1
|
Wang PS, Yang XX, Wei Q, Lv YT, Wu ZY, Li HF. Clinical characterization and founder effect analysis in Chinese amyotrophic lateral sclerosis patients with SOD1 common variants. Ann Med 2024; 56:2407522. [PMID: 39351695 PMCID: PMC11445911 DOI: 10.1080/07853890.2024.2407522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE In the Asian population, SOD1 variants are the most common cause of amyotrophic lateral sclerosis (ALS). To date, more than 200 variants have been reported in SOD1. This study aimed to summarize the genotype-phenotype correlation and determine whether the patients carrying common variants derive from a common ancestor. METHODS A total of 103 sporadic ALS (SALS) and 11 familial ALS (FALS) probands were included and variants were screened by whole exome sequencing. Functional analyses were performed on fibroblasts derived from patients with SOD1 p.V48A and control. Haplotype analysis was performed in the probands with p.H47R or p.V48A and their familial members. RESULTS A total of 25 SOD1 variants were identified in 44 probands, in which p.H47R, p.V48A and p.C112Y variants were the most common variants. 94.3% and 60% of patients with p.H47R or p.V48A had lower limb onset with predominant lower motor neurons (LMNs) involvement. Patients with p.H47R had a slow progression and prolonged survival time, while patients with p.V48A exhibited a duration of 2-5 years. Patients with p.C112Y variant showed remarkable phenotypic variation in age at onset and disease course. SOD1V48A fibroblasts showed mutant SOD1 aggregate formation, enhanced intracellular reactive oxygen species level, and decreased mitochondrial membrane potential compared to the control fibroblast. Haplotype analysis showed that seven families had two different haplotypes. p.H47R and p.V48A variants did not originate from a common founder. CONCLUSIONS Our study expanded the understanding of the genotype-phenotype correlation of ALS with SOD1 variants and revealed that the common p.H47R or p.V48A variant did not have a founder effect.
Collapse
Affiliation(s)
- Pei-Shan Wang
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Xia Yang
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiao Wei
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Ting Lv
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Hong-Fu Li
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Ciuro M, Sangiorgio M, Leanza G, Gulino R. A Meta-Analysis Study of SOD1-Mutant Mouse Models of ALS to Analyse the Determinants of Disease Onset and Progression. Int J Mol Sci 2022; 24:ijms24010216. [PMID: 36613659 PMCID: PMC9820332 DOI: 10.3390/ijms24010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
A complex interaction between genetic and external factors determines the development of amyotrophic lateral sclerosis (ALS). Epidemiological studies on large patient cohorts have suggested that ALS is a multi-step disease, as symptom onset occurs only after exposure to a sequence of risk factors. Although the exact nature of these determinants remains to be clarified, it seems clear that: (i) genetic mutations may be responsible for one or more of these steps; (ii) other risk factors are probably linked to environment and/or to lifestyle, and (iii) compensatory plastic changes taking place during the ALS etiopathogenesis probably affect the timing of onset and progression of disease. Current knowledge on ALS mechanisms and therapeutic targets, derives mainly from studies involving superoxide dismutase 1 (SOD1) transgenic mice; therefore, it would be fundamental to verify whether a multi-step disease concept can also be applied to these animal models. With this aim, a meta-analysis study has been performed using a collection of primary studies (n = 137), selected according to the following criteria: (1) the studies should employ SOD1 transgenic mice; (2) the studies should entail the presence of a disease-modifying experimental manipulation; (3) the studies should make use of Kaplan-Meier plots showing the distribution of symptom onset and lifespan. Then, using a subset of this study collection (n = 94), the effects of treatments on key molecular mechanisms, as well as on the onset and progression of disease have been analysed in a large population of mice. The results are consistent with a multi-step etiopathogenesis of disease in ALS mice (including two to six steps, depending on the particular SOD1 mutation), closely resembling that observed in patient cohorts, and revealed an interesting relationship between molecular mechanisms and disease manifestation. Thus, SOD1 mouse models may be considered of high predictive value to understand the determinants of disease onset and progression, as well as to identify targets for therapeutic interventions.
Collapse
Affiliation(s)
- Maria Ciuro
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| | - Maria Sangiorgio
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre—IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre—IMPRonTE, University of Catania, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
4
|
SQSTM1, a protective factor of SOD1-linked motor neuron disease, regulates the accumulation and distribution of ubiquitinated protein aggregates in neuron. Neurochem Int 2022; 158:105364. [DOI: 10.1016/j.neuint.2022.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
|
5
|
Ruffo P, Perrone B, Conforti FL. SOD-1 Variants in Amyotrophic Lateral Sclerosis: Systematic Re-Evaluation According to ACMG-AMP Guidelines. Genes (Basel) 2022; 13:genes13030537. [PMID: 35328090 PMCID: PMC8955492 DOI: 10.3390/genes13030537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common type of motor neuron disease whose causes are unclear. The first ALS gene associated with the autosomal dominant form of the disease was SOD1. This gene has a high rate of rare variants, and an appropriate classification is essential for a correct ALS diagnosis. In this study, we re-evaluated the classification of all previously reported SOD1 variants (n = 202) from ALSoD, project MinE, and in-house databases by applying the ACMG-AMP criteria to ALS. New bioinformatics analysis, frequency rating, and a thorough search for functional studies were performed. We also proposed adjusting criteria strength describing how to apply them to SOD1 variants. Most of the previously reported variants have been reclassified as likely pathogenic and pathogenic based on the modified weight of the PS3 criterion, highlighting how in vivo or in vitro functional studies are determining their interpretation and classification. Furthermore, this study reveals the concordance and discordance of annotations between open databases, indicating the need for expert review to adapt the study of variants to a specific disease. Indeed, in complex diseases, such as ALS, the oligogenic inheritance, the presence of genes that act as risk factors and the reduced penetration must be considered. Overall, the diagnosis of ALS remains clinical, and improving variant classification could support genetic data as diagnostic criteria.
