løvendahl Jørgensen
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Bispebjerg, Bakke 23, DK-2400, København NV, Denmark.
| |
Collapse
|
9
|
Tsuchiya S, Higashide T, Toida K, Sugiyama K. The Role of Beta-Adrenergic Receptors in the Regulation of Circadian Intraocular Pressure Rhythm in Mice. Curr Eye Res 2017; 42:1013-1017. [PMID: 28121174 DOI: 10.1080/02713683.2016.1264605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate whether the elimination of β1- and β2-adrenergic receptors alters the diurnal intraocular pressure (IOP) rhythm in mice. MATERIALS AND METHODS β1-/β2-adrenergic receptor double-knockout and C57BL/6J mice were anesthetized intraperitoneally, with their IOPs measured via microneedle method. After entrainment to a 12-h light-dark (LD) cycle (light phase 6:00-18:00), IOPs were measured every 3 h from 9:00 to 24:00 (group 1, β1-/β2-adrenergic receptor double-knockout mice, n = 11; C57BL/6J, n = 15). The IOP measurements at 15:00 and 24:00 under a 12-h LD cycle and in the constant darkness (1 day and 8 days after exposure to darkness, respectively) were performed in another group of β1-/β2-adrenergic receptor double-knockout mice (group 2, n = 12). IOP variance throughout the day and mean IOP differences among time points were evaluated using a linear mixed model. RESULTS β1-/β2-adrenergic receptor double-knockout and C57BL/6J mice showed biphasic IOP curves, low during the light phase and high during the dark phase; the fluctuation was significant (P < 0.001). The peak IOP (18.7 ± 1.4 mmHg) occurred at 24:00 and the trough IOP (13.5 ± 1.5 mmHg) occurred at 15:00 in β1-/β2-adrenergic receptor double-knockout mice group. IOP curves of β1-/β2-adrenergic receptor double-knockout and C57BL/6J were nearly parallel, and the IOPs of β1-/β2-adrenergic receptor double-knockout mice were significantly higher than those of C57BL/6J mice (P < 0.001). Under constant dark (DD) conditions, IOP at 24:00 (18.1 ± 1.5 mmHg) was significantly higher than that at 15:00 (13.3 ± 1.2 mmHg) (P < 0.001). The transition from the LD cycle to DD environment produced no significant change in IOP (P = 0.728). CONCLUSIONS Elimination of both β1- and β2-adrenergic receptors did not disturb the biphasic diurnal IOP rhythm in mice.
Collapse
Affiliation(s)
- Shunsuke Tsuchiya
- a Department of Ophthalmology and Visual Science , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | - Tomomi Higashide
- a Department of Ophthalmology and Visual Science , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| | - Kazunori Toida
- b Department of Anatomy , Kawasaki Medical School , Kurashiki , Japan.,c Research Center for Ultra-High Voltage Electron Microscopy , Osaka University , Ibaraki , Japan
| | - Kazuhisa Sugiyama
- a Department of Ophthalmology and Visual Science , Kanazawa University Graduate School of Medical Science , Kanazawa , Japan
| |
Collapse
|
10
|
Dalvin LA, Fautsch MP. Analysis of Circadian Rhythm Gene Expression With Reference to Diurnal Pattern of Intraocular Pressure in Mice. Invest Ophthalmol Vis Sci 2015; 56:2657-63. [PMID: 25813988 DOI: 10.1167/iovs.15-16449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the expression of circadian rhythm clock genes in the iris-ciliary body complex of mice and their association with the diurnal pattern of intraocular pressure (IOP). METHODS Thirty wild-type C57BL/6 mice were acclimated to a 12-hour light-dark cycle. Intraocular pressure was measured with a rebound tonometer at six time points daily (circadian time [CT] 2, 6, 10, 14, 18, and 22 hours) for five consecutive days. On day 6, mice were euthanized at CT 2, 6, 10, 14, 18, and 22. Eyes were flash-frozen or fixed in 4% phosphate-buffered paraformaldehyde. Total RNA was extracted from the iris-ciliary body complex, and RNA expression of circadian rhythm genes Bmal1, Clock, Cry1, Cry2, Per1, and Per2 was assessed by quantitative real-time PCR. Fixed eyes were paraffin embedded, and immunohistochemistry was performed to localize corresponding proteins (BMAL1, CLOCK, CRY1, CRY2, PER1, and PER2). Linear regression analysis was performed to correlate gene expression with IOP. RESULTS Intraocular pressure demonstrated a consistent circadian pattern. The clock genes Bmal1, Clock, Cry1, Cry2, Per1, and Per2 showed a circadian pattern of expression in the iris-ciliary body complex of mice. Bmal1, Clock, Cry1, Per1, and Per2 gene expression demonstrated statistically significant correlations with diurnal variations of IOP. BMAL1, CLOCK, CRY1, CRY2, PER1, and PER2 proteins were found to be expressed locally in the nonpigmented epithelium of the ciliary body. CONCLUSIONS Expression patterns of candidate circadian rhythm genes correlates with the diurnal pattern variation of IOP in mouse eyes, indicating a possible mechanism of IOP regulation through these genes.
