1
|
Rhee JW, Adzavon YM, Sun Z. Stromal androgen signaling governs essential niches in supporting prostate development and tumorigenesis. Oncogene 2024; 43:3419-3425. [PMID: 39369165 PMCID: PMC11573710 DOI: 10.1038/s41388-024-03175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
Androgens and androgen receptor (AR) mediated signaling pathways are essential for prostate development, morphogenesis, growth, and regeneration. Early tissue recombination experiments showed that AR-deficient urogenital sinus mesenchyme combined with intact urogenital sinus epithelium failed to develop into a prostate, demonstrating a stem cell niche for mesenchymal AR in prostatic development. Androgen signaling remains critical for prostate maturation and growth during postnatal stages. Importantly, most primary prostate cancer (PCa) cells express the AR, and aberrant activation of AR directly promotes PCa development, growth, and progression. Therefore, androgen deprivation therapy (ADT) targeting the AR in PCa cells is the main treatment for advanced PCa. However, it eventually fails, leading to the development of castration-resistant PCa, an incurable disease. Given these clinical challenges, the oncogenic AR action needs to be reevaluated for developing new and effective therapies. Recently, an essential niche role of stromal AR was identified in regulating prostate development and tumorigenesis. Here, we summarize the latest discoveries of stromal AR niches and their interactions with prostatic epithelia. In combination with emerging clinical and experimental evidence, we specifically discuss several important and long-term unanswered questions regarding tumor niche roles of stromal AR and highlight future therapeutic strategies by co-targeting epithelial and stromal AR for treating advanced PCa.
Collapse
Affiliation(s)
- June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yao Mawulikplimi Adzavon
- Department of Cell Biology, Department of Oncology, Montefiore Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zijie Sun
- Department of Cell Biology, Department of Oncology, Montefiore Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Adzavon YM, Culig Z, Sun Z. Interactions between androgen and IGF1 axes in prostate tumorigenesis. Nat Rev Urol 2024:10.1038/s41585-024-00942-3. [PMID: 39375467 DOI: 10.1038/s41585-024-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/09/2024]
Abstract
Androgen signalling through the androgen receptor (AR) is essential for prostate tumorigenesis. However, androgen signalling pathways also interact with other growth factor-mediated signalling pathways to regulate the prostatic cell cycle, differentiation, apoptosis and proliferation in the initiation and progression of prostate cancer. Insulin-like growth factor 1 (IGF1) is one of the most prominent growth factors in prostate tumorigenesis. Clinical and experimental evidence has demonstrated that IGF1 signalling supports both androgen-dependent and androgen-independent prostate tumorigenesis, suggesting that improved understanding of the interactions between the IGF1 and androgen axes might aid the development of new therapeutic strategies. Available data have shown a dynamic role of androgen-AR signalling in the activation of IGF1-signalling pathways by augmenting transcription of the IGF1 receptor in prostatic basal epithelial cells and by increasing IGF1 secretion through the suppression of IGF-binding protein 3 expression in prostatic stromal cells. In turn, IGF1 stimulates Wnt-β-catenin signalling in prostatic basal progenitors to promote prostatic oncogenic transformation and prostate cancer development. These findings highlight the cooperative, autocrine and paracrine interactions that underlie the oncogenic effects of androgens and IGF1 and open up new opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Yao Mawulikplimi Adzavon
- Department of Cell Biology, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zijie Sun
- Department of Cell Biology, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Ren L, Zhang T, Zhang J. Recent advances in dietary androgen receptor inhibitors. Med Res Rev 2024; 44:1446-1500. [PMID: 38279967 DOI: 10.1002/med.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
4
|
Kim WK, Buckley AJ, Lee DH, Hiroto A, Nenninger CH, Olson AW, Wang J, Li Z, Vikram R, Adzavon YM, Yau TY, Bao Y, Kahn M, Geradts J, Xiao GQ, Sun Z. Androgen deprivation induces double-null prostate cancer via aberrant nuclear export and ribosomal biogenesis through HGF and Wnt activation. Nat Commun 2024; 15:1231. [PMID: 38336745 PMCID: PMC10858246 DOI: 10.1038/s41467-024-45489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Androgen deprivation therapy (ADT) targeting androgen/androgen receptor (AR)- signaling pathways is the main therapy for advanced prostate cancer (PCa). However, ADT eventually fails in most patients who consequently develop castration-resistant prostate cancer (CRPC). While more potent AR antagonists and blockers for androgen synthesis were developed to improve clinical outcomes, they also show to induce more diverse CRPC phenotypes. Specifically, the AR- and neuroendocrine-null PCa, DNPC, occurs in abiraterone and enzalutamide-treated patients. Here, we uncover that current ADT induces aberrant HGF/MET signaling activation that further elevates Wnt/β-catenin signaling in human DNPC samples. Co-activation of HGF/MET and Wnt/β-catenin axes in mouse prostates induces DNPC-like lesions. Single-cell RNA sequencing analyses identify increased expression and activity of XPO1 and ribosomal proteins in mouse DNPC-like cells. Elevated expression of XPO1 and ribosomal proteins is also identified in clinical DNPC specimens. Inhibition of XPO1 and ribosomal pathways represses DNPC growth in both in vivo and ex vivo conditions, evidencing future therapeutic targets.
