1
|
Avansini SH, Puppo F, Adams JW, Vieira AS, Coan AC, Rogerio F, Torres FR, Araújo PAOR, Martin M, Montenegro MA, Yasuda CL, Tedeschi H, Ghizoni E, França AFEC, Alvim MKM, Athié MC, Rocha CS, Almeida VS, Dias EV, Delay L, Molina E, Yaksh TL, Cendes F, Lopes Cendes I, Muotri AR. Junctional instability in neuroepithelium and network hyperexcitability in a focal cortical dysplasia human model. Brain 2022; 145:1962-1977. [PMID: 34957478 PMCID: PMC9336577 DOI: 10.1093/brain/awab479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 11/14/2022] Open
Abstract
Focal cortical dysplasia is a highly epileptogenic cortical malformation with few treatment options. Here, we generated human cortical organoids from patients with focal cortical dysplasia type II. Using this human model, we mimicked some focal cortical dysplasia hallmarks, such as impaired cell proliferation, the presence of dysmorphic neurons and balloon cells, and neuronal network hyperexcitability. Furthermore, we observed alterations in the adherens junctions zonula occludens-1 and partitioning defective 3, reduced polarization of the actin cytoskeleton, and fewer synaptic puncta. Focal cortical dysplasia cortical organoids showed downregulation of the small GTPase RHOA, a finding that was confirmed in brain tissue resected from these patients. Functionally, both spontaneous and optogenetically-evoked electrical activity revealed hyperexcitability and enhanced network connectivity in focal cortical dysplasia organoids. Taken together, our findings suggest a ventricular zone instability in tissue cohesion of neuroepithelial cells, leading to a maturational arrest of progenitors or newborn neurons, which may predispose to cellular and functional immaturity and compromise the formation of neural networks in focal cortical dysplasia.
Collapse
Affiliation(s)
- Simoni H Avansini
- Department of Pediatrics/Rady Children’s Hospital-San Diego, Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Francesca Puppo
- Department of Pediatrics/Rady Children’s Hospital-San Diego, Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Jason W Adams
- Department of Pediatrics/Rady Children’s Hospital-San Diego, Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Andre S Vieira
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Ana C Coan
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Fabio Rogerio
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Pathology, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
| | - Fabio R Torres
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Patricia A O R Araújo
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Mariana Martin
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Maria A Montenegro
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Clarissa L Yasuda
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Helder Tedeschi
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Enrico Ghizoni
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Andréa F E C França
- Department of Clinical Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
| | - Marina K M Alvim
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Maria C Athié
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Cristiane S Rocha
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Vanessa S Almeida
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Elayne V Dias
- Department of Anesthesiology/Medical Center Hillcrest, School of Medicine, University of California San Diego, Hillcrest, CA 92103, USA
| | - Lauriane Delay
- Department of Anesthesiology/Medical Center Hillcrest, School of Medicine, University of California San Diego, Hillcrest, CA 92103, USA
| | - Elsa Molina
- Stem Cell Genomics and Microscopy Core, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Tony L Yaksh
- Department of Anesthesiology/Medical Center Hillcrest, School of Medicine, University of California San Diego, Hillcrest, CA 92103, USA
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas Sao Paulo 13083-887, Brazil
| | - Iscia Lopes Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-887, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Sao Paulo 13083-888, Brazil
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children’s Hospital-San Diego, Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Kavli Institute for Brain and Mind, Archealization Center (ArchC), Center for Academic Research and Training in Anthropogeny (CARTA), University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Reorganization of Parvalbumin Immunopositive Perisomatic Innervation of Principal Cells in Focal Cortical Dysplasia Type IIB in Human Epileptic Patients. Int J Mol Sci 2022; 23:ijms23094746. [PMID: 35563137 PMCID: PMC9100614 DOI: 10.3390/ijms23094746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. As several studies have revealed, the abnormal functioning of the perisomatic inhibitory system may play a role in the onset of seizures. Therefore, we wanted to investigate whether changes of perisomatic inhibitory inputs are present in FCD. Thus, the input properties of abnormal giant- and control-like principal cells were examined in FCD type IIB patients. Surgical samples were compared to controls from the same cortical regions with short postmortem intervals. For the study, six subjects were selected/each group. The perisomatic inhibitory terminals were quantified in parvalbumin and neuronal nuclei double immunostained sections using a confocal fluorescent microscope. The perisomatic input of giant neurons was extremely abundant, whereas control-like cells of the same samples had sparse inputs. A comparison of pooled data shows that the number of parvalbumin-immunopositive perisomatic terminals contacting principal cells was significantly larger in epileptic cases. The analysis showed some heterogeneity among epileptic samples. However, five out of six cases had significantly increased perisomatic input. Parameters of the control cells were homogenous. The reorganization of the perisomatic inhibitory system may increase the probability of seizure activity and might be a general mechanism of abnormal network activity.
Collapse
|
3
|
Khoshkhoo S, Lal D, Walsh CA. Application of single cell genomics to focal epilepsies: A call to action. Brain Pathol 2021; 31:e12958. [PMID: 34196990 PMCID: PMC8412079 DOI: 10.1111/bpa.12958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Focal epilepsies are the largest epilepsy subtype and associated with significant morbidity. Somatic variation is a newly recognized genetic mechanism underlying a subset of focal epilepsies, but little is known about the processes through which somatic mosaicism causes seizures, the cell types carrying the pathogenic variants, or their developmental origin. Meanwhile, the inception of single cell biology has completely revolutionized the study of neurological diseases and has the potential to answer some of these key questions. Focusing on single cell genomics, transcriptomics, and epigenomics in focal epilepsy research, circumvents the averaging artifact associated with studying bulk brain tissue and offers the kind of granularity that is needed for investigating the consequences of somatic mosaicism. Here we have provided a brief overview of some of the most developed single cell techniques and the major considerations around applying them to focal epilepsy research.
Collapse
Affiliation(s)
- Sattar Khoshkhoo
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennis Lal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Expression of TRPC3 in cortical lesions from patients with focal cortical dysplasia. Neurosci Lett 2020; 724:134880. [PMID: 32135163 DOI: 10.1016/j.neulet.2020.134880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 11/20/2022]
Abstract
Focal cortical dysplasia (FCD) is one of the main causes of medically intractable epilepsy. Some studies have reported that transient receptor potential canonical channel 3 (TRPC3) may play an important role in the occurrence of seizures. In this study, we investigated the expression patterns of TRPC3 in different types of FCD. Forty-five FCD specimens and 12 control samples from autopsies were used in our study. Western blotting, immunohistochemistry, and immunofluorescence staining were employed to detect protein expression and distribution. The amount of TRPC3 protein was markedly elevated in the FCD group. The immunohistochemistry results revealed that TRPC3 staining was strong in the malformed cells and microcolumns. Most of the TRPC3-positive cells were colabeled with glutamatergic and GABAergic markers. The overexpression and altered cellular distribution of TRPC3 in the FCD samples suggest that TRPC3 may be related to epileptogenesis in FCD.
