1
|
Torrey EF, Simmons W. Mercury and Parkinson's Disease: Promising Leads, but Research Is Needed. PARKINSON'S DISEASE 2023; 2023:4709322. [PMID: 37744289 PMCID: PMC10517869 DOI: 10.1155/2023/4709322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023]
Abstract
Environmental toxicants are thought to play a major role in the pathogenesis of Parkinson's disease. In reviewing the literature on heavy metals known to be toxicants, we noted several recent studies on mercury suggesting a possible role in the etiology of some cases of this disease. We therefore undertook a review of this association, focusing especially on peer-reviewed articles to avoid the bias inherent in much of the literature regarding mercury. For most people, our contemporary exposure to mercury comes from dental amalgam tooth restorations and from eating fish contaminated with mercury. In both cases, mercury is known to get into the brain in utero and at all ages. It remains in the brain for many years and is known to produce permanent neuropsychological deficits. Mercury toxicity can produce tremors and other Parkinsonian clinical symptoms. It can also produce neurochemical and neuropathological changes similar to those found in Parkinson's disease, including the loss of dopamine neurons, degeneration of tubulin and axons, dysfunction of mitochondria, and the aggregation of alpha-synuclein. Relatively few studies have assessed mercury in parkinsonian patients, but almost all reported a statistically significant association. Published studies suggest some promising leads in the relationship between mercury exposure and Parkinson's disease. However, studies of patients are relatively few, and the need for research is clear. A search of Parkinsonian research studies currently funded by the US National Institutes of Health, Parkinson's Foundation, and the Michael J Fox Foundation yielded no studies on mercury. We believe such studies should be supported.
Collapse
Affiliation(s)
- E. Fuller Torrey
- The Stanley Medical Research Institute, 9800 Medical Center, Suite C-050, Rockville, MD 20850, USA
| | - Wendy Simmons
- The Stanley Medical Research Institute, 9800 Medical Center, Suite C-050, Rockville, MD 20850, USA
| |
Collapse
|
2
|
Zebrafish as a Potential Model for Neurodegenerative Diseases: A Focus on Toxic Metals Implications. Int J Mol Sci 2023; 24:ijms24043428. [PMID: 36834835 PMCID: PMC9959844 DOI: 10.3390/ijms24043428] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
In the last century, industrial activities increased and caused multiple health problems for humans and animals. At this moment, heavy metals are considered the most harmful substances for their effects on organisms and humans. The impact of these toxic metals, which have no biological role, poses a considerable threat and is associated with several health problems. Heavy metals can interfere with metabolic processes and can sometimes act as pseudo-elements. The zebrafish is an animal model progressively used to expose the toxic effects of diverse compounds and to find treatments for different devastating diseases that human beings are currently facing. This review aims to analyse and discuss the value of zebrafish as animal models used in neurological conditions, such as Alzheimer's disease (AD), and Parkinson's disease (PD), particularly in terms of the benefits of animal models and the limitations that exist.
Collapse
|
3
|
Lee J, Park S, Jang W. Serum zinc deficiency could be associated with dementia conversion in Parkinson's disease. Front Aging Neurosci 2023; 15:1132907. [PMID: 37181629 PMCID: PMC10172503 DOI: 10.3389/fnagi.2023.1132907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Background Association between heavy metals and Parkinson's disease (PD) is well noted, but studies regarding heavy metal levels and non-motor symptoms of PD, such as PD's dementia (PD-D), are lacking. Methods In this retrospective cohort study, we compared five serum heavy metal levels (Zn, Cu, Pb, Hg, and Mn) of newly diagnosed PD patients (n = 124). Among 124 patients, 40 patients were later converted to Parkinson's disease dementia (PD-D), and 84 patients remained without dementia during the follow-up time. We collected clinical parameters of PD and conducted correlation analysis with heavy metal levels. PD-D conversion time was defined as the initiation time of cholinesterase inhibitors. Cox proportional hazard models were used to identify factors associated with dementia conversion in PD subjects. Results Zn deficiency was significant in the PD-D group than in the PD without dementia group (87.53 ± 13.20 vs. 74.91 ± 14.43, p < 0.01). Lower serum Zn level was significantly correlated with K-MMSE and LEDD at 3 months (r = -0.28, p < 0.01; r = 0.38, p < 0.01). Zn deficiency also contributed to a shorter time to dementia conversion (HR 0.953, 95% CI 0.919 to 0.988, p < 0.01). Conclusion This clinical study suggests that a low serum Zn level can be a risk factor for developing PD-D and could be used as a biological marker for PD-D conversion.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Family Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