Collapse
Affiliation(s)
- Won Kyung Kim
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alyssa J Buckley
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alex Hiroto
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christian H Nenninger
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adam W Olson
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zhuo Li
- Electronic Microscopy Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Rajeev Vikram
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yao Mawulikplimi Adzavon
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Tak-Yu Yau
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yigang Bao
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joseph Geradts
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, USA
| | - Guang-Qian Xiao
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zijie Sun
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
5
|
Negi A, Kesari KK, Voisin-Chiret AS. Estrogen Receptor-α Targeting: PROTACs, SNIPERs, Peptide-PROTACs, Antibody Conjugated PROTACs and SNIPERs. Pharmaceutics 2022; 14:pharmaceutics14112523. [PMID: 36432713 PMCID: PMC9699327 DOI: 10.3390/pharmaceutics14112523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Targeting selective estrogen subtype receptors through typical medicinal chemistry approaches is based on occupancy-driven pharmacology. In occupancy-driven pharmacology, molecules are developed in order to inhibit the protein of interest (POI), and their popularity is based on their virtue of faster kinetics. However, such approaches have intrinsic flaws, such as pico-to-nanomolar range binding affinity and continuous dosage after a time interval for sustained inhibition of POI. These shortcomings were addressed by event-driven pharmacology-based approaches, which degrade the POI rather than inhibit it. One such example is PROTACs (Proteolysis targeting chimeras), which has become one of the highly successful strategies of event-driven pharmacology (pharmacology that does the degradation of POI and diminishes its functions). The selective targeting of estrogen receptor subtypes is always challenging for chemical biologists and medicinal chemists. Specifically, estrogen receptor α (ER-α) is expressed in nearly 70% of breast cancer and commonly overexpressed in ovarian, prostate, colon, and endometrial cancer. Therefore, conventional hormonal therapies are most prescribed to patients with ER + cancers. However, on prolonged use, resistance commonly developed against these therapies, which led to selective estrogen receptor degrader (SERD) becoming the first-line drug for metastatic ER + breast cancer. The SERD success shows that removing cellular ER-α is a promising approach to overcoming endocrine resistance. Depending on the mechanism of degradation of ER-α, various types of strategies of developed.
Collapse
Affiliation(s)
- Arvind Negi
- Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| | - Kavindra Kumar Kesari
- Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| | - Anne Sophie Voisin-Chiret
- CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie University UNICAEN, 14000 Caen, France
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| |
Collapse
|
6
|
Hiroto A, Kim WK, Pineda A, He Y, Lee DH, Le V, Olson AW, Aldahl J, Nenninger CH, Buckley AJ, Xiao GQ, Geradts J, Sun Z. Stromal androgen signaling acts as tumor niches to drive prostatic basal epithelial progenitor-initiated oncogenesis. Nat Commun 2022; 13:6552. [PMID: 36323713 PMCID: PMC9630272 DOI: 10.1038/s41467-022-34282-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
The androgen receptor (AR)-signaling pathways are essential for prostate tumorigenesis. Although significant effort has been devoted to directly targeting AR-expressing tumor cells, these therapies failed in most prostate cancer patients. Here, we demonstrate that loss of AR in stromal sonic-hedgehog Gli1-lineage cells diminishes prostate epithelial oncogenesis and tumor development using in vivo assays and mouse models. Single-cell RNA sequencing and other analyses identified a robust increase of insulin-like growth factor (IGF) binding protein 3 expression in AR-deficient stroma through attenuation of AR suppression on Sp1-regulated transcription, which further inhibits IGF1-induced Wnt/β-catenin activation in adjacent basal epithelial cells and represses their oncogenic growth and tumor development. Epithelial organoids from stromal AR-deficient mice can regain IGF1-induced oncogenic growth. Loss of human prostate tumor basal cell signatures reveals in basal cells of stromal AR-deficient mice. These data demonstrate a distinct mechanism for prostate tumorigenesis and implicate co-targeting stromal and epithelial AR-signaling for prostate cancer.
Collapse
Affiliation(s)
- Alex Hiroto
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ariana Pineda
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yongfeng He
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Vien Le
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adam W Olson
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christian H Nenninger
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alyssa J Buckley
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Guang-Qian Xiao
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Geradts
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Zijie Sun
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
7
|
Kim WK, Olson AW, Mi J, Wang J, Lee DH, Le V, Hiroto A, Aldahl J, Nenninger CH, Buckley AJ, Cardiff R, You S, Sun Z. Aberrant androgen action in prostatic progenitor cells induces oncogenesis and tumor development through IGF1 and Wnt axes. Nat Commun 2022; 13:4364. [PMID: 35902588 PMCID: PMC9334353 DOI: 10.1038/s41467-022-32119-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 07/18/2022] [Indexed: 12/26/2022] Open
Abstract
Androgen/androgen receptor (AR) signaling pathways are essential for prostate tumorigenesis. However, the fundamental mechanisms underlying the AR functioning as a tumor promoter in inducing prostatic oncogenesis still remain elusive. Here, we demonstrate that a subpopulation of prostatic Osr1 (odd skipped-related 1)-lineage cells functions as tumor progenitors in prostate tumorigenesis. Single cell transcriptomic analyses reveal that aberrant AR activation in these cells elevates insulin-like growth factor 1 (IGF1) signaling pathways and initiates oncogenic transformation. Elevating IGF1 signaling further cumulates Wnt/β-catenin pathways in transformed cells to promote prostate tumor development. Correlations between altered androgen, IGF1, and Wnt/β-catenin signaling are also identified in human prostate cancer samples, uncovering a dynamic regulatory loop initiated by the AR through prostate cancer development. Co-inhibition of androgen and Wnt-signaling pathways significantly represses the growth of AR-positive tumor cells in both ex-vivo and in-vivo, implicating co-targeting therapeutic strategies for these pathways to treat advanced prostate cancer.