Collapse
|
5
|
Levinson S, Tran CH, Barry J, Viker B, Levine MS, Vinters HV, Mathern GW, Cepeda C. Paroxysmal Discharges in Tissue Slices From Pediatric Epilepsy Surgery Patients: Critical Role of GABA B Receptors in the Generation of Ictal Activity. Front Cell Neurosci 2020; 14:54. [PMID: 32265658 PMCID: PMC7099654 DOI: 10.3389/fncel.2020.00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/24/2020] [Indexed: 01/04/2023] Open
Abstract
In the present study, we characterized the effects of bath application of the proconvulsant drug 4-aminopyridine (4-AP) alone or in combination with GABAA and/or GABAB receptor antagonists, in cortical dysplasia (CD type I and CD type IIa/b), tuberous sclerosis complex (TSC), and non-CD cortical tissue samples from pediatric epilepsy surgery patients. Whole-cell patch clamp recordings in current and voltage clamp modes were obtained from cortical pyramidal neurons (CPNs), interneurons, and balloon/giant cells. In pyramidal neurons, bath application of 4-AP produced an increase in spontaneous synaptic activity as well as rhythmic membrane oscillations. In current clamp mode, these oscillations were generally depolarizing or biphasic and were accompanied by increased membrane conductance. In interneurons, membrane oscillations were consistently depolarizing and accompanied by bursts of action potentials. In a subset of balloon/giant cells from CD type IIb and TSC cases, respectively, 4-AP induced very low-amplitude, slow membrane oscillations that echoed the rhythmic oscillations from pyramidal neurons and interneurons. Bicuculline reduced the amplitude of membrane oscillations induced by 4-AP, indicating that they were mediated principally by GABAA receptors. 4-AP alone or in combination with bicuculline increased cortical excitability but did not induce seizure-like discharges. Ictal activity was observed in pyramidal neurons and interneurons from CD and TSC cases only when phaclofen, a GABAB receptor antagonist, was added to the 4-AP and bicuculline solution. These results emphasize the critical and permissive role of GABAB receptors in the transition to an ictal state in pediatric CD tissue and highlight the importance of these receptors as a potential therapeutic target in pediatric epilepsy.
Collapse
Affiliation(s)
- Simon Levinson
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Conny H Tran
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joshua Barry
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brett Viker
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael S Levine
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Harry V Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gary W Mathern
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- IDDRC, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Subramanian L, Calcagnotto ME, Paredes MF. Cortical Malformations: Lessons in Human Brain Development. Front Cell Neurosci 2020; 13:576. [PMID: 32038172 PMCID: PMC6993122 DOI: 10.3389/fncel.2019.00576] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Creating a functional cerebral cortex requires a series of complex and well-coordinated developmental steps. These steps have evolved across species with the emergence of cortical gyrification and coincided with more complex behaviors. The presence of diverse progenitor cells, a protracted timeline for neuronal migration and maturation, and diverse neuronal types are developmental features that have emerged in the gyrated cortex. These factors could explain how the human brain has expanded in size and complexity. However, their complex nature also renders new avenues of vulnerability by providing additional cell types that could contribute to disease and longer time windows that could impact the composition and organization of the cortical circuit. We aim to discuss the unique developmental steps observed in human corticogenesis and propose how disruption of these species-unique processes could lead to malformations of cortical development.
Collapse
Affiliation(s)
- Lakshmi Subramanian
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mercedes F Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.,Neuroscience Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Epitashvili N, San Antonio-Arce V, Brandt A, Schulze-Bonhage A. Scalp electroencephalographic biomarkers in epilepsy patients with focal cortical dysplasia. Ann Neurol 2018; 84:564-575. [DOI: 10.1002/ana.25322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Nino Epitashvili
- Epilepsy Center; University Medical Center; Freiburg Germany
- MediClub Georgia; Tbilisi Georgia
| | - Victoria San Antonio-Arce
- Epilepsy Center; University Medical Center; Freiburg Germany
- Hospital Sant Joan de Déu; Barcelona Spain
| | - Armin Brandt
- Epilepsy Center; University Medical Center; Freiburg Germany
| | | |
Collapse
|
8
|
Iffland PH, Crino PB. Focal Cortical Dysplasia: Gene Mutations, Cell Signaling, and Therapeutic Implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:547-571. [PMID: 28135561 DOI: 10.1146/annurev-pathol-052016-100138] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Focal cortical dysplasias (FCDs) are malformations of cortical development (MCDs) that are highly associated with medication-resistant epilepsy and are the most common cause of neocortical epilepsy in children. FCDs are a heterogeneous group of developmental disorders caused by germline or somatic mutations that occur in genes regulating the PI3K/Akt/mTOR pathway-a key pathway in neuronal growth and migration. Accordingly, FCDs are characterized by abnormal cortical lamination, cell morphology (e.g., cytomegaly), and cellular polarity. In some FCD subtypes, balloon cells express proteins typically seen in neuroglial progenitor cells. Because recurrent intractable seizures are a common feature of FCDs, epileptogenic electrophysiological properties are also observed in addition to local inflammation. Here, we will summarize the current literature regarding FCDs, addressing the current classification system, histopathology, molecular genetics, electrophysiology, and transcriptome and cell signaling changes.