- *Correspondence: Wooyoung Jang,
| |
Collapse
|
4
|
Association between Heavy Metal Exposure and Parkinson's Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11122467. [PMID: 36552676 PMCID: PMC9774122 DOI: 10.3390/antiox11122467] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is a gradually progressing neurodegenerative condition that is marked by a loss of motor coordination along with non-motor features. Although the precise cause of PD has not been determined, the disease condition is mostly associated with the exposure to environmental toxins, such as metals, and their abnormal accumulation in the brain. Heavy metals, such as iron (Fe), mercury (Hg), manganese (Mn), copper (Cu), and lead (Pb), have been linked to PD and contribute to its progression. In addition, the interactions among the components of a metal mixture may result in synergistic toxicity. Numerous epidemiological studies have demonstrated a connection between PD and either single or mixed exposure to these heavy metals, which increase the prevalence of PD. Chronic exposure to heavy metals is related to the activation of proinflammatory cytokines resulting in neuronal loss through neuroinflammation. Similarly, metals disrupt redox homeostasis while inducing free radical production and decreasing antioxidant levels in the substantia nigra. Furthermore, these metals alter molecular processes and result in oxidative stress, DNA damage, mitochondrial dysfunction, and apoptosis, which can potentially trigger dopaminergic neurodegenerative disorders. This review focuses on the roles of Hg, Pb, Mn, Cu, and Fe in the development and progression of PD. Moreover, it explores the plausible roles of heavy metals in neurodegenerative mechanisms that facilitate the development of PD. A better understanding of the mechanisms underlying metal toxicities will enable the establishment of novel therapeutic approaches to prevent or cure PD.
Collapse
|
5
|
Awe O, Pavlidakey P, Kole L, Kissel R. Drug-induced Grover's disease: a case report and review of the literature. Int J Dermatol 2021; 61:591-594. [PMID: 34302358 DOI: 10.1111/ijd.15803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Grover's disease (GD) is a relatively rare transient dermatosis that can be idiopathic or acquired. Acquired GD may occur secondary to internal triggers such as medications and malignancies and external factors such as friction. OBJECTIVE The purpose of this report is to describe the clinical and histological presentation of drug-induced Grover's disease (DIGD) and discuss potential pathogenic mechanisms. METHODS A systemic review of the literature was performed to identify medications implicated in DIGD. RESULTS We identified 13 reports of patients with DIGD. Most patients presented with a papular or papulovesicular morphology involving the trunk and extremities. Pruritus was the most common symptom. The majority of the offending agents were cancer therapeutics. Discontinuation of the culprit medication was sufficient for rash clearance and symptom resolution in most cases. CONCLUSION The overlap in morphology and associated symptoms in DIGD and GD makes the diagnosis of DIGD challenging and has potentially led to underdiagnosis. However, in cases of more extensive involvement and treatment recalcitrance, a drug-induced eruption should be considered.
Collapse
Affiliation(s)
- Olufolakemi Awe
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter Pavlidakey
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lauren Kole
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca Kissel
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Abstract
Mercury (Hg) exists in the environment as inorganic (metallic Hg vapor, mercurous and mercuric salts) or organic (bonded to a structure containing carbon atoms) forms. Neurotoxic effect of Hg is known for years. While the organic form (methylmercury (meHg)) led to the Minamata incidence in Japan and "wonder-wheat" disaster in Iraq, the "mad hatters" and "Danbury shakes" were related to the inorganic elemental form (Hg vapor). Human exposure to toxic Hg continues in the modern world to a large extent by artisanal gold mining, biomass combustion, chloralkali production, and indigenous medicine use to name a few. Heavy industrial use of Hg contaminates air and landfills, affecting the aquatic ecosystem and marine food chain. A detailed social and occupational history with a high index of clinical suspicion is required to not miss this toxic etiology for movement disorders like ataxia, tremor, or myoclonus. In this review, we have discussed the past and present global health impact of Hg from a movement disorder perspective. The connection of Hg with neurodegeneration and autoimmunity has been highlighted. We have also discussed the role of chelating agents and the preventive strategies to combat the neurotoxic effects of Hg in the modern world.