Collapse
|
6
|
Otomo A, Ono S, Sato K, Mitsui S, Shimakura K, Kimura H, Hadano S. High-throughput quantitative analysis of axonal transport in cultured neurons from SOD1 H46R ALS mice by using a microfluidic device. Neurosci Res 2021; 174:46-52. [PMID: 34352295 DOI: 10.1016/j.neures.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 11/15/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective loss of motor neurons. We have previously shown that autophagosome-like vesicular structures are progressively accumulated in the spinal axons of an ALS mouse model, overexpressing human Cu/Zn superoxide dismutase (SOD1) mutant, prior to the onset of motor symptoms. This suggests that axonal transport perturbation can be an early sign of neuronal dysfunction. However, the exact causal relationship between axonal transport deficits and neurodegeneration is not fully understood. To clarify whether axonal transport of organelles even in neurons at early developmental stages was affected by overexpression of mutant SOD1, we conducted a microfluidic device-based high-throughput quantitative analysis of the axonal transport of acidic vesicles and mitochondria in primary cultured cortical neurons established from SOD1H46R transgenic mice. Compared to wild-type (WT), a significantly increased number of motile acidic vesicles, i.e., autophagosomes and/or late-endosomes, was observed in the axons of SOD1H46R neurons. By contrast, mitochondria moving along the axons were significantly decreased in SOD1H46R compared to WT. Since such phenotypes, where the axonal transport of these organelles is differently affected by mutant SOD1 expression, emerge before axonal degeneration, axonal transport deficits could dysregulate axon homeostasis, thereby ultimately accelerating neurodegeneration.
Collapse
Affiliation(s)
- Asako Otomo
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan; Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Suzuka Ono
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Kai Sato
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Shun Mitsui
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Kento Shimakura
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan; Department of Mechanical Engineering, School of Engineering, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan.
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan; Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan; The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, 259-1193, Japan; Research Center for Brain and Nervous Diseases, Tokai University Graduate School of Medicine, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
7
|
Hayashi H, Wang T, Tanaka M, Ogiwara S, Okada C, Ito M, Fukunishi N, Iida Y, Nakamura A, Sasaki A, Amano S, Yoshida K, Otomo A, Ohtsuka M, Hadano S. Monitoring the autophagy-endolysosomal system using monomeric Keima-fused MAP1LC3B. PLoS One 2020; 15:e0234180. [PMID: 32511278 PMCID: PMC7279612 DOI: 10.1371/journal.pone.0234180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
The autophagy-endolysosomal pathway is an evolutionally conserved degradation system that is tightly linked to a wide variety of physiological processes. Dysfunction of this system is associated with many pathological conditions such as cancer, inflammation and neurodegenerative diseases. Therefore, monitoring the cellular autophagy-endolysosomal activity is crucial for studies on the pathogenesis as well as therapeutics of such disorders. To this end, we here sought to create a novel means exploiting Keima, an acid-stable fluorescent protein possessing pH-dependent fluorescence excitation spectra, for precisely monitoring the autophagy-endolysosomal system. First, we generated three lines of transgenic (tg) mouse expressing monomeric Keima-fused MAP1LC3B (mKeima-LC3B). Then, these tg mice were subjected to starvation by food-restriction, and also challenged to neurodegeneration by genetically crossing with a mouse model of amyotrophic lateral sclerosis; i.e., SOD1H46R transgenic mouse. Unexpectedly, despite that a lipidated-form of endogenous LC3 (LC3-II) was significantly increased, those of mKeima-LC3B (mKeima-LC3B-II) were not changed under both stressed conditions. It was also noted that mKeima-LC3B-positive aggregates were progressively accumulated in the spinal cord of SOD1H46R;mKeima-LC3B double-tg mice, suggestive of acid-resistance and aggregate-prone natures of long-term overexpressed mKeima-LC3B in vivo. Next, we characterized mouse embryonic fibroblasts (MEFs) derived from mKeima-LC3B-tg mice. In contrast with in vivo, levels of mKeima-LC3B-I were decreased under starved conditions. Furthermore, when starved MEFs were treated with chloroquine (CQ), the abundance of mKeima-LC3B-II was significantly increased. Remarkably, when cultured medium was repeatedly changed between DMEM (nutrient-rich) and EBSS (starvation), acidic/neutral signal ratios of mKeima-LC3B-positive compartments were rapidly and reversibly shifted, which were suppressed by the CQ treatment, indicating that intraluminal pH of mKeima-LC3B-positive vesicles was changeable upon nutritional conditions of culture media. Taken together, although mKeima-LC3B-tg mice may not be an appropriate tool to monitor the autophagy-endolysosomal system in vivo, mKeima-LC3B must be one of the most sensitive reporter molecules for monitoring this system under in vitro cultured conditions.