Collapse
Affiliation(s)
- Philip H Iffland
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140;
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
9
|
Wang LK, Chen X, Zhang CQ, Liang C, Wei YJ, Yue J, Liu SY, Yang H. Elevated Expression of TRPC4 in Cortical Lesions of Focal Cortical Dysplasia II and Tuberous Sclerosis Complex. J Mol Neurosci 2017; 62:222-231. [PMID: 28455787 DOI: 10.1007/s12031-017-0923-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
Focal cortical dysplasia type II (FCD II) and tuberous sclerosis complex (TSC) are well-known causes of chronic refractory epilepsy in children. Canonical transient receptor potential channels (TRPCs) are non-selective cation channels that are commonly activated by phospholipase C (PLC) stimulation. Previous studies found that TRPC4 may participate in the process of epileptogenesis. This study aimed to examine the expression and distribution of TRPC4 in FCD II (n = 24) and TSC (n = 11) surgical specimens compared with that in age-matched autopsy control samples (n = 12). We found that the protein levels of TRPC4 and its upstream factor, PLC delta 1 (PLCD1), were elevated in FCD II and TSC samples compared to those of control samples. Immunohistochemistry assays revealed that TRPC4 staining was stronger in malformed cells, such as dysmorphic neurons, balloon cells and giant cells. Moderate-to-strong staining of the upstream factor PLCD1 was also identified in abnormal neurons. Moreover, double immunofluorescence staining revealed that TRPC4 was colocalised with glutamatergic and GABAergic neuron markers. Taken together, our results indicate that overexpression of TRPC4 protein may be involved in the epileptogenesis of FCD II and TSC.
Collapse
Affiliation(s)
- Lu-Kang Wang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Xin Chen
- Department of Neurosurgery, General Hospital of the People's Liberation Army Chengdu Military Region, Chengdu, Sichuan, 610083, China
| | - Chun-Qing Zhang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Chao Liang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Yu-Jia Wei
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Jiong Yue
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Shi-Yong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Hui Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
10
|
Abstract
Epilepsy is one of the most common neurologic disorders, affecting about 50 million people worldwide. The disease is characterized by recurrent seizures, which are due to aberrant neuronal networks resulting in synchronous discharges. The term epilepsy encompasses a large spectrum of syndromes and diseases with different etiopathogenesis. The recent development of imaging and epilepsy surgery techniques is now enabling the identification of structural abnormalities that are part of the epileptic network, and the removal of these lesions may result in control of seizures. Access of this clinically well-characterized neurosurgical material has provided neuropathologists with the opportunity to study a variety of structural brain abnormalities associated with epilepsy, by combining traditional routine histopathologic methods with molecular genetics and functional analysis of the resected tissue. This approach has contributed greatly to a better diagnosis and classification of these structural lesions, and has provided important new insights into their pathogenesis and epileptogenesis. The present chapter provides a detailed description of the large spectrum of histopathologic findings encountered in epilepsy surgery patients, addressing in particular the nonneoplastic pathologies, including hippocampal sclerosis, malformations of cortical development, Sturge-Weber syndrome, and Rasmussen encephalitis, and reviews current knowledge regarding the underlying molecular pathomechanisms and cellular mechanisms mediating hyperexcitability.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of Neuropathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland, the Netherlands.
| | - Angelika Mühlebner
- Department of Neuropathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Kannan L, Vogrin S, Bailey C, Maixner W, Harvey AS. Centre of epileptogenic tubers generate and propagate seizures in tuberous sclerosis. Brain 2016; 139:2653-2667. [DOI: 10.1093/brain/aww192] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
12
|
Chen X, Wang L, Chen B, Yue J, Zhu G, Zhang C, Liu S, Yang H. Down-Regulated Expression of Liver X Receptor beta in Cortical Lesions of Patients with Focal Cortical Dysplasia. J Mol Neurosci 2016; 60:223-31. [PMID: 27437943 DOI: 10.1007/s12031-016-0795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Focal cortical dysplasia (FCD) is strongly associated with medically intractable epilepsy. Studies suggest that liver X receptor beta (LXRβ) may participate in the pathogenesis of FCD. The present study investigated the expression pattern of LXRβ in FCD and the distribution of LXRβ in different neural precursor cells. Twenty-five surgical specimens from FCD patients and 11 age-matched control samples from autopsies were included in our study. Protein levels and distribution were detected by western blot, immunohistochemistry, and immunofluorescence staining. We found that (1) the level of LXRβ protein was markedly reduced in FCD. (2) LXRβ staining was weaker in the dysplastic cortices of FCD and was mainly observed in neuronal microcolumns, and malformed cells. (3) LXRβ was co-localized with radial glial cells (RGCs) markers and oligodendrocyte precursor cells (OPCs) markers in malformed cells. (4) RGCs marker and OPCs marker were down-regulated while LXRβ downstream factors were up-regulated in FCD specimens. Taken together, our results indicate that LXRβ may interact with β-catenin to regulate the generation of OPCs and the transformation of RGCs. LXRβ therefore potentially contributes to the pathogenesis of FCD.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Lukang Wang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Bing Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Jiong Yue
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Gang Zhu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Chunqing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Shiyong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
13
|
Chen X, Sun FJ, Wei YJ, Wang LK, Zang ZL, Chen B, Li S, Liu SY, Yang H. Increased Expression of Transient Receptor Potential Vanilloid 4 in Cortical Lesions of Patients with Focal Cortical Dysplasia. CNS Neurosci Ther 2016; 22:280-90. [PMID: 26842013 DOI: 10.1111/cns.12494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 12/13/2022] Open
Abstract
AIM Focal cortical dysplasia (FCD) represents a well-known cause of medically intractable epilepsy. Studies found that transient receptor potential vanilloid receptor 4 (TRPV4) may participate in the occurrence of seizures. This study investigated the expression patterns of TRPV4 in FCD and the cascade that regulate functional state of TRPV4 in cortical neurons. METHODS Thirty-nine surgical specimens from FCD patients and 10 age-matched control samples from autopsies were included in this study. Protein expression and distribution were detected by Western blot, immunohistochemistry, and immunofluorescence staining. Calcium imaging was used to detect the TRPV4-mediated Ca(2+) influx in cortical neurons. RESULTS (1) The protein levels of TRPV4 and of an upstream factor, protein kinase C (PKC), were markedly elevated in FCD. (2) TRPV4 staining was stronger in the dysplastic cortices of FCD and mainly observed in neuronal microcolumns and malformed cells. (3) The activation of TRPV4 was central for [Ca(2+)]i elevation in cortical neurons, and this activity of TRPV4 in cortical neurons was regulated by the PKC, but not the PKA, pathway. CONCLUSION The overexpression and altered cellular distribution of TRPV4 in FCD suggest that TRPV4 may potentially contribute to the epileptogenesis of FCD.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Fei-Ji Sun
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu-Jia Wei
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lu-Kang Wang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhen-Le Zang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bing Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shi-Yong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Dixit AB, Tripathi M, Chandra PS, Banerjee J. Molecular biomarkers in drug-resistant epilepsy: Facts & possibilities. Int J Surg 2015; 36:483-491. [PMID: 26306771 DOI: 10.1016/j.ijsu.2015.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/03/2015] [Indexed: 01/08/2023]
Abstract
Despite great advances in our understanding of the process of epileptogenesis we are yet to develop reliable biomarkers that have the potential to accurately localize the epileptogenic zone (EZ), and to resolve the issue of heterogeneity in epilepsy surgery outcome. Inability to precisely localize the epileptogenic foci is one of the reason why more than 30% of these DRE patients are not benefited. Molecular and cellular biomarkers in combination with imaging and electrical investigations will provide a more specific platform for defining epileptogenic zone. Potential molecular biomarkers of epileptogenesis including markers of inflammation, synaptic alterations and neurodegeneration may also have the potential for localizing EZ. At molecular level components derived from epileptogenic tissues, such as metabolites, proteins, mRNAs and miRNAs that are significantly altered can serve as biomarkers and can be clubbed with existing techniques to preoperatively localize the EZ. Neurosurgeons across the world face problems while defining the margins of the epileptogenic tissues to be resected during surgery. In this review we discuss molecular biomarkers reported so far in the context of epileptogenesis and some of the unexplored markers which may have the potential to localize EZ during surgery. We also discuss "Intelligent knife" technique that couples electrosurgery and mass spectrometry allowing near-real-time characterization of human tissue and may prove to be instrumental in defining the margins of the epileptogenic zone during surgery.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Center of Excellence for Epilepsy, National Brain Research Centre, Manesar, 122051, India
| | - Manjari Tripathi
- Dept. of Neurology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - P Sarat Chandra
- Dept. of Neurosurgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jyotirmoy Banerjee
- Center of Excellence for Epilepsy, National Brain Research Centre, Manesar, 122051, India.