Collapse
Affiliation(s)
- Won Kyung Kim
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adam W Olson
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiaqi Mi
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Vien Le
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alex Hiroto
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christian H Nenninger
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alyssa J Buckley
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Robert Cardiff
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zijie Sun
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
8
|
Lee YK, Kim JE, Xu Y, Han H, Lee JH, Lee HJ. AKT, a Key Transmitter of HIF-1α and AR Signaling Pathways, Has a Critical Role in the Apigetrin-Mediated Anti-Cancer Effects in Prostate Cancer Cells. Biomedicines 2022; 10:biomedicines10061370. [PMID: 35740392 PMCID: PMC9220772 DOI: 10.3390/biomedicines10061370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Apigetrin is a flavonoid glycoside phytochemical that is derived from various herbs and exhibits several beneficial biological activities, including anti-oxidant, anti-inflammatory, anti-obesity, and anti-cancer effects. In the present study, we elucidated the anti-cancer effect and targeting mechanism of apigetrin in LNCaP and PC-3 cells through various experiments, including cell viability by CELLOMAXTM Viability Assay kit, cell migration by scratch wound assays, and 2D-and 3D- cell growth assay. Apigetrin inhibited the viability, migration, proliferation, and growth of cells in long-term 2D- and 3D- cultures cell growth. A high dose of apigetrin induced apoptosis, as evidenced by increased cleavage of poly ADP-ribose polymerase (PARP) and caspase-3 (c-cas3) in both LNCaP and PC-3 cells. Furthermore, apigetrin inhibited AR, PSA, HIF-1α, and VEGF expression in LNCaP and PC-3 cells. Apigetrin also suppressed the hypoxia-induced HIF-1α expression in these cells. Furthermore, apigetrin reduced hypoxia-induced VEGF secretion in the culture medium and inhibited hypoxia-induced tube formation of HUVECs. Silencing of AKT revealed that the anti-cancer activity of apigetrin is mediated via AKT. Thus, our data suggest that apigetrin exerts anti-cancer effects by inhibiting AKT, a central key of HIF-1α and AR signaling, in early-and late-stage prostate cancer cells.
Collapse
Affiliation(s)
- You-Kyung Lee
- Department of Cancer Preventive Material Development, Graduate School, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dondaemun-gu, Seoul 02447, Korea; (Y.-K.L.); (H.H.); (J.-H.L.)
| | - Jung-Eun Kim
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (J.-E.K.); (Y.X.)
| | - Yinzhu Xu
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (J.-E.K.); (Y.X.)
| | - Hengmin Han
- Department of Cancer Preventive Material Development, Graduate School, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dondaemun-gu, Seoul 02447, Korea; (Y.-K.L.); (H.H.); (J.-H.L.)
| | - Jae-Hyeon Lee
- Department of Cancer Preventive Material Development, Graduate School, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dondaemun-gu, Seoul 02447, Korea; (Y.-K.L.); (H.H.); (J.-H.L.)
| | - Hyo-Jeong Lee
- Department of Cancer Preventive Material Development, Graduate School, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dondaemun-gu, Seoul 02447, Korea; (Y.-K.L.); (H.H.); (J.-H.L.)
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (J.-E.K.); (Y.X.)
- Correspondence:
| |
Collapse
|
9
|
Brassicasterol from Edible Aquacultural Hippocampus abdominalis Exerts an Anti-Cancer Effect by Dual-Targeting AKT and AR Signaling in Prostate Cancer. Biomedicines 2020; 8:biomedicines8090370. [PMID: 32972001 PMCID: PMC7555010 DOI: 10.3390/biomedicines8090370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022] Open
Abstract
In the Compendium of Materia Medica, seahorse (Hippocampus) is considered effective for the reinforcement of kidney and men’s health. However, the role of seahorse on human health lacks scientific evidence. Therefore, we evaluated the effect of seahorse on human prostate cancer using various in vitro methods and identified bioactive compound. Seahorse lipid extract (SHL) decreased androgen receptor (AR) and prostate-specific antigen (PSA) expression in dihydrotestosterone (DHT)-induced LNCaP cells of prostate cancer. Gas Chromatography (GC)-mass spectrometry data showed that brassicasterol was present in H. abdominalis. Brassicasterol downregulated the expression of AR and PSA in DHT-induced LNCaP cells. Brassicasterol induced apoptosis accompanied by sub-G1 phase arrest and inhibited migration in LNCaP cells. We confirmed that AKT and AR mediated the anti-cancer effect of brassicasterol using siRNA transfection. Brassicasterol exerts an anti-cancer effect in AR-independent cancer as well as in AR-dependent cells by AKT inhibiting. Our findings suggest that SHL has the anticancer potential via inhibition of AR and demonstrated that brassicasterol from H. abdominalis exerted an anti-cancer effect by dual-targeting AKT and AR signaling in prostate cancer.
Collapse
|
10
|
Lee DH, Yu EJ, Aldahl J, Yang J, He Y, Hooker E, Le V, Mi J, Olson A, Wu H, Geradts J, Xiao GQ, Gonzalgo ML, Cardiff RD, Sun Z. Deletion of the p16INK4a tumor suppressor and expression of the androgen receptor induce sarcomatoid carcinomas with signet ring cells in the mouse prostate. PLoS One 2019; 14:e0211153. [PMID: 30677079 PMCID: PMC6345450 DOI: 10.1371/journal.pone.0211153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor p16Ink4a, encoded by the INK4a gene, is an inhibitor of cyclin D-dependent kinases 4 and 6, CDK4 and CDK6. This inhibition prevents the phosphorylation of the retinoblastoma protein (pRb), resulting in cellular senescence through inhibition of E2F-mediated transcription of S phase genes required for cell proliferation. The p16Ink4a plays an important role in tumor suppression, whereby its deletion, mutation, or epigenetic silencing is a frequently observed genetic alteration in prostate cancer. To assess its roles and related molecular mechanisms in prostate cancer initiation and progression, we generated a mouse model with conditional deletion of p16Ink4a in prostatic luminal epithelium. The mice underwent oncogenic transformation and developed prostatic intraepithelial neoplasia (PIN) from eight months of age, but failed to develop prostatic tumors. Given the prevalence of aberrant androgen signaling pathways in prostate cancer initiation and progression, we then generated R26hARL/wt:p16L/L: PB-Cre4 compound mice, in which conditional expression of the human AR transgene and deletion of p16Ink4a co-occur in prostatic luminal epithelial cells. While R26hARL/wt:PB-Cre4 mice showed no visible pathological changes, R26hARL/wt:p16L/L: PB-Cre4 compound mice displayed an early onset of high-grade PIN (HGPIN), prostatic carcinoma, and metastatic lesions. Strikingly, we observed tumors resembling human sarcomatoid carcinoma with intermixed focal regions of signet ring cell carcinoma (SRCC) in the prostates of the compound mice. Further characterization of these tumors showed they were of luminal epithelial cell origin, and featured characteristics of epithelial to mesenchymal transition (EMT) with enhanced proliferative and invasive capabilities. Our results not only implicate a biological role for AR expression and p16Ink4a deletion in the pathogenesis of prostatic SRCC, but also provide a new and unique genetically engineered mouse (GEM) model for investigating the molecular mechanisms for SRCC development.