Collapse
Affiliation(s)
- Hideki Hayashi
- Support Center for Medical Research and Education, Isehara Research Promotion Division, Tokai University, Isehara, Kanagawa, Japan
| | - Ting Wang
- Support Center for Medical Research and Education, Isehara Research Promotion Division, Tokai University, Isehara, Kanagawa, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Isehara Research Promotion Division, Tokai University, Isehara, Kanagawa, Japan
| | - Sanae Ogiwara
- Support Center for Medical Research and Education, Isehara Research Promotion Division, Tokai University, Isehara, Kanagawa, Japan
| | - Chisa Okada
- Support Center for Medical Research and Education, Isehara Research Promotion Division, Tokai University, Isehara, Kanagawa, Japan
| | - Masatoshi Ito
- Support Center for Medical Research and Education, Isehara Research Promotion Division, Tokai University, Isehara, Kanagawa, Japan
| | - Nahoko Fukunishi
- Support Center for Medical Research and Education, Isehara Research Promotion Division, Tokai University, Isehara, Kanagawa, Japan
| | - Yumi Iida
- Support Center for Medical Research and Education, Isehara Research Promotion Division, Tokai University, Isehara, Kanagawa, Japan
| | - Ayaka Nakamura
- Support Center for Medical Research and Education, Isehara Research Promotion Division, Tokai University, Isehara, Kanagawa, Japan
| | - Ayumi Sasaki
- Support Center for Medical Research and Education, Isehara Research Promotion Division, Tokai University, Isehara, Kanagawa, Japan
| | - Shunji Amano
- Support Center for Medical Research and Education, Isehara Research Promotion Division, Tokai University, Isehara, Kanagawa, Japan
| | - Kazuhiro Yoshida
- Support Center for Medical Research and Education, Isehara Research Promotion Division, Tokai University, Isehara, Kanagawa, Japan
| | - Asako Otomo
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Masato Ohtsuka
- Genetic Engineering and Genome Editing Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan
- Research Center for Brain and Nervous Diseases, Tokai University Graduate School of Medicine, Isehara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
8
|
Yokoyama S, Otomo A, Hadano S, Kimura H. An open-type microdevice to improve the quality of fluorescence labeling for axonal transport analysis in neurons. BIOMICROFLUIDICS 2019; 13:034104. [PMID: 31123536 PMCID: PMC6509043 DOI: 10.1063/1.5090968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/22/2019] [Indexed: 05/12/2023]
Abstract
Abnormal axonal transport of vesicles as well as organelles in a particular set of neurons is implicated in the pathogenesis of many neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. Although various types of microfluidic multicompartmental devices with closed microchannels have been recently developed and widely used for axonal transport analysis, most of the existing devices are troublesome and time-consuming to handle, such as culture maintenances, sample collections, and immunocytochemistry. In this study, we overcome such inherent shortcomings by developing a novel open-type device that enables easy cell maintenance and sample collections. In our device, microgrooves instead of microchannels were directly fabricated on a glass substrate, thereby making possible a high-resolution optical observation. Compared with the conventional closed-type devices, our newly designed device allowed us to efficiently and precisely label the axonal acidic vesicles by fluorescent dyes, facilitating a high-throughput analysis of axonal vesicular transport. The present novel device, as a user-friendly and powerful tool, can be implemented in molecular and cellular pathogenesis studies on neurological diseases.
Collapse
Affiliation(s)
| | | | - S. Hadano
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - H. Kimura
- Author to whom correspondence should be addressed:
| |
Collapse
|
9
|
Rasouli S, Abdolvahabi A, Croom CM, Plewman DL, Shi Y, Shaw BF. Glycerolipid Headgroups Control Rate and Mechanism of Superoxide Dismutase-1 Aggregation and Accelerate Fibrillization of Slowly Aggregating Amyotrophic Lateral Sclerosis Mutants. ACS Chem Neurosci 2018; 9:1743-1756. [PMID: 29649360 DOI: 10.1021/acschemneuro.8b00086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Interactions between superoxide dismutase-1 (SOD1) and lipid membranes might be directly involved in the toxicity and intercellular propagation of aggregated SOD1 in amyotrophic lateral sclerosis (ALS), but the chemical details of lipid-SOD1 interactions and their effects on SOD1 aggregation remain unclear. This paper determined the rate and mechanism of nucleation of fibrillar apo-SOD1 catalyzed by liposomal surfaces with identical hydrophobic chains (RCH2(O2C18H33)2), but headgroups of different net charge and hydrophobicity (i.e., R(CH2)N+(CH3)3, RPO4-(CH2)2N+(CH3)3, and RPO4-). Under semiquiescent conditions (within a 96 well microplate, without a gyrating bead), the aggregation of apo-SOD1 into thioflavin-T-positive (ThT(+)) amyloid fibrils did not occur over 120 h in the absence of liposomal surfaces. Anionic liposomes triggered aggregation of apo-SOD1 into ThT(+) amyloid fibrils; cationic liposomes catalyzed fibrillization but at slower rates and across a narrower lipid concentration; zwitterionic liposomes produced nonfibrillar (amorphous) aggregates. The inability of zwitterionic liposomes to catalyze fibrillization and the dependence of fibrillization rate on anionic lipid concentration suggests that membranes catalyze SOD1 fibrillization by a primary nucleation mechanism. Membrane-catalyzed fibrillization was also examined for eight ALS variants of apo-SOD1, including G37R, G93R, D90A, and E100G apo-SOD1 that nucleate slower than or equal to WT SOD1 in lipid-free, nonquiescent amyloid assays. All ALS variants (with one exception) nucleated faster than WT SOD1 in the presence of anionic liposomes, wherein the greatest acceleratory effects were observed among variants with lower net negative surface charge (G37R, G93R, D90A, E100G). The exception was H46R apo-SOD1, which did not form ThT(+) species.
Collapse
Affiliation(s)
- Sanaz Rasouli
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
- Institute of Biomedical Studies, Baylor University, Waco, Texas 76706, United States
| | - Alireza Abdolvahabi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Corbin M. Croom
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Devon L. Plewman
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Yunhua Shi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Bryan F. Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|
10
|
Liu Z, Chen M, Chen S, Deng J, Song Y, Lai L, Li Z. Highly efficient RNA-guided base editing in rabbit. Nat Commun 2018; 9:2717. [PMID: 30006570 PMCID: PMC6045575 DOI: 10.1038/s41467-018-05232-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/25/2018] [Indexed: 01/14/2023] Open
Abstract
Cytidine base editors (CBEs) and adenine base editors (ABEs), composed of a cytidine deaminase or an evolved adenine deaminase fused to Cas9 nickase, enable the conversion of C·G to T·A or A·T to G·C base pair in organisms, respectively. Here, we show that BE3 and ABE7.10 systems can achieve a targeted mutation efficiency of 53-88% and 44-100%, respectively, in both blastocysts and Founder (F0) rabbits. Meanwhile, this strategy can be used to precisely mimic human pathologies by efficiently inducing nonsense or missense mutations as well as RNA mis-splicing in rabbit. In addition, the reduced frequencies of indels with higher product purity are also determined in rabbit blastocysts by BE4-Gam, which is an updated version of the BE3 system. Collectively, this work provides a simple and efficient method for targeted point mutations and generation of disease models in rabbit.