| |
Collapse
|
15
|
|
16
|
Abdijadid S, Mathern GW, Levine MS, Cepeda C. Basic mechanisms of epileptogenesis in pediatric cortical dysplasia. CNS Neurosci Ther 2014; 21:92-103. [PMID: 25404064 DOI: 10.1111/cns.12345] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022] Open
Abstract
Cortical dysplasia (CD) is a neurodevelopmental disorder due to aberrant cell proliferation and differentiation. Advances in neuroimaging have proven effective in early identification of the more severe lesions and timely surgical removal to treat epilepsy. However, the exact mechanisms of epileptogenesis are not well understood. This review examines possible mechanisms based on anatomical and electrophysiological studies. CD can be classified as CD type I consisting of architectural abnormalities, CD type II with the presence of dysmorphic cytomegalic neurons and balloon cells, and CD type III which occurs in association with other pathologies. Use of freshly resected brain tissue has allowed a better understanding of basic mechanisms of epileptogenesis and has delineated the role of abnormal cells and synaptic activity. In CD type II, it was demonstrated that balloon cells do not initiate epileptic activity, whereas dysmorphic cytomegalic and immature neurons play an important role in generation and propagation of epileptic discharges. An unexpected finding in pediatric CD was that GABA synaptic activity is not reduced, and in fact, it may facilitate the occurrence of epileptic activity. This could be because neuronal circuits display morphological and functional signs of dysmaturity. In consequence, drugs that increase GABA function may prove ineffective in pediatric CD. In contrast, drugs that counteract depolarizing actions of GABA or drugs that inhibit the mammalian target of rapamycin (mTOR) pathway could be more effective.
Collapse
Affiliation(s)
- Sara Abdijadid
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
17
|
Cepeda C, Chen JY, Wu JY, Fisher RS, Vinters HV, Mathern GW, Levine MS. Pacemaker GABA synaptic activity may contribute to network synchronization in pediatric cortical dysplasia. Neurobiol Dis 2013; 62:208-17. [PMID: 24121115 DOI: 10.1016/j.nbd.2013.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 12/17/2022] Open
Abstract
Spontaneous pacemaker γ-aminobutyric acid (GABA) receptor-mediated synaptic activity (PGA) occurs in a subset of tissue samples from pediatric epilepsy surgery patients. In the present study, based on single-cell electrophysiological recordings from 120 cases, we describe the etiologies, cell types, and primary electrophysiological features of PGA. Cells displaying PGA occurred more frequently in the areas of greatest anatomical abnormality in cases of focal cortical dysplasia (CD), often associated with hemimegalencephaly (HME), and only rarely in non-CD etiologies. PGA was characterized by rhythmic synaptic events (5-10Hz) and was observed in normal-like, dysmorphic cytomegalic, and immature pyramidal neurons. PGA was action potential-dependent, mediated by GABAA receptors, and unaffected by antagonism of glutamate receptors. We propose that PGA is a unique electrophysiological characteristic associated with CD and HME. It could represent an abnormal signal that may contribute to epileptogenesis in malformed postnatal cortex by facilitating pyramidal neuron synchrony.
Collapse
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, USA.
| | - Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Joyce Y Wu
- Division of Pediatric Neurology, Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Robin S Fisher
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Harry V Vinters
- Department of Neurology, Section of Neuropathology, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Gary W Mathern
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Neurosurgery, Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| |
Collapse
|
18
|
Shu HF, Kuang YQ, Liu SY, Yu SX, Zhang CQ, Zheng DH, Gu JW, Yang H. Endogenous subventricular zone neural progenitors contribute to the formation and hyperexcitability of experimental model of focal microgyria. J Mol Neurosci 2013; 52:586-97. [PMID: 24057922 DOI: 10.1007/s12031-013-0114-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/02/2013] [Indexed: 12/30/2022]
Abstract
Microgyria is associated with epilepsy and due to developmental disruption of neuronal migration. However, the role of endogenous subventricular zone-derived neural progenitors (SDNPs) in formation and hyperexcitability has not been fully elucidated. Here, we establish a neonatal cortex freeze-lesion (FL) model, which was considered as a model for focal microgyria, and simultaneously label SDNPs by CM-DiI. Morphological investigation showed that SDNPs migrated into FL and differentiated into neuronal and glia cell types, suggesting the involvement of endogenous SDNPs in the formation of FL-induced microgyria. Patch-clamp recordings in CM-DiI positive (CM-DiI(+)) pyramidal neurons within FL indicated an increase in frequency of spontaneous action potentials, while the resting membrane potential did not differ from the controls. We also found that spontaneous excitatory postsynaptic currents (EPSCs) increased in frequency but not in amplitude compared with controls. The evoked EPSCs showed a significant increase of 10-90% in rise time and decay time in the CM-DiI(+) neurons. Moreover, paired-pulse facilitation was dramatically larger in CM-DiI(+) pyramidal neurons. Western blotting data showed that AMPA and NMDA receptors were increased to some extent in the FL cortex compared with controls, and the NMDA/AMPA ratio of eEPSCs at CM-DiI(+) pyramidal neurons was significantly increased. Taken together, our findings provide novel evidence for the contribution of endogenous SDNPs in the formation and epileptogenicity of FL-induced focal microgyria.