Collapse
Affiliation(s)
- Dong-Hong Lee
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Eun-Jeong Yu
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Joseph Aldahl
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Julie Yang
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Yongfeng He
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Erika Hooker
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Vien Le
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Jiaqi Mi
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Adam Olson
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Huiqing Wu
- Department of Pathology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Joseph Geradts
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Guang Q. Xiao
- Department of Pathology, Keck Medical School, University of South California, Los Angeles, California, United States of America
| | - Mark L. Gonzalgo
- Department of Urology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Robert D. Cardiff
- Comparative Medicine, University of California at Davis, Davis, California, United States of America
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ubiquitination of nuclear receptors. Clin Sci (Lond) 2017; 131:917-934. [PMID: 28473472 DOI: 10.1042/cs20160708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/17/2022]
Abstract
Nuclear receptors (NRs) are cellular proteins, which upon ligand activation, act to exert regulatory control over transcription and subsequent expression. Organized via systemic classification into seven subfamilies, NRs partake in modulating a vast expanse of physiological functions essential for maintenance of life. NRs display particular characteristics towards ubiquitination, the process of addition of specific ubiquitin tags at appropriate locations. Orchestrated through groups of enzymes harboring a diverse array of specialized structural components, the ubiquitination process emphatically alters the fate or downstream effects of NRs. Such influence is especially prominent in transcriptional processes such as promoter clearing for optimization and degradation pathways eliminating or recycling targeted proteins. Ultimately, the ubiquitination of NRs carries significant implications in terms of generating pathological clinical manifestations. Increasing evidence from studies involving patients and disease models suggests a role for ubiquitinated NRs in virtually every organ system. This supports the broad repertoire of roles that NRs play in the body, including modulatory conductors, facilitators, responders to external agents, and critical constituents for pharmacological or biological interventions. This review aims to cover relevant background and mechanisms of NRs and ubiquitination, with a focus towards elucidating subsequent pathophysiology and therapeutics in clinical disorders encompassing such ubiquitinated NRs.
Collapse
|
12
|
Daunting but Worthy Goal: Reducing the De Novo Cancer Incidence After Transplantation. Transplantation 2017; 100:2569-2583. [PMID: 27861286 DOI: 10.1097/tp.0000000000001428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Solid-organ transplant recipients are at increased risk of developing de novo malignancies compared with the general population, and malignancies become a major limitation in achieving optimal outcomes. The prevention and the management of posttransplant malignancies must be considered as a main goal in our transplant programs. For these patients, immunosuppression plays a major role in oncogenesis by both impairement of immunosurveillance, enhancement of chronic viral infection, and by direct prooncogenic effects. It is essential to manage the recipient with a long-term adapted screening program beginning before transplantation to use a prophylaxis to decrease infection-related cancer, to propose a viral monitoring, and to modulate the immunosuppression toward lower doses especially for calcineurin inhibitors. Indeed, strategies to induce tolerance or to allow a dramatic reduction of the immunosuppression burden are the more promising approaches for the reduction of the posttransplant malignancies.
Collapse
|
13
|
Lim JJ, Han CY, Lee DR, Tsang BK. Ring Finger Protein 6 Mediates Androgen-Induced Granulosa Cell Proliferation and Follicle Growth via Modulation of Androgen Receptor Signaling. Endocrinology 2017; 158:993-1004. [PMID: 28324045 DOI: 10.1210/en.2016-1866] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
The destiny of the ovarian follicle (growth or atresia) is tightly regulated by the actions and interactions of endocrine, paracrine, and autocrine factors. Although androgens are known to be important in the regulation of folliculogenesis, whether they facilitate or suppress follicular growth has been controversial, and the mechanisms involved are not fully understood. Moreover, the role and regulation of androgen receptor (AR) in mediating androgen signaling during follicular development is not clear. Here, we report that the active androgen dihydrotestosterone upregulates the expression of AR and its E3 ligase ring finger protein 6 (RNF6), increasing site-specific AR polyubiquitination and AR transcriptional activity for soluble Kit ligand (sKit-L) expression in preantral follicle growth. RNF6 silencing suppressed dihydrotestosterone-induced AR ubiquitination (lysine residue 63) and proliferation and suppressed apoptosis in preantral granulosa cells, with these responses being overcome by the presence of exogenous sKit-L. Taken together, our findings support the notion that RNF6 plays an important role in androgen-induced, follicle-stage-dependent follicle growth and that it acts by facilitating AR-mediated granulosa cell sKit-L expression and proliferation. Our findings offer insights into the regulatory mechanism of androgen action in ovarian follicular growth.
Collapse
Affiliation(s)
- Jung Jin Lim
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Chae Young Han
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dong Ryul Lee
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Benjamin K Tsang
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China
| |
Collapse
|
14
|
Abstract
Prevention and therapeutic intervention by phytochemicals are newer dimensions in the arena of cancer management. In this regard, the cancer chemopreventive role of silymarin (Silybum marianum) has been extensively studied and has shown anticancer efficacy against various cancer sites, especially skin and prostate. In skin cancer, silymarin treatment inhibits ultraviolet B radiation or chemically initiated or promoted carcinogenesis. These effects of silymarin against skin carcinogenesis have been attributed to its strong antioxidant and anti-inflammatory action as well as its inhibitory effect on mitogenic signaling. Similarly, silymarin treatment inhibits 3, 2-dimethyl-4-aminobiphenyl—induced prostate carcinogenesis and retards the growth of advanced prostate tumor xenograft in athymic nude mice. In prostate cancer, silymarin treatment down-regulates androgen receptor—, epidermal growth factor receptor—, and nuclear factor-κB— mediated signaling and induces cell cycle arrest. Extensive preclinical findings have supported the anticancer potential of silymarin, and now its efficacy is being evaluated in cancer patients.