Collapse
Affiliation(s)
- Zhiquan Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Mao Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Siyu Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Jichao Deng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Yuning Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China.
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
11
|
Mitsui S, Otomo A, Nozaki M, Ono S, Sato K, Shirakawa R, Adachi H, Aoki M, Sobue G, Shang HF, Hadano S. Systemic overexpression of SQSTM1/p62 accelerates disease onset in a SOD1 H46R-expressing ALS mouse model. Mol Brain 2018; 11:30. [PMID: 29843805 PMCID: PMC5975400 DOI: 10.1186/s13041-018-0373-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/20/2018] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a selective loss of upper and lower motor neurons. Recent studies have shown that mutations in SQSTM1 are linked to ALS. SQSTM1 encodes SQSTM1/p62 that regulates not only autophagy via the association with MAP1LC3/LC3 and ubiquitinated proteins but also the KEAP1-NFE2L2/Nrf2 anti-oxidative stress pathway by interacting with KEAP1. Previously, we have demonstrated that loss of SQSTM1 exacerbates disease phenotypes in a SOD1H46R-expressing ALS mouse model. To clarify the effects of SQSTM1 overexpression in this model, we generated SQSTM1 and SOD1 H46R double-transgenic (SQSTM1;SOD1 H46R ) mice. SQSTM1;SOD1 H46R mice exhibited earlier disease onset and shorter lifespan than did SOD1 H46R mice. Conversely, disease progression after the onset rather slightly but significantly slowed in SQSTM1;SOD1 H46R mice. However, there were observable differences neither in the number of Nissl positive neurons nor in the distribution of ubiquitin-positive and/or SQSTM1-positive aggregates between SOD1 H46R and SQSTM1;SOD1 H46R mice. It was noted that these protein aggregates were mainly observed in neuropil, and partly localized to astrocytes and/or microglia, but not to MAP2-positive neuronal cell bodies and dendrites at the end-stage of disease. Nonetheless, the biochemically-detectable insoluble SQSTM1 and poly-ubiquitinated proteins were significantly and progressively increased in the spinal cord of SQSTM1;SOD1 H46R mice compared to SOD1 H46R mice. These results suggest that overexpression of SQSTM1 in SOD1 H46R mice accelerates disease onset by compromising the protein degradation pathways.
Collapse
Affiliation(s)
- Shun Mitsui
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Asako Otomo
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, 259-1193, Japan.,Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Masahisa Nozaki
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.,Department of Anesthesiology, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Suzuka Ono
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Kai Sato
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Ryohei Shirakawa
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Fukuoka, 807-0804, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shinji Hadano
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan. .,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, 259-1193, Japan. .,Research Center for Brain and Nervous Diseases, Tokai University Graduate School of Medicine, Kanagawa, Isehara, 259-1193, Japan.
| |
Collapse
|
12
|
Hadano S, Mitsui S, Pan L, Otomo A, Kubo M, Sato K, Ono S, Onodera W, Abe K, Chen X, Koike M, Uchiyama Y, Aoki M, Warabi E, Yamamoto M, Ishii T, Yanagawa T, Shang HF, Yoshii F. Functional links between SQSTM1 and ALS2 in the pathogenesis of ALS: cumulative impact on the protection against mutant SOD1-mediated motor dysfunction in mice. Hum Mol Genet 2016; 25:3321-3340. [PMID: 27439389 DOI: 10.1093/hmg/ddw180] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by a selective loss of motor neurons in the brain and spinal cord. Multiple toxicity pathways, such as oxidative stress, misfolded protein accumulation, and dysfunctional autophagy, are implicated in the pathogenesis of ALS. However, the molecular basis of the interplay between such multiple factors in vivo remains unclear. Here, we report that two independent ALS-linked autophagy-associated gene products; SQSTM1/p62 and ALS2/alsin, but not antioxidant-related factor; NFE2L2/Nrf2, are implicated in the pathogenesis in mutant SOD1 transgenic ALS models. We generated SOD1H46R mice either on a Nfe2l2-null, Sqstm1-null, or Sqstm1/Als2-double null background. Loss of SQSTM1 but not NFE2L2 exacerbated disease symptoms. A simultaneous inactivation of SQSTM1 and ALS2 further accelerated the onset of disease. Biochemical analyses revealed that loss of SQSTM1 increased the level of insoluble SOD1 at the intermediate stage of the disease, whereas no further elevation occurred at the end-stage. Notably, absence of SQSTM1 rather suppressed the mutant SOD1-dependent accumulation of insoluble polyubiquitinated proteins, while ALS2 loss enhanced it. Histopathological examinations demonstrated that loss of SQSTM1 accelerated motor neuron degeneration with accompanying the preferential accumulation of ubiquitin-positive aggregates in spinal neurons. Since SQSTM1 loss is more detrimental to SOD1H46R mice than lack of ALS2, the selective accumulation of such aggregates in neurons might be more insulting than the biochemically-detectable insoluble proteins. Collectively, two ALS-linked factors, SQSTM1 and ALS2, have distinct but additive protective roles against mutant SOD1-mediated toxicity by modulating neuronal proteostasis possibly through the autophagy-endolysosomal system.