Collapse
|
7
|
A novel, anthracene-based naked eye probe for detecting Hg2+ ions in aqueous as well as solid state media. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
The Role of Xenobiotics and Trace Metals in Parkinson’s Disease. Mol Neurobiol 2019; 57:1405-1417. [DOI: 10.1007/s12035-019-01832-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022]
|
9
|
Cariccio VL, Samà A, Bramanti P, Mazzon E. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol Trace Elem Res 2019; 187:341-356. [PMID: 29777524 DOI: 10.1007/s12011-018-1380-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis are characterized by a chronic and selective process of neuronal cell death. Although the causes of neurodegenerative diseases remain still unknown, it is now a well-established idea that more factors, such as genetic, endogenous, and environmental, are involved. Among environmental causes, the accumulation of mercury, a heavy metal considered a toxic agent, was largely studied as a probable factor involved in neurodegenerative disease course. Mercury exists in three main forms: elemental mercury, inorganic mercury, and organic mercury (methylmercury and ethylmercury). Sources of elemental mercury can be natural (volcanic emission) or anthropogenic (coal-fired electric utilities, waste combustion, hazardous-waste incinerators, and gold extraction). Moreover, mercury is still used as an antiseptic, as a medical preservative, and as a fungicide. Dental amalgam can emit mercury vapor. Mercury vapor, being highly volatile and lipid soluble, can cross the blood-brain barrier and the lipid cell membranes and can be accumulated into the cells in its inorganic forms. Also, methylmercury can pass through blood-brain and placental barriers, causing serious damage in the central nervous system. This review describes the toxic effects of mercury in cell cultures, in animal models, and in patients with neurodegenerative diseases. In vitro experiments showed that mercury exposure was principally involved in oxidative stress and apoptotic processes. Moreover, motor and cognitive impairment and neural loss have been confirmed in various studies performed in animal models. Finally, observational studies on patients with neurodegenerative diseases showed discordant data about a possible mercury involvement.
Collapse
Affiliation(s)
- Veronica Lanza Cariccio
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Annalisa Samà
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy.
| |
Collapse
|
10
|
Kaviani S, Shahab S, Sheikhi M, Ahmadianarog M. DFT study on the selective complexation of meso-2,3-dimercaptosuccinic acid with toxic metal ions (Cd2+, Hg2+ and Pb2+) for pharmaceutical and biological applications. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
De Matteis S, Heederik D, Burdorf A, Colosio C, Cullinan P, Henneberger PK, Olsson A, Raynal A, Rooijackers J, Santonen T, Sastre J, Schlünssen V, van Tongeren M, Sigsgaard T. Current and new challenges in occupational lung diseases. Eur Respir Rev 2017; 26:170080. [PMID: 29141963 PMCID: PMC6033059 DOI: 10.1183/16000617.0080-2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/02/2017] [Indexed: 01/13/2023] Open
Abstract
Occupational lung diseases are an important public health issue and are avoidable through preventive interventions in the workplace. Up-to-date knowledge about changes in exposure to occupational hazards as a result of technological and industrial developments is essential to the design and implementation of efficient and effective workplace preventive measures. New occupational agents with unknown respiratory health effects are constantly introduced to the market and require periodic health surveillance among exposed workers to detect early signs of adverse respiratory effects. In addition, the ageing workforce, many of whom have pre-existing respiratory conditions, poses new challenges in terms of the diagnosis and management of occupational lung diseases. Primary preventive interventions aimed to reduce exposure levels in the workplace remain pivotal for elimination of the occupational lung disease burden. To achieve this goal there is still a clear need for setting standard occupational exposure limits based on transparent evidence-based methodology, in particular for carcinogens and sensitising agents that expose large working populations to risk. The present overview, focused on the occupational lung disease burden in Europe, proposes directions for all parties involved in the prevention of occupational lung disease, from researchers and occupational and respiratory health professionals to workers and employers.