Collapse
Affiliation(s)
- Gagan Deep
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, CO 80262, USA
| | | |
Collapse
|
15
|
Wang Z, Kim J, Teng Y, Ding HF, Zhang J, Hai T, Cowell JK, Yan C. Loss of ATF3 promotes hormone-induced prostate carcinogenesis and the emergence of CK5(+)CK8(+) epithelial cells. Oncogene 2015; 35:3555-64. [PMID: 26522727 PMCID: PMC4853303 DOI: 10.1038/onc.2015.417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 12/25/2022]
Abstract
Steroid sex hormones can induce prostate carcinogenesis, and are thought to contribute to the development of prostate cancer during aging. However, the mechanism for hormone-induced prostate carcinogenesis remains elusive. Here we report that activating transcription factor 3 (ATF3) – a broad stress sensor – suppressed hormone-induced prostate carcinogenesis in mice. While implantation of testosterone and estradiol (T+E2) pellets for 2 months in wild-type mice rarely induced prostatic intraepithelial neoplasia (PIN) in dorsal prostates (1 out of 8 mice), loss of ATF3 led to the appearance of not only PIN but also invasive lesions in almost all examined animals. The enhanced carcinogenic effects of hormones on ATF3-deficient prostates did not appear to be caused by a change in estrogen signaling, but were more likely a consequence of elevated androgen signaling that stimulated differentiation of prostatic basal cells into transformation-preferable luminal cells. Indeed, we found that hormone-induced lesions in ATF3-knockout mice often contained cells with both basal and luminal characteristics, such as p63+ cells (a basal cell marker) showing luminal-like morphology, or cells double-stained with basal (CK5+) and luminal (CK8+) markers. Consistent with these findings, low ATF3 expression was found to be a poor prognostic marker for prostate cancer in a cohort of 245 patients. Our results thus support that ATF3 is a tumor suppressor in prostate cancer.
Collapse
Affiliation(s)
- Z Wang
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA.,Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - J Kim
- Department of Statistics, Sungkyunkwan University, Seoul, South Korea
| | - Y Teng
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - H-F Ding
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA.,Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - J Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - T Hai
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - J K Cowell
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - C Yan
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA.,Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
16
|
Liu L, Dong X. Complex impacts of PI3K/AKT inhibitors to androgen receptor gene expression in prostate cancer cells. PLoS One 2014; 9:e108780. [PMID: 25360799 PMCID: PMC4215833 DOI: 10.1371/journal.pone.0108780] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/03/2014] [Indexed: 01/09/2023] Open
Abstract
Background Androgen deprivation therapy (ADT) is the first-line treatment to metastatic prostate cancer (PCa). However, sustained expression and function of the androgen receptor (AR) gene contribute to the progression of castration resistant prostate cancers (CRPC). Additionally, tumors can adapt the PI3K/AKT survival pathway to escape ADT. Co-targeting AR and PI3K/AKT signaling has been proposed to be a more effective therapeutic means for CRPC patients. Many clinical trials are ongoing to test whether PI3K/AKT inhibitors are beneficial to PCa patients. However whether these inhibitors have any impacts on the expressions of full length AR (AR-FL) and its splice variant (AR-V7) remains unclear. Methods Four human prostate cancer cell lines (LNCaP, LNCaP95, VCaP and 22Rv1) with different genetic backgrounds were treated with five PI3K/AKT inhibitors (LY294002, Wortmannin, BKM120, AKTi and AZD5363) and or AKT siRNA. AR and AR-V7 protein and mRNA levels were measured by immunoblotting and real-time PCR assays. AR gene transcription initiation, alternative RNA splicing and AR mRNA degradation rates were also determined. Results PI3K/AKT inhibitors had various impacts on AR protein expressions primarily through alterations of AR gene transcription initiation and RNA splicing. However, these effects remained unchanged in the presence RNA silencing of the AKT genes. Conclusion PI3K/AKT inhibitors have off-target effects on AR gene expression in prostate cancer cells, which shall be considered when applying these inhibitors to PCa patients, particularly patients under ADT treatment.
Collapse
Affiliation(s)
- Liangliang Liu
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Abstract
PURPOSE We investigated sex-hormone receptor expression as predicting factor of recurrence and progression in patients with non-muscle invasive bladder cancer. MATERIALS AND METHODS We retrospectively evaluated tumor specimens from patients treated for transitional cell carcinoma of the bladder at our institution between January 2006 and January 2011. Performing immunohistochemistry using a monoclonal androgen receptor antibody and monoclonal estrogen receptor-beta antibody on paraffin-embedded tissue sections, we assessed the relationship of immunohistochemistry results and prognostic factors such as recurrence and progression. RESULTS A total of 169 patients with bladder cancer were evaluated in this study. Sixty-threepatients had expressed androgen receptors and 52 patients had estrogen receptor beta. On univariable analysis, androgen receptor expression was significant lower in recurrence rates (p=0.001), and estrogen receptor beta expression was significant higher in progression rates (p=0.004). On multivariable analysis, significant association was found between androgen receptor expression and lower recurrence rates (hazard ratio=0.500; 95% confidence interval, 0.294 to 0.852; p=0.011), but estrogen receptor beta expression was not significantly associated with progression rates. CONCLUSION We concluded that the possibility of recurrence was low when the androgen receptor was expressed in the bladder cancer specimen and it could be the predicting factor of the stage, number of tumors, carcinoma in situ lesion and recurrence.