Collapse
Affiliation(s)
- Shinji Hadano
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan .,Research Center for Brain and Nervous Diseases, Tokai University Graduate School of Medicine, Isehara, Kanagawa, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Shun Mitsui
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Lei Pan
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asako Otomo
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan.,Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Mizuki Kubo
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kai Sato
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Suzuka Ono
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Wakana Onodera
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Koichiro Abe
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - XuePing Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Eiji Warabi
- Faculty of Medicine, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tetsuro Ishii
- Faculty of Medicine, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Toru Yanagawa
- Faculty of Medicine, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fumihito Yoshii
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan.,Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
13
|
Salehi M, Nikkhah M, Ghasemi A, Arab SS. Mitochondrial membrane disruption by aggregation products of ALS-causing superoxide dismutase-1 mutants. Int J Biol Macromol 2015; 75:290-7. [DOI: 10.1016/j.ijbiomac.2015.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 11/24/2022]
|
14
|
Nagano S, Takahashi Y, Yamamoto K, Masutani H, Fujiwara N, Urushitani M, Araki T. A cysteine residue affects the conformational state and neuronal toxicity of mutant SOD1 in mice: relevance to the pathogenesis of ALS. Hum Mol Genet 2015; 24:3427-39. [DOI: 10.1093/hmg/ddv093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/09/2015] [Indexed: 12/11/2022] Open
|
15
|
Kanno T, Tanaka K, Yanagisawa Y, Yasutake K, Hadano S, Yoshii F, Hirayama N, Ikeda JE. A novel small molecule, N-(4-(2-pyridyl)(1,3-thiazol-2-yl))-2-(2,4,6-trimethylphenoxy) acetamide, selectively protects against oxidative stress-induced cell death by activating the Nrf2-ARE pathway: therapeutic implications for ALS. Free Radic Biol Med 2012; 53:2028-42. [PMID: 23000247 DOI: 10.1016/j.freeradbiomed.2012.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/04/2012] [Accepted: 09/13/2012] [Indexed: 12/30/2022]
Abstract
Antioxidant defense is crucial in restoring cellular redox homeostasis. Recent findings have suggested that oxidative stress plays pivotal roles in the pathogenesis of many neurodegenerative diseases. Thus, an anti-oxidative stress remedy might be a promising means for the treatment of such disorders. In this study, we employed a novel ligand-based virtual screening system and identified a novel small molecule, N-(4-(2-pyridyl)(1,3-thiazol-2-yl))-2-(2,4,6-trimethylphenoxy) acetamide (CPN-9), which selectively suppressed oxidative stress-induced cell death in a cell-type-independent manner. CPN-9 upregulates NF-E2-related factor 2 (Nrf2), a key transcriptional regulator of the expression of phase II detoxification enzymes and antioxidant proteins, and Nrf2-regulated factors such as heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), and glutamate-cysteine ligase modifier subunit (GCLM). The CPN-9-mediated upregulation of HO-1, NQO1, and GCLM was abolished by Nrf2 knockdown. Moreover, the antioxidant N-acetylcysteine reduced the protective effect of CPN-9 against oxidative stress-induced cell death with concomitant diminishing of Nrf2 nuclear translocation. These results indicate that CPN-9 exerts its activity via the reactive oxygen species-dependent activation of the Nrf2 signaling pathway in cultured cells. It is noteworthy that the postonset systemic administration of CPN-9 to a transgenic ALS mouse model carrying the H46R mutation in the human Cu/Zn superoxide dismutase (SOD1) gene sustained motor functions and delayed disease progression after onset. Collectively, CPN-9 is a novel Nrf2 activator and a neuroprotective candidate for the treatment of neurodegenerative diseases, including ALS.
Collapse
Affiliation(s)
- Takuya Kanno
- NGP Biomedical Research Institute, Neugen Pharma Inc., Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Different human copper-zinc superoxide dismutase mutants, SOD1G93A and SOD1H46R, exert distinct harmful effects on gross phenotype in mice. PLoS One 2012; 7:e33409. [PMID: 22438926 PMCID: PMC3306410 DOI: 10.1371/journal.pone.0033409] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/14/2012] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous group of fatal neurodegenerative diseases characterized by a selective loss of motor neurons in the brain and spinal cord. Creation of transgenic mice expressing mutant Cu/Zn superoxide dismutase (SOD1), as ALS models, has made an enormous impact on progress of the ALS studies. Recently, it has been recognized that genetic background and gender affect many physiological and pathological phenotypes. However, no systematic studies focusing on such effects using ALS models other than SOD1G93A mice have been conducted. To clarify the effects of genetic background and gender on gross phenotypes among different ALS models, we here conducted a comparative analysis of growth curves and lifespans using congenic lines of SOD1G93A and SOD1H46R mice on two different genetic backgrounds; C57BL/6N (B6) and FVB/N (FVB). Copy number of the transgene and their expression between SOD1G93A and SOD1H46R lines were comparable. B6 congenic mutant SOD1 transgenic lines irrespective of their mutation and gender differences lived longer than corresponding FVB lines. Notably, the G93A mutation caused severer disease phenotypes than did the H46R mutation, where SOD1G93A mice, particularly on a FVB background, showed more extensive body weight loss and earlier death. Gender effect on survival also solely emerged in FVB congenic SOD1G93A mice. Conversely, consistent with our previous study using B6 lines, lack of Als2, a murine homolog for the recessive juvenile ALS causative gene, in FVB congenic SOD1H46R, but not SOD1G93A, mice resulted in an earlier death, implying a genetic background-independent but mutation-dependent phenotypic modification. These results indicate that SOD1G93A- and SOD1H46R-mediated toxicity and their associated pathogenic pathways are not identical. Further, distinctive injurious effects resulted from different SOD1 mutations, which are associated with genetic background and/or gender, suggests the presence of several genetic modifiers of disease expression in the mouse genome.