Collapse
Affiliation(s)
- Hai-Feng Shu
- Department of Neurosurgery, General Hospital of the People's Liberation Army Chengdu Military Region, Sichuan, 610000, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
The interleukin 17 system in cortical lesions in focal cortical dysplasias. J Neuropathol Exp Neurol 2013; 72:152-63. [PMID: 23334598 DOI: 10.1097/nen.0b013e318281262e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Focal cortical dysplasias (FCDs) are increasingly recognized as important causes of medically intractable epilepsy. To understand the potential role of the interleukin 17 (IL-17) system in the epileptogenesis of FCDs, we studied the expression patterns of the IL-17 system in 15 FCD type Ia (FCDIa), 12 FCD type IIa (FCDIIa), and 12 FCD type IIb (FCDIIb) cortical lesions and compared the results with those in cerebral cortex from 10 control patients. Protein levels of IL-17, IL-17 receptor (IL-17R), and downstream factors of the IL-17 pathway (nuclear factor-κB activator 1 [NFκB; ACT1] and NFκB-p65) were markedly elevated in FCDIa, FCDIIa, and FCDIIb. Moreover, protein levels of IL-17 and IL-17R positively correlated with the frequency of seizures in FCD patients. Immunostaining indicated that IL-17 and IL-17R are highly expressed in neuronal microcolumns, dysmorphic neurons, balloon cells, astrocytes, and vascular endothelial cells. Nuclear factor-κB activator 1 and NFκB-p65 were diffusely expressed in FCDs. In addition, we detected a few IL-17-positive, CD4-positive T lymphocytes in FCDIIa and FCDIIb but not in FCDIa. Taken together, these findings suggest that the overexpression of the IL-17 system and the activation of the IL-17 signal transduction pathway may be involved in the epileptogenicity of cortical lesions in FCDs, thus representing a novel potential target for antiepileptic therapy.
Collapse
|
20
|
Upregulated expression of voltage-gated sodium channel Nav1.3 in cortical lesions of patients with focal cortical dysplasia type IIb. Neuroreport 2012; 23:407-11. [PMID: 22494998 DOI: 10.1097/wnr.0b013e328351db48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Focal cortical dysplasia (FCD) is one of the causes of intractable epilepsy in humans. Cytomegalic neurons, not balloon cells, are considered to be the putative generators of epileptic activity in FCD type IIb (FCDIIb). Voltage-gated sodium channel III α-isoforms (Nav1.3) play crucial roles in the initiation and propagation of action potentials and are important regulators of neuronal excitability. Here, we examined 12 FCDIIb surgical specimens from patients undergoing surgery for epilepsy and used age-matched normal control cortical tissue (CTX) from 10 autopsy samples as controls. Using reverse transcription-PCR and western blot techniques, we found that the mRNA and protein levels of Nav1.3 were clearly upregulated in FCDIIb surgical specimens compared with the controls (CTX). Results of immunohistochemistry analyses demonstrated that Nav1.3 immunoreactivity was widely present in FCDIIb lesion tissue; specifically, high levels of Nav1.3 immunoreactive proteins were located mainly in cytomegalic neurons of different sizes and shapes, not in balloon cells. Double-labeling studies showed most cytomegalic neurons expressing Nav1.3 colabeled with neuronal markers and glutamate receptors-1. Taken together, our results show an upregulation of Nav1.3 protein and a specific cellular distribution of Nav1.3 proteins in FCDIIb lesion tissue samples, suggesting that Nav1.3 may be involved in the generation of epileptic activity in FCDIIb.
Collapse
|
21
|
Cepeda C, André VM, Hauptman JS, Yamazaki I, Huynh MN, Chang JW, Chen JY, Fisher RS, Vinters HV, Levine MS, Mathern GW. Enhanced GABAergic network and receptor function in pediatric cortical dysplasia Type IIB compared with Tuberous Sclerosis Complex. Neurobiol Dis 2011; 45:310-21. [PMID: 21889982 DOI: 10.1016/j.nbd.2011.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 12/24/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) and cortical dysplasia Type IIB (CDIIB) share histopathologic features that suggest similar epileptogenic mechanisms. This study compared the morphological and electrophysiological properties of cortical cells in tissue from pediatric TSC (n=20) and CDIIB (n=20) patients using whole-cell patch clamp recordings and biocytin staining. Cell types were normal-appearing and dysmorphic-cytomegalic pyramidal neurons, interneurons, and giant/balloon cells, including intermediate neuronal-glial cells. In the cortical mantle, giant/balloon cells occurred more frequently in TSC than in CDIIB cases, whereas cytomegalic pyramidal neurons were found more frequently in CDIIB. Cell morphology and membrane properties were similar in TSC and CDIIB cases. Except for giant/balloon and intermediate cells, all neuronal cell types fired action potentials and displayed spontaneous postsynaptic currents. However, the frequency of spontaneous glutamatergic postsynaptic currents in normal pyramidal neurons and interneurons was significantly lower in CDIIB compared with TSC cases and the GABAergic activity was higher in all neuronal cell types in CDIIB. Further, acutely dissociated pyramidal neurons displayed higher sensitivity to exogenous application of GABA in CDIIB compared with TSC cases. These results indicate that, in spite of similar histopathologic features and basic cell membrane properties, TSC and CDIIB display differences in the topography of abnormal cells, excitatory and inhibitory synaptic network properties, and GABA(A) receptor sensitivity. These differences support the notion that the mechanisms of epileptogenesis could differ in patients with TSC and CDIIB. Consequently, pharmacologic therapies should take these findings into consideration.