Collapse
Affiliation(s)
- Jong Kil Nam
- Department of Urology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea.
| | - Sung Woo Park
- Department of Urology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Sang Don Lee
- Department of Urology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Moon Kee Chung
- Department of Urology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
18
|
Schmidt LJ, Murillo H, Tindall DJ. Gene Expression in Prostate Cancer Cells Treated With the Dual 5 Alpha-Reductase Inhibitor Dutasteride. ACTA ACUST UNITED AC 2013; 25:944-53. [PMID: 15477368 DOI: 10.1002/j.1939-4640.2004.tb03166.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We sought preclinical data on the cellular and molecular effects of dutasteride in androgen-responsive, human prostate cancer (PCa) cells to better understand the mechanisms of action of 5 alpha-reductase inhibition in these cells. We used the human prostate cancer cell line LNCaP, which exhibits most features of PCa cells including androgen responsiveness. Our findings show that dutasteride kills PCa cells in vitro; it dramatically reduced viability and proliferation and disrupted genes and cellular pathways involved in metabolic, cell cycle, and apoptotic responses besides those expected in androgen-signaling pathways. Microchip gene array expression analysis revealed activation of genes in the FasL/tumor necrosis factor alpha (TNF-alpha) apoptotic and cell-survival pathways, correlating with the growth and survival effects in the LNCaP cells. Real-time polymerase chain reaction confirmed expression level changes seen by microarray analysis of candidate genes such as PLA2G2A, CDK8, CASP7, MDK, and NKX3.1. Collectively, our findings delineate the cellular and molecular effects of dutasteride in androgen-responsive PCa cells in vitro and may lead to its better therapeutic and chemopreventive use in PCa.
Collapse
Affiliation(s)
- Lucy J Schmidt
- Department of Urology Research, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
19
|
Tohyama S, Tomura A, Ikeda N, Hatano M, Odanaka J, Kubota Y, Umekita M, Igarashi M, Sawa R, Morino T. Discovery and Characterization of NK13650s, Naturally Occurring p300-Selective Histone Acetyltransferase Inhibitors. J Org Chem 2012; 77:9044-52. [DOI: 10.1021/jo301534b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shigehiro Tohyama
- Institute of Microbial Chemistry, Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo
141-0021, Japan
| | - Arihiro Tomura
- Pharmaceuticals Research Laboratories, Research & Development Group, Nippon Kayaku, 3-31-12 Shimo, Kita-ku, Tokyo 115-8588, Japan
| | - Noriko Ikeda
- Institute of Microbial Chemistry, Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo
141-0021, Japan
| | - Masaki Hatano
- Institute of Microbial Chemistry, Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo
141-0021, Japan
| | - Junko Odanaka
- Pharmaceuticals Research Laboratories, Research & Development Group, Nippon Kayaku, 3-31-12 Shimo, Kita-ku, Tokyo 115-8588, Japan
| | - Yumiko Kubota
- Institute of Microbial Chemistry, Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo
141-0021, Japan
| | - Maya Umekita
- Institute of Microbial Chemistry, Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo
141-0021, Japan
| | - Masayuki Igarashi
- Institute of Microbial Chemistry, Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo
141-0021, Japan
| | - Ryuichi Sawa
- Institute of Microbial Chemistry, Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo
141-0021, Japan
| | - Tomio Morino
- Pharmaceuticals Research Laboratories, Research & Development Group, Nippon Kayaku, 3-31-12 Shimo, Kita-ku, Tokyo 115-8588, Japan
| |
Collapse
|
20
|
Senescence and steroid hormone receptor reactivities in accessory sex glands of elderly rats (Sprague-Dawley) following exogenous hormonal therapy. Tissue Cell 2012; 44:227-37. [DOI: 10.1016/j.tice.2012.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/22/2022]
|
21
|
Morais GR, Paulo A, Santos I. Organometallic Complexes for SPECT Imaging and/or Radionuclide Therapy. Organometallics 2012. [DOI: 10.1021/om300501d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Goreti Ribeiro Morais
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| | - António Paulo
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| | - Isabel Santos
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| |
Collapse
|
22
|
Huang W, He T, Chai C, Yang Y, Zheng Y, Zhou P, Qiao X, Zhang B, Liu Z, Wang J, Shi C, Lei L, Gao K, Li H, Zhong S, Yao L, Huang ME, Lei M. Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression. PLoS One 2012; 7:e37693. [PMID: 22666381 PMCID: PMC3364364 DOI: 10.1371/journal.pone.0037693] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 04/26/2012] [Indexed: 01/09/2023] Open
Abstract
Recently, traditional Chinese medicine and medicinal herbs have attracted more attentions worldwide for its anti-tumor efficacy. Celastrol and Triptolide, two active components extracted from the Chinese herb Tripterygium wilfordii Hook F (known as Lei Gong Teng or Thunder of God Vine), have shown anti-tumor effects. Celastrol was identified as a natural 26 s proteasome inhibitor which promotes cell apoptosis and inhibits tumor growth. The effect and mechanism of Triptolide on prostate cancer (PCa) is not well studied. Here we demonstrated that Triptolide, more potent than Celastrol, inhibited cell growth and induced cell death in LNCaP and PC-3 cell lines. Triptolide also significantly inhibited the xenografted PC-3 tumor growth in nude mice. Moreover, Triptolide induced PCa cell apoptosis through caspases activation and PARP cleavage. Unbalance between SUMOylation and deSUMOylation was reported to play an important role in PCa progression. SUMO-specific protease 1 (SENP1) was thought to be a potential marker and therapeutical target of PCa. Importantly, we observed that Triptolide down-regulated SENP1 expression in both mRNA and protein levels in dose-dependent and time-dependent manners, resulting in an enhanced cellular SUMOylation in PCa cells. Meanwhile, Triptolide decreased AR and c-Jun expression at similar manners, and suppressed AR and c-Jun transcription activity. Furthermore, knockdown or ectopic SENP1, c-Jun and AR expression in PCa cells inhibited the Triptolide anti-PCa effects. Taken together, our data suggest that Triptolide is a natural compound with potential therapeutic value for PCa. Its anti-tumor activity may be attributed to mechanisms involving down-regulation of SENP1 that restores SUMOylation and deSUMOyaltion balance and negative regulation of AR and c-Jun expression that inhibits the AR and c-Jun mediated transcription in PCa.