Collapse
|
17
|
Prudencio M, Borchelt DR. Superoxide dismutase 1 encoding mutations linked to ALS adopts a spectrum of misfolded states. Mol Neurodegener 2011; 6:77. [PMID: 22094223 PMCID: PMC3248846 DOI: 10.1186/1750-1326-6-77] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/17/2011] [Indexed: 12/14/2022] Open
Abstract
Background Mutations in superoxide dismutase 1 (SOD1), which are one cause of familial amyotrophic lateral sclerosis (fALS), induce misfolding and aggregation of the protein. Misfolding can be detected by the binding of antibodies raised against peptide epitopes that are normally buried in the native conformation, shifts in solubility in non-ionic detergents, and the formation of macromolecular inclusions. In the present study, we investigate the relationship between detergent-insoluble and sedimentable forms of mutant SOD1, forms of mutant SOD1 with aberrantly accessible epitopes, and mutant protein in inclusions with the goal of defining the spectrum of misfolded states that mutant SOD1 can adopt. Results Using combined approaches in cultured cell models, we demonstrate that a substantial fraction of mutant SOD1 adopts a non-native conformation that remains soluble and freely mobile. We also show that mutant SOD1 can produce multimeric assemblies of which some are insoluble in detergent and large enough to sediment by ultracentrifugation and some are large enough to detect visually. Three conformationally restricted antibodies were found to be useful in discriminating mal-folded forms of mutant SOD1. An antibody termed C4F6 displays properties consistent with recognition of soluble, freely mobile, mal-folded mutant SOD1. An antibody termed SEDI, which recognizes C-terminal residues, detects larger inclusion structures as well as soluble misfolded entities. An antibody termed hSOD1, which recognizes aa 24-36, detects an epitope shared by soluble non-natively folded WT and mutant SOD1. This epitope becomes inaccessible in aggregates of mutant SOD1. Conclusions Our studies demonstrate how different methods of detecting misfolding and aggregation of mutant SOD1 reveal different forms of aberrantly folded protein. Immunological and biochemical methods can be used in combination to detect soluble and insoluble misfolded forms of mutant SOD1. Our findings support the view that mutant SOD1 can adopt multiple misfolded conformations with the potential that different structural variants mediate different aspects of fALS.
Collapse
Affiliation(s)
- Mercedes Prudencio
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
18
|
Bromocriptine methylate suppresses glial inflammation and moderates disease progression in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 2011; 232:41-52. [PMID: 21867702 DOI: 10.1016/j.expneurol.2011.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/19/2011] [Accepted: 08/08/2011] [Indexed: 11/23/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by a selective loss of upper and lower motor neurons. Since oxidative stress plays a crucial role in the progression of motor neuron loss observed in ALS, anti-oxidative agents could be an important therapeutic means for the ALS treatment. We have previously developed a drug screening system allowing the identification of small chemical compounds that upregulate endogenous neuronal apoptosis inhibitory protein (NAIP), an oxidative stress-induced cell death suppressor. Using this system, we identified the dopamine D2 receptor agonist bromocriptine (BRC) as one of NAIP-upregulating compounds. In this study, to prove the efficacy of BRC in ALS, we conducted a set of preclinical studies using a transgenic ALS mouse model carrying the H46R mutation in the human Cu/Zn superoxide dismutase (SOD1) gene ALS(SOD1(H46R)) by the post-onset administration of BRC. ALS(SOD1(H46R)) mice receiving BRC showed sustained motor functions and modest prolonged survival after onset. Further, BRC treatment delayed anterior horn cell loss, and reduced the number of reactive astrocytes and the level of inflammatory factors such as inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α in the spinal cord of late symptomatic mice. In vitro study showed the reduced level of extracellular TNF-α after lipopolysaccharide (LPS) exposure in BRC-treated mouse astrocytes. BRC-treated ALS(SOD1(H46R)) mice also showed a reduced level of oxidative damage in the spinal cord. Notably, BRC treatment resulted in an upregulation of anti-oxidative stress genes, activating transcription factor 3 (ATF3) and heme oxygenase-1 (HO-1), and the generation of a glutathione (GSH) in SH-SY5Y cultured neuronal cells in a dopamine receptor-independent manner. These results imply that BRC protects motor neurons from the oxidative injury via suppression of astrogliosis in the spinal cord of ALS(SOD1(H46R)) mice. Thus, BRC might be a promising therapeutic agent for the treatment of ALS.
Collapse
|
19
|
Yoshii Y, Otomo A, Pan L, Ohtsuka M, Hadano S. Loss of glial fibrillary acidic protein marginally accelerates disease progression in a SOD1(H46R) transgenic mouse model of ALS. Neurosci Res 2011; 70:321-9. [PMID: 21453731 DOI: 10.1016/j.neures.2011.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/21/2011] [Accepted: 03/14/2011] [Indexed: 01/10/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is highly expressed in reactive astrocytes. Increased production of GFAP is a hallmark of astrogliosis in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, the physiological and pathological roles of GFAP, particularly in chronic neurodegenerative conditions, remain unclear. To address this issue, we here investigate whether absence of GFAP affects the phenotypic expression of motor neuron disease (MND) using an H46R mutant Cu/Zn superoxide dismutase-expressing mouse model of ALS (SOD1(H46R)). GFAP deficient SOD1(H46R) mice showed a significant shorter lifespan than SOD1(H46R) littermates. Further, at the end stage of disease, loss of GFAP resulted in increased levels of Vim and Aif1 mRNAs, encoding vimentin and allograft inflammatory factor 1 (AIF1), respectively, in the spinal cord, although no discernible differences in the levels and distribution of these proteins between SOD1(H46R) and GFAP-deficient SOD1(H46R) mice were observed. These results suggest that loss of GFAP in SOD1(H46R) mice marginally accelerates the disease progression by moderately enhancing glial cell activation. Our findings in a mouse model of ALS may have implication that GFAP is not necessary for the initiation of disease, but it rather plays some modulatory roles in the progression of ALS/MND.