Collapse
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Blümcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, Jacques TS, Avanzini G, Barkovich AJ, Battaglia G, Becker A, Cepeda C, Cendes F, Colombo N, Crino P, Cross JH, Delalande O, Dubeau F, Duncan J, Guerrini R, Kahane P, Mathern G, Najm I, Ozkara C, Raybaud C, Represa A, Roper SN, Salamon N, Schulze-Bonhage A, Tassi L, Vezzani A, Spreafico R. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 2010. [PMID: 21219302 DOI: 10.1111/j.1528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Focal cortical dysplasias (FCD) are localized regions of malformed cerebral cortex and are very frequently associated with epilepsy in both children and adults. A broad spectrum of histopathology has been included in the diagnosis of FCD. An ILAE task force proposes an international consensus classification system to better characterize specific clinicopathological FCD entities. METHODS Thirty-two Task Force members have reevaluated available data on electroclinical presentation, imaging, neuropathological examination of surgical specimens as well as postsurgical outcome. KEY FINDINGS The ILAE Task Force proposes a three-tiered classification system. FCD Type I refers to isolated lesions, which present either as radial (FCD Type Ia) or tangential (FCD Type Ib) dyslamination of the neocortex, microscopically identified in one or multiple lobes. FCD Type II is an isolated lesion characterized by cortical dyslamination and dysmorphic neurons without (Type IIa) or with balloon cells (Type IIb). Hence, the major change since a prior classification represents the introduction of FCD Type III, which occurs in combination with hippocampal sclerosis (FCD Type IIIa), or with epilepsy-associated tumors (FCD Type IIIb). FCD Type IIIc is found adjacent to vascular malformations, whereas FCD Type IIId can be diagnosed in association with epileptogenic lesions acquired in early life (i.e., traumatic injury, ischemic injury or encephalitis). SIGNIFICANCE This three-tiered classification system will be an important basis to evaluate imaging, electroclinical features, and postsurgical seizure control as well as to explore underlying molecular pathomechanisms in FCD.
Collapse
Affiliation(s)
- Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Blümcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, Jacques TS, Avanzini G, Barkovich AJ, Battaglia G, Becker A, Cepeda C, Cendes F, Colombo N, Crino P, Cross JH, Delalande O, Dubeau F, Duncan J, Guerrini R, Kahane P, Mathern G, Najm I, Ozkara C, Raybaud C, Represa A, Roper SN, Salamon N, Schulze-Bonhage A, Tassi L, Vezzani A, Spreafico R. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 2010; 52:158-74. [PMID: 21219302 DOI: 10.1111/j.1528-1167.2010.02777.x] [Citation(s) in RCA: 1206] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Focal cortical dysplasias (FCD) are localized regions of malformed cerebral cortex and are very frequently associated with epilepsy in both children and adults. A broad spectrum of histopathology has been included in the diagnosis of FCD. An ILAE task force proposes an international consensus classification system to better characterize specific clinicopathological FCD entities. METHODS Thirty-two Task Force members have reevaluated available data on electroclinical presentation, imaging, neuropathological examination of surgical specimens as well as postsurgical outcome. KEY FINDINGS The ILAE Task Force proposes a three-tiered classification system. FCD Type I refers to isolated lesions, which present either as radial (FCD Type Ia) or tangential (FCD Type Ib) dyslamination of the neocortex, microscopically identified in one or multiple lobes. FCD Type II is an isolated lesion characterized by cortical dyslamination and dysmorphic neurons without (Type IIa) or with balloon cells (Type IIb). Hence, the major change since a prior classification represents the introduction of FCD Type III, which occurs in combination with hippocampal sclerosis (FCD Type IIIa), or with epilepsy-associated tumors (FCD Type IIIb). FCD Type IIIc is found adjacent to vascular malformations, whereas FCD Type IIId can be diagnosed in association with epileptogenic lesions acquired in early life (i.e., traumatic injury, ischemic injury or encephalitis). SIGNIFICANCE This three-tiered classification system will be an important basis to evaluate imaging, electroclinical features, and postsurgical seizure control as well as to explore underlying molecular pathomechanisms in FCD.
Collapse
Affiliation(s)
- Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Growth defects in the dorsal pallium after genetically targeted ablation of principal preplate neurons and neuroblasts: a morphometric analysis. ASN Neuro 2010; 2:e00046. [PMID: 20957077 PMCID: PMC2949088 DOI: 10.1042/an20100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 11/17/2022] Open
Abstract
The present study delineates the large-scale, organic responses of growth in the dorsal pallium to targeted genetic ablations of the principal PP (preplate) neurons of the neocortex. Ganciclovir treatment during prenatal development [from E11 (embryonic age 11) to E13] of mice selectively killed cells with shared S-phase vulnerability and targeted expression of a GPT [golli promoter transgene; GPT linked to HSV-TK (herpes simplex virus-thymidine kinase), τ-eGFP and lacZ reporters] localized in PP neurons and their intermediate progenitor neuroblasts. The volume, area and thickness of the pallium were measured in an E12-P4 (postnatal age 4) longitudinal study with comparisons between ablated (HSV-TK(+/0)) and control (HSV-TK(0/0)) littermates. The extent of ablations was also systematically varied, and the effect on physical growth was assessed in an E18 cross-sectional study. The morphological evidence obtained in the present study supports the conclusion that genetically targeted ablations delay the settlement of the principal PP neurons of the dorsal pallium. This leads to progressive and substantial reductions of growth, despite compensatory responses that rapidly replace the ablated cells. These growth defects originate from inductive cellular interactions in the proliferative matrix of the ventricular zone of the pallium, but are amplified by subsequent morphogenic and trophic cellular interactions. The defects persist during the course of prenatal and postnatal development to demonstrate a constrained dose-response relationship with the extent of specific killing of GPT neurons. The defects propagate simultaneously in both the horizontal and vertical cytoarchitectural dimensions of the developing pallium, an outcome that produces a localized shortfall of volume in the telencephalic vesicles.
Collapse
Key Words
- BrdU, bromodeoxyuridine
- CP/D, cortical plate/distal division
- CP/P, cortical plate/proximal division
- E11, embryonic age 11
- GPT, golli promoter transgene
- HSV-TK, herpes simplex virus-thymidine kinase
- IZ, intermediate zone
- MBP, myelin basic protein
- NA, numerical aperture
- P4, postnatal age 4
- PP, preplate
- Pα, probability of type I error
- SP, subplate
- SVZ, subventricular zone
- TUNEL, terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling
- VZ, ventricular zone
- VZ/SVZ, the combined VZ and SVZ
- X-gal, 5-bromo-4-chloro-3-indolyl-β-d-galactoside
- df, degrees of freedom
- forebrain growth
- morphogenesis
- neocortex
- pathogenesis
- preplate
- targeted ablation
Collapse
|
25
|
Cepeda C, André VM, Yamazaki I, Hauptman JS, Chen JY, Vinters HV, Mathern GW, Levine MS. Comparative study of cellular and synaptic abnormalities in brain tissue samples from pediatric tuberous sclerosis complex and cortical dysplasia type II. Epilepsia 2010; 51 Suppl 3:160-5. [PMID: 20618424 DOI: 10.1111/j.1528-1167.2010.02633.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tuberous sclerosis complex (TSC) and severe cortical dysplasia (CD), or CD type II according to Palmini classification, share histopathologic similarities, specifically the presence of cytomegalic neurons and balloon cells. In this study we examined the morphologic and electrophysiologic properties of cells in cortical tissue samples from pediatric patients with TSC and CD type II who underwent surgery for pharmacoresistant epilepsy. Normal-appearing pyramidal neurons from TSC and CD type II cases had similar passive membrane properties. However, the frequency of excitatory postsynaptic currents (EPSCs) was higher in neurons from TSC compared to severe CD cases, particularly the frequency of medium- and large-amplitude synaptic events. In addition, EPSCs rise and decay times were slower in normal cells from TSC compared to severe CD cases. Balloon cells were found more frequently in TSC cases, whereas cytomegalic pyramidal neurons occurred more often in CD type II cases. Both cell types were similar morphologically and electrophysiologically in TSC and severe CD. These results suggest that even though the histopathology in TSC and severe CD is similar, there are subtle differences in spontaneous synaptic activity and topographic distribution of abnormal cells. These differences may contribute to variable mechanisms of epileptogenesis in patients with TSC compared with CD type II.