Collapse
Affiliation(s)
- Weiwei Huang
- Key Laboratory of Agricultural Molecular Biology, College of Life Science, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Tiantian He
- Key Laboratory of Agricultural Molecular Biology, College of Life Science, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
- UMR3348 Centre National de la Recherche Scientifique, Institut Curie, Université Paris-Sud 11, Orsay, France
| | - Chengsen Chai
- Key Laboratory of Agricultural Molecular Biology, College of Life Science, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Yuan Yang
- Key Laboratory of Agricultural Molecular Biology, College of Life Science, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Yahong Zheng
- Key Laboratory of Agricultural Molecular Biology, College of Life Science, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Pei Zhou
- Key Laboratory of Agricultural Molecular Biology, College of Life Science, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Xiaoxia Qiao
- Key Laboratory of Agricultural Molecular Biology, College of Life Science, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Bin Zhang
- Key Laboratory of Agricultural Molecular Biology, College of Life Science, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Zengzhen Liu
- Key Laboratory of Agricultural Molecular Biology, College of Life Science, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Junru Wang
- Key Laboratory of Agricultural Molecular Biology, College of Life Science, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Changhong Shi
- State Key laboratory of Tumor Biology, The Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Liping Lei
- Xi'an San-Yao Bio-pharmaceutical Corporation, Xi'an, Shaanxi Province, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Hewei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Sue Zhong
- Xi'an San-Yao Bio-pharmaceutical Corporation, Xi'an, Shaanxi Province, People's Republic of China
| | - Libo Yao
- State Key laboratory of Tumor Biology, The Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Meng-Er Huang
- UMR3348 Centre National de la Recherche Scientifique, Institut Curie, Université Paris-Sud 11, Orsay, France
| | - Ming Lei
- Key Laboratory of Agricultural Molecular Biology, College of Life Science, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
- * E-mail:
| |
Collapse
|
23
|
Vlachostergios PJ, Papandreou CN. The Role of the Small Ubiquitin-Related Modifier (SUMO) Pathway in Prostate Cancer. Biomolecules 2012; 2:240-55. [PMID: 24970135 PMCID: PMC4030844 DOI: 10.3390/biom2020240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 03/28/2012] [Accepted: 04/09/2012] [Indexed: 12/20/2022] Open
Abstract
SUMO (small ubiquitin-related modifier) conjugation is a reversible three-step process of protein post-translational modifications mediating protein-protein interactions, subcellular compartmentalization and regulation of transcriptional events. Among divergent transcription factors regulated by SUMOylation and deSUMOylation, the androgen receptor (AR) is of exceptional significance, given its established role in prostate carcinogenesis. The enzymes of the SUMO pathway can have diverse effects on AR transcriptional activity, either via direct modification of the AR or through modification of AR co-regulators. Accumulating in vitro and in vivo evidence implicates the SUMO pathway in AR-dependent signaling. Prostate cancer cell proliferation and hypoxia-induced angiogenesis are also regulated by the SUMO pathway, through an AR-independent mechanism. Thus, an important role has been revealed for members of the SUMO pathway in prostate cancer (PCa) development and progression, offering new therapeutic targets.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Department of Medical Oncology, University of Thessaly School of Medicine, University Hospital of Larissa, Biopolis 41110, Larissa, Greece.
| | - Christos N Papandreou
- Department of Medical Oncology, University of Thessaly School of Medicine, University Hospital of Larissa, Biopolis 41110, Larissa, Greece.
| |
Collapse
|
24
|
Antagonists of growth hormone-releasing hormone inhibit growth of androgen-independent prostate cancer through inactivation of ERK and Akt kinases. Proc Natl Acad Sci U S A 2012; 109:1655-60. [PMID: 22307626 DOI: 10.1073/pnas.1120588109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The management of castration-resistant prostate cancer (CRPC) presents a clinical challenge because of limitations in efficacy of current therapies. Novel therapeutic strategies for the treatment of CRPC are needed. Antagonists of hypothalamic growth hormone-releasing hormone (GHRH) inhibit growth of various malignancies, including androgen-dependent and independent prostate cancer, by suppressing diverse tumoral growth factors, especially GHRH itself, which acts as a potent autocrine/paracrine growth factor in many tumors. We evaluated the effects of the GHRH antagonist, JMR-132, on PC-3 human androgen-independent prostate cancer cells in vitro and in vivo. JMR-132 suppressed the proliferation of PC-3 cells in vitro in a dose-dependent manner and significantly inhibited growth of PC-3 tumors by 61% (P < 0.05). The expression of GHRH, GHRH receptors, and their main splice variant, SV1, in PC-3 cells and tumor xenografts was demonstrated by RT-PCR and Western blot. The content of GHRH protein in PC-3 xenografts was lowered markedly, by 66.3% (P < 0.01), after treatment with JMR-132. GHRH induced a significant increase in levels of ERK, but JMR-132 abolished this outcome. Our findings indicate that inhibition of PC-3 prostate cancer by JMR-132 involves inactivation of Akt and ERK. The inhibitory effect produced by GHRH antagonist can result in part from inactivation of the PI3K/Akt/mammalian target of rapamycin and Raf/MEK/ERK pathways and from the reduction in GHRH produced by cancer cells. Our findings support the role of GHRH as an autocrine growth factor in prostate cancer and suggest that antagonists of GHRH should be considered for further development as therapy for CRPC.