Collapse
Affiliation(s)
- Sara De Matteis
- Respiratory Epidemiology, Occupational Medicine and Public Health, Imperial College London, London, UK
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alex Burdorf
- Dept of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Claudio Colosio
- Dept of Health Sciences of the University of Milan and International Centre for Rural Health of the S. Paolo Hospital, Milan, Italy
| | - Paul Cullinan
- Respiratory Epidemiology, Occupational Medicine and Public Health, Imperial College London, London, UK
| | - Paul K Henneberger
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Ann Olsson
- International Agency for Research on Cancer, Lyon, France
| | - Anne Raynal
- Occupational Medicine Division, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Jos Rooijackers
- Netherlands Expertise Center for Occupational Respiratory Disorders, Utrecht, The Netherlands
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Joaquin Sastre
- Allergy Service, Fundacion Jimenez Diaz, Faculty of Medicine Universidad Autonoma de Madrid, CIBER of Respiratory Diseases, Ministry of Economy, Madrid, Spain
| | - Vivi Schlünssen
- Dept of Public Health, Section of Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
- National Research Center for the Working Environment, Copenhagen, Denmark
| | - Martie van Tongeren
- Centre for Occupational and Environmental Health; Centre for Epidemiology; Division of Population Health, Health Services Research and Primary Care; School of Health Sciences; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Torben Sigsgaard
- Dept of Public Health, Section of Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
|
13
|
Coherent and Contradictory Facts, Feats and Fictions Associated with Metal Accumulation in Parkinson's Disease: Epicenter or Outcome, Yet a Demigod Question. Mol Neurobiol 2016; 54:4738-4755. [PMID: 27480264 DOI: 10.1007/s12035-016-0016-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/12/2016] [Indexed: 01/30/2023]
Abstract
Unwarranted exposure due to liberal use of metals for maintaining the lavish life and to achieve the food demand for escalating population along with an incredible boost in the average human life span owing to orchestrated progress in rejuvenation therapy have gradually increased the occurrence of Parkinson's disease (PD). Etiology is albeit elusive; association of PD with metal accumulation has never been overlooked due to noteworthy similitude between metal-exposure symptoms and a few cardinal features of disease. Even though metals are entailed in the vital functions, a hysterical shift, primarily augmentation, escorts the stern nigrostriatal dopaminergic neurodegeneration. An increase in the passage of metals through the blood brain barrier and impaired metabolic activity and elimination system could lead to metal accumulation in the brain, which eventually makes dopaminergic neurons quite susceptible. In the present article, an update on implication of metal accumulation in PD/Parkinsonism has been provided. Moreover, encouraging and paradoxical facts and fictions associated with metal accumulation in PD/Parkinsonism have also been compiled. Systematic literature survey of PD is performed to describe updated information if metal accumulation is an epicenter or merely an outcome. Finally, a perspective on the association of metal accumulation with pesticide-induced Parkinsonism has been explained to unveil the likely impact of the former in the latter.
Collapse
|
14
|
Abstract
BACKGROUND The link between asthma and inhaled workplace exposures has been long appreciated, and yet aggravation of asthma symptoms by work conditions, known as work-aggravated asthma (WAA), remains relatively common. SOURCES OF DATA A review of the literature published over the last 3 years was carried out, and additional key articles were included from outside this timeframe. AGREEMENT WAA is commonly reported by workers with asthma. One published assessment of 12 studies identified a median prevalence of 21.5% among workers with asthma. Commonly reported causes included a variety of inhaled dusts, smoke, vapours, fumes, gases and mists, common and workplace-specific aeroallergens, physical environmental factors including temperature and humidity and physical activity at work. CONTROVERSY Remains in relation to definition, and how to distinguish WAA from occupational asthma in which there is sensitization to an agent in the workplace. Both these areas, and the development of workplace interventions to reduce WAA, are timely topics for future research.
Collapse
Affiliation(s)
- David Fishwick
- Centre for Workplace Health, Sheffield Teaching Hospitals NHS Foundation Trust, Northern General Hospital, Sheffield, S5 7AU, UK
| |
Collapse
|
15
|
Breydo L, Uversky VN. Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics 2011; 3:1163-80. [PMID: 21869995 DOI: 10.1039/c1mt00106j] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases constitute a set of pathological conditions originating from the slow, irreversible, and systematic cell loss within the various regions of the brain and/or the spinal cord. Depending on the affected region, the outcomes of the neurodegeneration are very broad and diverse, ranging from the problems with movements to dementia. Some neurodegenerative diseases are associated with protein misfolding and aggregation. Many proteins that misfold in human neurodegenerative diseases are intrinsically disordered; i.e., they lack a stable tertiary and/or secondary structure under physiological conditions in vitro. These intrinsically disordered proteins (IDPs) functionally complement ordered proteins, being typically involved in regulation and signaling. There is accumulating evidence that altered metal homeostasis may be related to the progression of neurodegenerative diseases. This review examines the effects of metal ion binding on the aggregation pathways of IDPs found in neurodegenerative diseases.