Collapse
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, California 90024, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
André VM, Cepeda C, Vinters HV, Huynh M, Mathern GW, Levine MS. Interneurons, GABAA currents, and subunit composition of the GABAA receptor in type I and type II cortical dysplasia. Epilepsia 2010; 51 Suppl 3:166-70. [PMID: 20618425 DOI: 10.1111/j.1528-1167.2010.02634.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Interneurons, gamma-aminobutyric acid (GABA)(A) receptor density, and subunit composition determine inhibitory function in pyramidal neurons and control excitability in cortex. Abnormalities in GABAergic cells or GABA(A) receptors could contribute to seizures in malformations of cortical development. Herein we review data obtained in resected cortex from pediatric epilepsy surgery patients with type I and type II cortical dysplasia (CD) and non-CD pathologies. Our studies found fewer interneurons immunolabeled for glutamic acid decarboxylase (GAD) in type II CD, whereas there were no changes in tissue from type I CD. GAD-labeled neurons had larger somata, and GABA transporter (VGAT and GAT1) staining showed a dense plexus surrounding cytomegalic neurons in type II CD. Functionally, neurons from type I CD tissue showed GABA currents with increased half maximal effective concentration compared to cells from the other groups. In type II CD, cytomegalic pyramidal neurons showed alterations in GABA currents, decreased sensitivity to zolpidem and zinc, and increased sensitivity to bretazenil. In addition, pyramidal neurons from type II CD displayed higher frequency of spontaneous inhibitory post synaptic currents. The GABAergic system is therefore, altered differently in cortex from type I and type II CD patients. Alterations in zolpidem, zinc, and bretazenil sensitivity and spontaneous inhibitory postsynaptic currents (IPSCs) suggest that type II CD neurons have altered GABA(A) receptor subunit composition and receive dense GABA inputs. These findings support the hypothesis that patients with type I and type II CD will respond differently to GABA receptor-mediated antiepileptic drugs and that cytomegalic neurons have features similar to immature neurons.
Collapse
Affiliation(s)
- Véronique M André
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
27
|
Barinka F, Druga R, Marusic P, Krsek P, Zamecnik J. Calretinin immunoreactivity in focal cortical dysplasias and in non-malformed epileptic cortex. Epilepsy Res 2009; 88:76-86. [PMID: 19854615 DOI: 10.1016/j.eplepsyres.2009.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 11/16/2022]
Abstract
Focal cortical dysplasias (FCDs) represent a prominent cause of pharmacologically intractable epilepsy. In FCD, the decrease of parvalbumin immunoreactive (PV+) inhibitory interneurons has been repeatedly documented. Here, we wanted to show whether another interneuronal population, the calretinin immunoreactive (CR+) neurons, exhibits any change in human FCD. We also investigated samples of morphologically normal temporal neocortex resected together with sclerotic hippocampus (nHSTN), where decrease of PV+ interneurons was previously documented as well. Brain tissue from 24 patients surgically treated for pharmacoresistant epilepsy was examined. Calretinin immunoreactivity was qualitatively evaluated and the density of CR+ neuronal profiles was quantified. As a control, post-mortem acquired neocortical samples of nine patients without any brain affecting disease were used. CR+ neurons were located predominantly in superficial cortical layers both in controls and pathological samples. Similarly, the morphology of CR+ neurons was unaffected in pathological samples. The overall density of CR+ neurons was significantly decreased in FCD type I (to approximately 70% of control values) and even more in FCD type II (to approximately 50% of controls). In nHSTN, no change compared to controls was found in CR+ neuronal density. Our results may contribute to the better understanding of the role of individual interneuronal populations in epileptogenesis.
Collapse
Affiliation(s)
- Filip Barinka
- Department of Anatomy, Charles University in Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
28
|
Sisodiya SM, Fauser S, Cross JH, Thom M. Focal cortical dysplasia type II: biological features and clinical perspectives. Lancet Neurol 2009; 8:830-43. [DOI: 10.1016/s1474-4422(09)70201-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
André VM, Cepeda C, Vinters HV, Huynh M, Mathern GW, Levine MS. Pyramidal cell responses to gamma-aminobutyric acid differ in type I and type II cortical dysplasia. J Neurosci Res 2009; 86:3151-62. [PMID: 18615638 DOI: 10.1002/jnr.21752] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abnormalities in the gamma-aminobutyric acid (GABA)-ergic system could be responsible for seizures in cortical dysplasia (CD). We examined responses of pyramidal neurons to exogenous application of GABA, as well as alterations of GABAergic interneuron number and size in pediatric epilepsy surgery patients with non-CD, type I CD, and type II CD pathologies. We used the dissociated cell preparation for electrophysiology along with immunohistochemistry to identify number and size of GABAergic cells. Pyramidal neurons from type I CD tissue showed increased EC(50) and faster kinetics compared with cells from non-CD and type II CD tissue. Cytomegalic pyramidal neurons showed increased GABA peak currents and decreased peak current densities, longer kinetics, and decreased sensitivity to zolpidem and zinc compared with normal pyramidal cells from non-CD and type I CD. There were fewer but larger glutamic acid decarboxylase (GAD)-containing cells in type II CD tissue with cytomegalic neurons compared with non-CD, type I CD, and type II CD without cytomegalic neurons. In addition, GABA transporters (VGAT and GAT-1) showed increased staining surrounding cytomegalic neurons in type II CD tissue. These results indicate that there are differences in GABA(A) receptor-mediated pyramidal cell responses in type I and type II CD. Alterations in zolpidem and zinc sensitivities also suggest that cytomegalic neurons have altered GABA(A) receptor subunit composition. These findings support the hypothesis that patients with type I and type II CD will respond differently to GABA-mediated antiepileptic drugs and that cytomegalic neurons have features similar to immature neurons with prolonged GABA(A) receptor open channel times.