Collapse
Affiliation(s)
- Yasuhiro Yoshii
- Department of Neurology, Toho University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan
| | | | | | | | | |
Collapse
|
20
|
An inducer of VGF protects cells against ER stress-induced cell death and prolongs survival in the mutant SOD1 animal models of familial ALS. PLoS One 2010; 5:e15307. [PMID: 21151573 PMCID: PMC3000345 DOI: 10.1371/journal.pone.0015307] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/05/2010] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease, and recent evidence has suggested that endoplasmic reticulum (ER) stress signaling is involved in the pathogenesis of ALS. Here we identified a small molecule, SUN N8075, which has a marked protective effect on ER stress-induced cell death, in an in vitro cell-based screening, and its protective mechanism was mediated by an induction of VGF nerve growth factor inducible (VGF): VGF knockdown with siRNA completely abolished the protective effect of SUN N8075 against ER-induced cell death, and overexpression of VGF inhibited ER-stress-induced cell death. VGF level was lower in the spinal cords of sporadic ALS patients than in the control patients. Furthermore, SUN N8075 slowed disease progression and prolonged survival in mutant SOD1 transgenic mouse and rat models of ALS, preventing the decrease of VGF expression in the spinal cords of ALS mice. These data suggest that VGF plays a critical role in motor neuron survival and may be a potential new therapeutic target for ALS, and SUN N8075 may become a potential therapeutic candidate for treatment of ALS.
Collapse
|
21
|
Seetharaman SV, Taylor AB, Holloway S, Hart PJ. Structures of mouse SOD1 and human/mouse SOD1 chimeras. Arch Biochem Biophys 2010; 503:183-90. [PMID: 20727846 PMCID: PMC3037271 DOI: 10.1016/j.abb.2010.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of amyotrophic lateral sclerosis (ALS). Inclusions enriched in pathogenic SOD1 accumulate in the spinal cords of transgenic mice expressing these proteins, but endogenous mouse SOD1 is not found as a component of these aggregates. In the accompanying paper, Karch and colleagues analyze aggregation propensities of human/mouse SOD1 chimeras in cell culture and identify two sequence elements in the human enzyme that seem to enhance its aggregation relative to the mouse enzyme. Here, we report the first structure of mouse SOD1 along with those of SOD1 chimeras in which residues 1-80 come from human SOD1 and residues 81-153 come from mouse SOD1 and vice versa. Taken together, the structural and cell-based data suggest a model in which residues Q42 and Q123 in mouse SOD1 modulate non-native SOD1-SOD1 intermolecular interactions at edge strands in the SOD1 Greek key β-barrel.
Collapse
Affiliation(s)
- Sai V. Seetharaman
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229 U.S.A
| | - Alexander B. Taylor
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229 U.S.A
- X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229 U.S.A
| | - Stephen Holloway
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229 U.S.A
| | - P. John Hart
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229 U.S.A
- X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229 U.S.A
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio TX, 78229 U.S.A
| |
Collapse
|
22
|
Suzuki N, Mizuno H, Warita H, Takeda S, Itoyama Y, Aoki M. Neuronal NOS is dislocated during muscle atrophy in amyotrophic lateral sclerosis. J Neurol Sci 2010; 294:95-101. [PMID: 20435320 DOI: 10.1016/j.jns.2010.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 12/11/2022]
Abstract
Previously, we demonstrated that neuronal nitric oxide synthase (nNOS) is activated and promotes muscle atrophy in skeletal muscle during tail suspension, a model of unloading and denervation. Here, we examined patients with amyotrophic lateral sclerosis (ALS) and mutant (H46R) SOD1 transgenic (Tg) mice model using immunohistochemistry, Western blotting and real time PCR. We found cytoplasmic nNOS staining of angulated muscle fibers in patients with ALS. We also examined mutant SOD1 Tg mice and found cytoplasmic nNOS staining even before the onset of clinical muscle atrophy. In the Tg mice, nNOS was largely extracted with 100 mM NaCl and barely detected in the pellet fraction, suggesting fragile anchoring of nNOS to the sarcolemma. We also showed an elevated expression of atrogin-1, key molecules in muscle atrophy at the end stage. A common nNOS dislocation/atrogin-1/muscle atrophy pathway among tail suspension, denervation and ALS is suggested. nNOS modulation therapy may be beneficial in several types of muscle atrophy.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Loss of ALS2/Alsin exacerbates motor dysfunction in a SOD1-expressing mouse ALS model by disturbing endolysosomal trafficking. PLoS One 2010; 5:e9805. [PMID: 20339559 PMCID: PMC2842444 DOI: 10.1371/journal.pone.0009805] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 03/03/2010] [Indexed: 12/11/2022] Open
Abstract
Background ALS2/alsin is a guanine nucleotide exchange factor for the small GTPase Rab5 and involved in macropinocytosis-associated endosome fusion and trafficking, and neurite outgrowth. ALS2 deficiency accounts for a number of juvenile recessive motor neuron diseases (MNDs). Recently, it has been shown that ALS2 plays a role in neuroprotection against MND-associated pathological insults, such as toxicity induced by mutant Cu/Zn superoxide dismutase (SOD1). However, molecular mechanisms underlying the relationship between ALS2-associated cellular function and its neuroprotective role remain unclear. Methodology/Principal Findings To address this issue, we investigated the molecular and pathological basis for the phenotypic modification of mutant SOD1-expressing mice by ALS2 loss. Genetic ablation of Als2 in SOD1H46R, but not SOD1G93A, transgenic mice aggravated the mutant SOD1-associated disease symptoms such as body weight loss and motor dysfunction, leading to the earlier death. Light and electron microscopic examinations revealed the presence of degenerating and/or swollen spinal axons accumulating granular aggregates and autophagosome-like vesicles in early- and even pre-symptomatic SOD1H46R mice. Further, enhanced accumulation of insoluble high molecular weight SOD1, poly-ubiquitinated proteins, and macroautophagy-associated proteins such as polyubiquitin-binding protein p62/SQSTM1 and a lipidated form of light chain 3 (LC3-II), emerged in ALS2-deficient SOD1H46R mice. Intriguingly, ALS2 was colocalized with LC3 and p62, and partly with SOD1 on autophagosome/endosome hybrid compartments, and loss of ALS2 significantly lowered the lysosome-dependent clearance of LC3 and p62 in cultured cells. Conclusions/Significance Based on these observations, although molecular basis for the distinctive susceptibilities to ALS2 loss in different mutant SOD1-expressing ALS models is still elusive, disturbance of the endolysosomal system by ALS2 loss may exacerbate the SOD1H46R-mediated neurotoxicity by accelerating the accumulation of immature vesicles and misfolded proteins in the spinal cord. We propose that ALS2 is implicated in endolysosomal trafficking through the fusion between endosomes and autophagosomes, thereby regulating endolysosomal protein degradation in vivo.