Collapse
Affiliation(s)
- Leonid Breydo
- Department of Molecular Medicine, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC07, Tampa, Florida 33612, USA.
| | | |
Collapse
|
16
|
Mutter J. Is dental amalgam safe for humans? The opinion of the scientific committee of the European Commission. J Occup Med Toxicol 2011; 6:2. [PMID: 21232090 PMCID: PMC3025977 DOI: 10.1186/1745-6673-6-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 01/13/2011] [Indexed: 01/06/2023] Open
Abstract
It was claimed by the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR)) in a report to the EU-Commission that "....no risks of adverse systemic effects exist and the current use of dental amalgam does not pose a risk of systemic disease..." [1, available from: http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_016.pdf].SCENIHR disregarded the toxicology of mercury and did not include most important scientific studies in their review. But the real scientific data show that:(a) Dental amalgam is by far the main source of human total mercury body burden. This is proven by autopsy studies which found 2-12 times more mercury in body tissues of individuals with dental amalgam. Autopsy studies are the most valuable and most important studies for examining the amalgam-caused mercury body burden.(b) These autopsy studies have shown consistently that many individuals with amalgam have toxic levels of mercury in their brains or kidneys.(c) There is no correlation between mercury levels in blood or urine, and the levels in body tissues or the severity of clinical symptoms. SCENIHR only relied on levels in urine or blood.(d) The half-life of mercury in the brain can last from several years to decades, thus mercury accumulates over time of amalgam exposure in body tissues to toxic levels. However, SCENIHR state that the half-life of mercury in the body is only "20-90 days".(e) Mercury vapor is about ten times more toxic than lead on human neurons and with synergistic toxicity to other metals.(f) Most studies cited by SCENIHR which conclude that amalgam fillings are safe have severe methodical flaws.
Collapse
Affiliation(s)
- Joachim Mutter
- Department of Environmental and integrative medicine Lohnerhofstraße 2, 78467 Constance/Germany.
| |
Collapse
|
17
|
Aschner* M, Onishchenko N, Ceccatelli S. Toxicology of Alkylmercury Compounds. ORGANOMETALLICS IN ENVIRONMENT AND TOXICOLOGY 2010. [DOI: 10.1039/9781849730822-00403] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Methylmercury is a global pollutant and potent neurotoxin whose abundance in the food chain mandates additional studies on the consequences and mechanisms of its toxicity to the central nervous system. Formulation of our new hypotheses was predicated on our appreciation for (a) the remarkable affinity of mercurials for the anionic form of sulfhydryl (-SH) groups, and (b) the essential role of thiols in protein biochemistry. The present chapter addresses pathways to human exposure of various mercury compounds, highlighting their neurotoxicity and potential involvement in neurotoxic injury and neurodegenerative changes, both in the developing and senescent brain. Mechanisms that trigger these effects are discussed in detail.
Collapse
Affiliation(s)
- Michael Aschner*
- Vanderbilt University School of Medicine, Department of Pediatrics Pharmacology, and the Kennedy Center for Research on Human Development Nashville TN 37232 USA
| | | | - Sandra Ceccatelli
- Karolinska Institute, Department of Neuroscience SE-17177 Stockholm Sweden
| |
Collapse
|
18
|
Pranteda G, Mari E, Feliziani G, Grimaldi M, Pranteda G, Arcese A, Milione M, Camplone G. Transient acantholytic dermatitis and Parkinson's disease. J Eur Acad Dermatol Venereol 2008; 23:455-7. [PMID: 18631206 DOI: 10.1111/j.1468-3083.2008.02901.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Brandies R, Yehuda S. The possible role of retinal dopaminergic system in visual performance. Neurosci Biobehav Rev 2007; 32:611-56. [PMID: 18061262 DOI: 10.1016/j.neubiorev.2007.09.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/23/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
It is a well-known fact that the retina is one of the tissues in the body, which is richest in dopamine (DA), yet the role of this system in various visual functions remains unclear. We have identified 13 types of DA retinal pathologies, and 15 visual functions. The pathologies were arranged in this review on a net grid, where one axis was "age" (i.e., from infancy to old age) and the other axis the level of retinal DA (i.e., from DA deficiency to DA excess, from Parkinson disorder to Schizophrenia). The available data on visual dysfunction(s) is critically presented for each of the DA pathologies. Special effort was made to evaluate whether the site of DA malfunction in the different DA pathologies and visual function is at retinal level or in higher brain centers. The mapping of DA and visual pathologies demonstrate the pivot role of retinal DA in mediating visual functions and also indicate the "missing links" in our understanding of the mechanisms underlying these relationships.
Collapse
Affiliation(s)
- R Brandies
- Department of Pharmacology, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel
| | | |
Collapse
|