Collapse
Affiliation(s)
- Véronique M André
- Mental Retardation Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Lerner JT, Salamon N, Hauptman JS, Velasco TR, Hemb M, Wu JY, Sankar R, Donald Shields W, Engel J, Fried I, Cepeda C, Andre VM, Levine MS, Miyata H, Yong WH, Vinters HV, Mathern GW. Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia 2009; 50:1310-35. [PMID: 19175385 DOI: 10.1111/j.1528-1167.2008.01998.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent findings on the clinical, electroencephalography (EEG), neuroimaging, and surgical outcomes are reviewed comparing patients with Palmini type I (mild) and type II (severe) cortical dysplasia. Resources include peer-reviewed studies on surgically treated patients and a subanalysis of the 2004 International League Against Epilepsy (ILAE) Survey of Pediatric Epilepsy Surgery. These sources were supplemented with data from University of California, Los Angeles (UCLA). Cortical dysplasia is the most frequent histopathologic substrate in children, and the second most common etiology in adult epilepsy surgery patients. Cortical dysplasia patients present with seizures at an earlier age than other surgically treated etiologies, and 33-50% have nonlocalized scalp EEG and normal magnetic resonance imaging (MRI) scans. 2-((18)F)Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) is positive in 75-90% of cases. After complete resection, 80% of patients are seizure free compared with 20% with incomplete resections. Compared with type I, patients with type II cortical dysplasia present at younger ages, have higher seizure frequencies, and are extratemporal. Type I dysplasia is found more often in adult patients in the temporal lobe and is often MRI negative. These findings identify characteristics of patients with mild and severe cortical dysplasia that define surgically treated epilepsy syndromes. The authors discuss future challenges to identifying and treating medically refractory epilepsy patients with cortical dysplasia.
Collapse
Affiliation(s)
- Jason T Lerner
- Department of Pediatric Neurology, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Talos DM, Kwiatkowski DJ, Cordero K, Black PM, Jensen FE. Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex cortical tubers. Ann Neurol 2008; 63:454-65. [PMID: 18350576 DOI: 10.1002/ana.21342] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Genetic loss of TSC1/TSC2 function in tuberous sclerosis complex (TSC) results in overactivation of the mammalian target of rapamycin complex 1 pathway, leading to cellular dysplasia. We hypothesized that the dysplastic cells in TSC tubers are heterogeneous, including separable classes on a neuronal-glial spectrum, and that these dysplastic cells express glutamate receptor (GluR) patterns consistent with increased cortical network excitability. METHODS Surgically resected human cortical tubers and nondysplastic epileptic cortical samples were analyzed by double-label immunocytochemistry for coexpression of neuronal and glial markers, the TSC1/TSC2 pathway downstream molecule phospho-S6 (pS6) and GluR subunits, and compared with control cortical tissue. Western blotting was used to quantify changes in GluR subunit expression in tubers versus controls. RESULTS We demonstrate that cortical tubers contain a broad spectrum of cell types including disoriented pyramidal cells, dysplastic neurons, giant neuroglial cells, dysplastic astroglia, and reactive astrocytes. Dysplastic neurons, giant cells, and dysplastic astroglia express high levels of pS6 and demonstrate altered GluR subunit composition, resembling those of normal immature neurons and glia. In contrast, nondysplastic neurons in TSC and non-TSC epileptic lesions express lower pS6 levels and display changes in GluR subunit expression that are distinct from the patterns seen in tuber dysplastic cells. INTERPRETATION This work significantly expands the spectrum of abnormal cells recognized in tubers beyond the classic tuber giant cell and demonstrates cell-specific abnormalities in GluR expression that may contribute to seizure pathogenesis in TSC. Furthermore, these results suggest that subunit-specific antagonists may be of potential use in the treatment of epilepsy in TSC.
Collapse
Affiliation(s)
- Delia M Talos
- Department of Neurology, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
32
|
[Nontumoral epileptogenic lesions]. Neurochirurgie 2008; 54:159-65. [PMID: 18440566 DOI: 10.1016/j.neuchi.2008.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 02/20/2008] [Indexed: 11/21/2022]
Abstract
Nontumoral epileptogenic lesions account for the major pathological group of surgical specimens obtained from patients with temporal or extratemporal drug-resistant epilepsy. Hippocampal sclerosis remains the predominant etiology, but cerebral cortical dysplasias actually make up the second major cause of nontumoral epilepsy and are increasingly recognized. The percentage of vascular lesions or glial/glio-mesodermal scars remains stable, but the minor or nonspecific lesion group is decreasing because of imaging investigation technique improvement.
Collapse
|
33
|
Wong M. Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation. Epilepsia 2007; 49:8-21. [PMID: 17727667 PMCID: PMC3934641 DOI: 10.1111/j.1528-1167.2007.01270.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Malformations of cortical development (MCDs) are increasingly recognized as causes of medically intractable epilepsy. In order to develop more effective, rational therapies for refractory epilepsy related to MCDs, it is important to achieve a better understanding of the underlying mechanisms of epileptogenesis, but this is complicated by the wide variety of different radiographic, histopathological, and molecular features of these disorders. A subset of MCDs share a number of characteristic cellular and molecular abnormalities due to early defects in neuronal and glial proliferation and differentiation and have a particularly high incidence of epilepsy, suggesting that this category of MCDs with abnormal glioneuronal proliferation may also share a common set of primary mechanisms of epileptogenesis. This review critically analyzes both clinical and basic science evidence for overlapping mechanisms of epileptogenesis in this group of disorders, focusing on tuberous sclerosis complex, focal cortical dysplasia with balloon cells, and gangliogliomas. Specifically, the role of lesional versus perilesional regions, circuit versus cellular/molecular defects, and nonneuronal factors, such as astrocytes, in contributing to epileptogenesis in these MCDs is examined. An improved understanding of these various factors involved in epileptogenesis has direct clinical implications for optimizing current treatments or developing novel therapeutic approaches for epilepsy in these disorders.
Collapse
Affiliation(s)
- Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|