Collapse
|
11
|
Reuter A, Müller K, Arndt G, Eule JC. Reference intervals for intraocular pressure measured by rebound tonometry in ten raptor species and factors affecting the intraocular pressure. J Avian Med Surg 2012; 25:165-72. [PMID: 22216716 DOI: 10.1647/2009-056.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intraocular pressure (IOP) was measured with the TonoVet rebound tonometer in 10 raptor species, and possible factors affecting IOP were investigated. A complete ophthalmic examination was performed, and IOP was assessed in 2 positions, upright and dorsal recumbency, in 237 birds belonging to the families Accipitridae, Falconidae, Strigidae, and Tytonidae. Mean IOP values of healthy eyes were calculated for each species, and differences between families, species, age, sex, left and right eye, as well as the 2 body positions were evaluated. Physiologic fluctuations of IOP were assessed by measuring IOP serially for 5 days at the same time of day in 15 birds of 3 species. Results showed IOP values varied by family and species, with the following mean IOP values (mm Hg +/- SD) determined: white-tailed sea eagle (Haliaeetus albicilla), 26.9 +/- 5.8; red kite (Milvus milvus), 13.0 +/- 5.5; northern goshawk (Accipiter gentilis), 18.3 +/- 3.8; Eurasian sparrowhawk (Accipiter nisus), 15.5 +/- 2.5; common buzzard (Buteo buteo), 26.9 +/- 7.0; common kestrel (Falco tinnunculus), 9.8 +/- 2.5; peregrine falcon, (Falco peregrinus), 12.7 +/- 5.8; tawny owl (Strix aluco), 9.4 +/- 4.1; long-eared owl (Asio otus), 7.8 +/- 3.2; and barn owl (Tyto alba), 10.8 +/- 3.8. No significant differences were found between sexes or between left and right eyes. In goshawks, common buzzards, and common kestrels, mean IOP was significantly lower in juvenile birds than it was in adult birds. Mean IOP differed significantly by body position in tawny owls (P = .01) and common buzzards (P = .04). By measuring IOP over several days, mean physiologic variations of +/- 2 mm Hg were detected. Differences in IOP between species and age groups should be considered when interpreting tonometric results. Physiologic fluctuations of IOP may occur and should not be misinterpreted. These results show that rebound tonometry is a useful diagnostic tool in measuring IOP in birds of prey because it provides rapid results and is well tolerated by birds.