Collapse
|
24
|
Seetharaman SV, Prudencio M, Karch C, Holloway SP, Borchelt DR, Hart PJ. Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis. Exp Biol Med (Maywood) 2009; 234:1140-54. [PMID: 19596823 DOI: 10.3181/0903-mr-104] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease, motor neuron disease). Insoluble forms of mutant SOD1 accumulate in neural tissues of human ALS patients and in spinal cords of transgenic mice expressing these polypeptides, suggesting that SOD1-linked ALS is a protein misfolding disorder. Understanding the molecular basis for how the pathogenic mutations give rise to SOD1 folding intermediates, which may themselves be toxic, is therefore of keen interest. A critical step on the SOD1 folding pathway occurs when the copper chaperone for SOD1 (CCS) modifies the nascent SOD1 polypeptide by inserting the catalytic copper cofactor and oxidizing its intrasubunit disulfide bond. Recent studies reveal that pathogenic SOD1 proteins coming from cultured cells and from the spinal cords of transgenic mice tend to be metal-deficient and/or lacking the disulfide bond, raising the possibility that the disease-causing mutations may enhance levels of SOD1-folding intermediates by preventing or hindering CCS-mediated SOD1 maturation. This mini-review explores this hypothesis by highlighting the structural and biophysical properties of the pathogenic SOD1 mutants in the context of what is currently known about CCS structure and action. Other hypotheses as to the nature of toxicity inherent in pathogenic SOD1 proteins are not covered.
Collapse
Affiliation(s)
- Sai V Seetharaman
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|
25
|
Prudencio M, Hart PJ, Borchelt DR, Andersen PM. Variation in aggregation propensities among ALS-associated variants of SOD1: correlation to human disease. Hum Mol Genet 2009; 18:3217-26. [PMID: 19483195 PMCID: PMC2722984 DOI: 10.1093/hmg/ddp260] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To date, 146 different mutations in superoxide dismutase 1 (SOD1) have been identified in patients with familial amyotrophic lateral sclerosis (ALS). The mean age of disease onset in patients inheriting mutations in SOD1 is 45-47 years of age. However, although the length of disease duration is highly variable, there are examples of consistent disease durations associated with specific mutations (e. g. A4V, less than 2 years). In the present study, we have used a large set of data from SOD1-associated ALS pedigrees to identify correlations between disease features and biochemical/biophysical properties of more than 30 different variants of mutant SOD1. Using a reliable cell culture assay, we show that all ALS-associated mutations in SOD1 increase the inherent aggregation propensity of the protein. However, the relative propensity to do so varied considerably among mutants. We were not able to explain the variation in aggregation rates by differences in known protein properties such as enzyme activity, protein thermostability, mutation position or degree of change in protein charge. Similarly, we were not able to explain variability in the duration of disease in SOD1-associated ALS pedigrees by these properties. However, we find that the majority of pedigrees in which patients exhibit reproducibly short disease durations are associated with mutations that show a high inherent propensity to induce aggregation of SOD1.
Collapse
Affiliation(s)
- Mercedes Prudencio
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
26
|
Mitochondrial Alterations in Transgenic Mice With an H46R Mutant Cu/Zn Superoxide Dismutase Gene. J Neuropathol Exp Neurol 2009; 68:365-73. [DOI: 10.1097/nen.0b013e31819ba185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
27
|
Prudencio M, Durazo A, Whitelegge JP, Borchelt DR. Modulation of mutant superoxide dismutase 1 aggregation by co-expression of wild-type enzyme. J Neurochem 2008; 108:1009-18. [PMID: 19077113 DOI: 10.1111/j.1471-4159.2008.05839.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in superoxide dismutase 1 (SOD1, EC 1.15.1.1) cause familial amyotrophic lateral sclerosis; with aggregated forms of mutant protein accumulating in spinal cord tissues of transgenic mouse models and human patients. Mice over-expressing wild-type human SOD1 (WT hSOD1) do not develop amyotrophic lateral sclerosis-like disease, but co-expression of WT enzyme at high levels with mutant SOD1 accelerates the onset of motor neuron disease compared with mice expressing mutant hSOD1 alone. Spinal cords of mice expressing both proteins contain aggregated forms of mutant protein and, in some cases, evidence of co-aggregation of WT hSOD1 enzyme. In the present study, we used a cell culture model of mutant SOD1 aggregation to examine how the presence of WT SOD1 affects mutant protein aggregation, finding that co-expression of WT SOD1, hSOD1 or mouse SOD1, delayed the formation of mutant hSOD1 aggregates; in essence appearing to slow the aggregation rate. In some combinations of WT and mutant hSOD1 co-expression, the aggregates that did eventually form appeared to contain WT hSOD1 protein. However, WT mouse SOD1 did not co-aggregate with mutant hSOD1 despite displaying a similar ability to slow mutant hSOD1 aggregation. Together, these studies indicate that WT SOD1 (human or mouse), when expressed at levels equivalent to the mutant protein, modulates the aggregation of mutant SOD1.
Collapse
Affiliation(s)
- Mercedes Prudencio
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, USA
| | | | | | | |
Collapse
|
28
|
A dopamine receptor antagonist L-745,870 suppresses microglia activation in spinal cord and mitigates the progression in ALS model mice. Exp Neurol 2008; 211:378-86. [DOI: 10.1016/j.expneurol.2008.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 12/13/2022]
|