1
|
Kumar D, Kumari K, Chandra R, Jain P, Vodwal L, Gambhir G, Singh P. A review targeting the infection by CHIKV using computational and experimental approaches. J Biomol Struct Dyn 2021; 40:8127-8141. [PMID: 33783313 DOI: 10.1080/07391102.2021.1904004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rise of normal body temperature of 98.6 °F beyond 100.4 °F in humans indicates fever due to some illness or infection. Viral infections caused by different viruses are one of the major causes of fever. One of such viruses is, Chikungunya virus (CHIKV) is known to cause Chikungunya fever (CHIKF) which is transmitted to humans through the mosquitoes, which actually become the primary source of transmission of the virus. The genomic structure of the CHIKV consists of the two open reading frames (ORFs). The first one is a 5' end ORF and it encodes the nonstructural protein (nsP1-nsP4). The second is a 3' end ORF and it encodes the structural proteins, which is consisted of capsid, envelope (E), accessory peptides, E3 and 6 K. Till date, there is no effective vaccine or medicine available for early detection of the CHIKV infection and appropriate diagnosis to cure the patients from the infection. NSP3 of CHIKV is the prime target of the researchers as it is responsible for the catalytic activity. This review has updates of literature on CHIKV; pathogenesis of CHIKV; inhibition of CHIKV using theoretical and experimental approaches.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
| | - Pallavi Jain
- Faculty of Engineering and Technology, Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Lata Vodwal
- Department of Chemistry, Maitreyi College, University of Delhi, New Delhi, India
| | - Geetu Gambhir
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
RNA Helicase A Regulates the Replication of RNA Viruses. Viruses 2021; 13:v13030361. [PMID: 33668948 PMCID: PMC7996507 DOI: 10.3390/v13030361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/20/2023] Open
Abstract
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
Collapse
|
3
|
Chikungunya in a Pediatric Traveler. Pediatr Emerg Care 2018; 34:e120-e121. [PMID: 29596281 DOI: 10.1097/pec.0000000000001457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chikungunya is a mosquito-transmitted virus found primarily in Africa and Asia. In late 2013, chikungunya virus emerged in the Western hemisphere, spreading from the Caribbean to South, Central, and North America (MMWR Morb Mortal Wkly Rep. 2014;63:1121-1128). Symptoms can be similar to nonspecific viral presentations including fever, joint pain, joint swelling, and rash. The diagnosis of infectious tropical diseases in the emergency department often requires a high index of suspicion, given the nonspecific early findings that characterize many of these tropical diseases. This report presents a case of chikungunya in a pediatric patient traveling from Guatemala to the United States. Proper recognition of infection and diagnosis are vital from a public health perspective. Considering patients will remain viremic for up to a week and potentially expose local mosquitoes to infection, it is important to educate the patient on mosquito bite prevention in geographic areas of the United States where competent mosquito vectors exist as a means of avoiding further spread.
Collapse
|
4
|
Bakhshi H, Failloux AB, Zakeri S, Raz A, Dinparast Djadid N. Mosquito-borne viral diseases and potential transmission blocking vaccine candidates. INFECTION GENETICS AND EVOLUTION 2018; 63:195-203. [PMID: 29842982 DOI: 10.1016/j.meegid.2018.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023]
Abstract
Mosquito-borne viral diseases (MBVDs) have a complex biological cycle involving vectors and vertebrate hosts. These viruses are responsible for many deadly diseases worldwide. Although MBVDs threaten mostly developing countries, there is growing evidence indicating that they are also of concern in western countries where local transmission of arboviruses such as West Nile, Zika, Chikungunya and Dengue viruses have been recently reported. The rapid rise in human infections caused by these viruses is attributed to rapid climate change and travel facilities. Usually, the only way to control these diseases relies on the control of vectors in the absence of licensed vaccines and specific treatments. However, the overuse of insecticides has led to the emergence of insecticide resistance in vector populations, posing significant challenges for their control. An alternative method for reducing MBVDs can be the use of Transmission Blocking Vaccines (TBVs) that limits viral infection at the mosquito vector stage. Some successes have been obtained confirming the potential application of TBVs against viruses; however, this approach remains at the developmental stage and still needs improvements. The present review aims to give an update on MBVDs and to discuss the application as well as usage of potential TBVs for the control of mosquito-borne viral infections.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran.
| |
Collapse
|
5
|
Advances in Clinical Diagnosis and Management of Chikungunya Virus Infection. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018. [DOI: 10.1007/s40506-018-0172-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
da Silva-Júnior EF, Leoncini GO, Rodrigues ÉES, Aquino TM, Araújo-Júnior JX. The medicinal chemistry of Chikungunya virus. Bioorg Med Chem 2017; 25:4219-4244. [PMID: 28689975 PMCID: PMC7126832 DOI: 10.1016/j.bmc.2017.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
Abstract
Arthropod-borne viruses (arboviruses) are an important threat to human and animal health globally. Among these, zoonotic diseases account for billions of cases of human illness and millions of deaths every year, representing an increasing public health problem. Chikungunya virus belongs to the genus Alphavirus of the family Togariridae, and is transmitted mainly by the bite of female mosquitoes of the Aedes aegypti and/or A. albopictus species. The focus of this review will be on the medicinal chemistry of Chikungunya virus, including synthetic and natural products, as well as rationally designed compounds.
Collapse
Affiliation(s)
- Edeildo F da Silva-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil.
| | - Giovanni O Leoncini
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - Érica E S Rodrigues
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - Thiago M Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - João X Araújo-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil.
| |
Collapse
|
7
|
Mayer SV, Tesh RB, Vasilakis N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Trop 2017; 166:155-163. [PMID: 27876643 PMCID: PMC5203945 DOI: 10.1016/j.actatropica.2016.11.020] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 01/02/2023]
Abstract
Arthropod-borne viruses (arboviruses) present a substantial threat to human and animal health worldwide. Arboviruses can cause a variety of clinical presentations that range from mild to life threatening symptoms. Many arboviruses are present in nature through two distinct cycles, the urban and sylvatic cycle that are maintained in complex biological cycles. In this review we briefly discuss the factors driving the emergence of arboviruses, such as the anthropogenic aspects of unrestrained human population growth, economic expansion and globalization. Also the important aspects of viruses and vectors in the occurrence of arboviruses epidemics. The focus of this review will be on dengue, zika and chikungunya viruses, particularly because these viruses are currently causing a negative impact on public health and economic damage around the world.
Collapse
Affiliation(s)
- Sandra V Mayer
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX 77555-0609, USA
| | - Robert B Tesh
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX 77555-0609, USA; Center for Biodefense and Emerging Infectious Diseases, UTMB, Galveston, USA; Center for Tropical Diseases, UTMB, Galveston, TX 77555-0609, USA; Institute for Human Infections and Immunity, UTMB, Galveston, TX 77555-0610, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX 77555-0609, USA; Center for Biodefense and Emerging Infectious Diseases, UTMB, Galveston, USA; Center for Tropical Diseases, UTMB, Galveston, TX 77555-0609, USA; Institute for Human Infections and Immunity, UTMB, Galveston, TX 77555-0610, USA.
| |
Collapse
|