Collapse
Affiliation(s)
- Anne Reuter
- Small Animal Clinic, Faculty of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | | | | | | |
Collapse
|
12
|
PICCIONE G, GIANNETTO C, FAZIO F, GIUDICE E. Influence of Different Artificial Lighting Regimes on Intraocular Pressure Circadian Profile in the Dog ( Canis familiaris). Exp Anim 2010; 59:215-23. [DOI: 10.1538/expanim.59.215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Giuseppe PICCIONE
- Department of Experimental Sciences and Applied Biotechnology, Laboratory of Veterinary Chronophysiology, Faculty of Veterinary Medicine, University of Messina
| | - Claudia GIANNETTO
- Department of Experimental Sciences and Applied Biotechnology, Laboratory of Veterinary Chronophysiology, Faculty of Veterinary Medicine, University of Messina
| | - Francesco FAZIO
- Department of Experimental Sciences and Applied Biotechnology, Laboratory of Veterinary Chronophysiology, Faculty of Veterinary Medicine, University of Messina
| | | |
Collapse
|
13
|
Vaajanen A, Mervaala E, Oksala O, Vapaatalo H. Is There a Relationship Between Blood Pressure and Intraocular Pressure? An Experimental Study in Hypertensive Rats. Curr Eye Res 2009; 33:325-32. [DOI: 10.1080/02713680802011679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Saeki T, Aihara M, Ohashi M, Araie M. The efficacy of TonoLab in detecting physiological and pharmacological changes of mouse intraocular pressure--comparison with TonoPen and microneedle manometery. Curr Eye Res 2008; 33:247-52. [PMID: 18350435 DOI: 10.1080/02713680801919716] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE The efficacy of two non-invasive tonometers, TonoLab and TonoPen XL, in detecting physiological or pharmacological changes of intraocular pressure (IOP) in mouse eyes, was assessed by comparison with a microneedle method. MATERIAL AND METHODS C57BL6 mice, bred under the 12-hr light and dark cycle over 2 weeks, were used. Under systemic anesthesia, mouse eyes were cannulated by a microneedle connected to a transducer and a water reservoir. We manipulated the intracameral pressure by changing the reservoir height, and obtained tonometer readings at each pressure (n=39) with TonoLab and TonoPen XL. The correlation between each tonometer and the manometer was analyzed. Then the diurnal variation of IOP in the light and dark phases, and the IOP-lowering effect at 2 hr after latanoprost instillation, were measured with TonoLab, TonoPen XL, and a microneedle tonometer (n=8). RESULTS In mouse eyes, TonoPen XL could not show reliable scores, but TonoLab readings showed a strong correlation with manometer readings (y=0.87x-0.27, r2=0.917). Nocturnal elevation of IOP in mouse eyes was significantly indicated with TonoLab and a microneedle tonometer (p<0.001), but not with TonoPen XL. Latanoprost significantly reduced IOP by 2.1+/-2.8 and 2.0+/-1.0 mmHg with TonoLab and a microneedle tonometer, but not with TonoPen XL. CONCLUSION TonoLab provides similar readings to a microneedle tonometer, and diurnal variation and drug effect were detectable in mouse eyes. TonoLab promises to be a non-invasive and useful method to evaluate physiological and pharmacological studies in mouse eyes.
Collapse
Affiliation(s)
- Tadashiro Saeki
- Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
15
|
Lim NK, Kim TH, Song JK, Yoo JM. The Effect of Sympathectomy on Circardian Rhythm of Intraocular Pressure in Rat. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2008. [DOI: 10.3341/jkos.2008.49.11.1839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Nam Kee Lim
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Gyeongnam, Korea
| | - Tae Hyung Kim
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Gyeongnam, Korea
| | - Joon Kyeong Song
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Gyeongnam, Korea
| | - Ji Myong Yoo
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Gyeongnam, Korea
| |
Collapse
|
16
|
Abstract
Animal models are useful to elucidate the etiology and pathology of glaucoma and to develop novel and more effective therapies for the disease. Because of the substantial similarities between the rodent and primate eyes, and the advances of relevant study techniques, rat and mouse models of glaucoma have recently become popular as research tools. This review surveys research techniques used in the measurement of rodent intraocular pressure, and also the evaluation of pertinent morphologic, biochemical, and functional changes in the retina, optic nerve head, and optic nerve. This review further describes in detail the individual rodent models, some of which serve as surrogate models and do not entail ocular hypertension, whereas others involve transient or chronic increases of intraocular pressure. The technical considerations and theoretical concerns of these models, their advantages, and limitations, are also discussed.
Collapse
Affiliation(s)
- Iok-Hou Pang
- Glaucoma Research, Alcon Research, Ltd, Fort Worth, TX, USA.
| | | |
Collapse
|