Collapse
|
25
|
Zhu C, Luong R, Zhuo M, Johnson DT, McKenney JK, Cunha GR, Sun Z. Conditional expression of the androgen receptor induces oncogenic transformation of the mouse prostate. J Biol Chem 2011; 286:33478-88. [PMID: 21795710 DOI: 10.1074/jbc.m111.269894] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The androgen signaling pathway, mediated through the androgen receptor (AR), is critical in prostate tumorigenesis. However, the precise role of AR in prostate cancer development and progression still remains largely unknown. Specifically, it is unclear whether overexpression of AR is sufficient to induce prostate tumor formation in vivo. Here, we inserted the human AR transgene with a LoxP-stop-loxP (LSL) cassette into the mouse ROSA26 locus, permitting "conditionally" activated AR transgene expression through Cre recombinase-mediated removal of the LSL cassette. By crossing this AR floxed strain with Osr1-Cre (odd skipped related) mice, in which the Osr1 promoter activates at embryonic day 11.5 in urogenital sinus epithelium, we generated a conditional transgenic line, R26hAR(loxP):Osr1-Cre+. Expression of transgenic AR was detected in both prostatic luminal and basal epithelial cells and is resistant to castration. Approximately one-half of the transgenic mice displayed mouse prostatic intraepithelial neoplasia (mPIN) lesions. Intriguingly, four mice (10%) developed prostatic adenocarcinomas, with two demonstrating invasive diseases. Positive immunostaining of transgenic AR protein was observed in the majority of atypical and tumor cells in the mPIN and prostatic adenocarcinomas, providing a link between transgenic AR expression and oncogenic transformation. An increase in Ki67-positive cells appeared in all mPIN and prostatic adenocarcinoma lesions of the mice. Thus, we demonstrated for the first time that conditional activation of transgenic AR expression by Osr1 promoter induces prostate tumor formation in mice. This new AR transgenic mouse line mimics the human disease and can be used for study of prostate tumorigenesis and drug development.
Collapse
Affiliation(s)
- Chunfang Zhu
- Department of Urology and Genetics, Stanford University School of Medicine, Stanford, California 94305-5328, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Culig Z. IL-6 causes multiple effects in androgen-sensitive and -insensitive prostate cancer cell lines. Expert Rev Endocrinol Metab 2011; 6:327-332. [PMID: 30754107 DOI: 10.1586/eem.11.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The androgen receptor (AR) is expressed in most human prostate cancers. It can be activated in a hypersensitive manner by androgens, nonandrogenic steroids, nonsteroidal anti-androgens and in a ligand-independent manner. IL-6 is a proinflammatory cytokine that activates several signaling pathways. It can either stimulate or inhibit growth of prostate cancer cells. IL-6 is an important positive regulator of AR activity and can stimulate the expression of prostate-specific antigen in a ligand-independent manner. IL-6/AR interaction may either result in growth stimulation (MDA PCa 2b cells) or inhibition (LAPC-4 cells). IL-8 and IL-4 have also been observed to activate AR. Cells generated by prolonged treatment with IL-6 acquire a growth advantage. There are several therapeutic options to target IL-6 in prostate cancer and most laboratory studies have been performed with the monoclonal antibody siltuximab. Endogenous suppressors of cytokine signaling (SOCS)-3 and -1 are expressed in prostate cancer tissue. SOCS-3 inhibits apoptosis in AR-negative cells. However, in androgen-sensitive prostate cancer cell lines, SOCS-3 is induced by androgen and blocks its effects on proliferation and secretion. It is currently understood that there are numerous interactions between androgen and IL-6 signaling in human prostate cancer.
Collapse
Affiliation(s)
- Zoran Culig
- a Department of Urology, Experimental Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
27
|
Gaughan L, Stockley J, Wang N, McCracken SRC, Treumann A, Armstrong K, Shaheen F, Watt K, McEwan IJ, Wang C, Pestell RG, Robson CN. Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Res 2011; 39:1266-79. [PMID: 20959290 PMCID: PMC3045589 DOI: 10.1093/nar/gkq861] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 01/02/2023] Open
Abstract
The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors that plays a critical role in regulating expression of genes involved in prostate development and transformation. Upon hormone binding, the AR associates with numerous co-regulator proteins that regulate the activation status of target genes via flux to the post-translational modification status of histones and the receptor. Here we show that the AR interacts with and is directly methylated by the histone methyltransferase enzyme SET9. Methylation of the AR on lysine 632 is necessary for enhancing transcriptional activity of the receptor by facilitating both inter-domain communication between the N- and C-termini and recruitment to androgen-target genes. We also show that SET9 is pro-proliferative and anti-apoptotic in prostate cancer cells and demonstrates up-regulated nuclear expression in prostate cancer tissue. In all, our date indicate a new mechanism of AR regulation that may be therapeutically exploitable for prostate cancer treatment.
Collapse
Affiliation(s)
- Luke Gaughan
- Solid Tumour Target Discovery Group, Northern Institute for Cancer Research, Newcastle University, Paul O'Gorman Building, Newcastle Upon Tyne, NE2 4HH, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nguyen HM, Corey E. Methodology to investigate androgen-sensitive and castration-resistant human prostate cancer xenografts in preclinical setting. Methods Mol Biol 2011; 776:295-312. [PMID: 21796533 DOI: 10.1007/978-1-61779-243-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Understanding the biology of prostate cancer and the roles of androgen receptor in prostate cancer progression is essential to the development of novel therapeutic strategies to effectively attack and eradicate this disease. Preclinical, in vivo, studies are critical to further evaluate potential clinical relevance of in vitro findings. Ideally, in vivo studies should employ models that mimic characteristics of prostate cancer from early diagnosis through the period of castration-resistant metastases. In this chapter we describe methodologies used to grow human prostate cancer xenografts in mice. In this setting, roles of androgen receptor signaling in prostate cancer progression and efficacy of novel treatment modalities, including those affecting androgen receptor signaling, can be investigated.
Collapse
Affiliation(s)
- Holly M Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
29
|
Kim MJ, Seong AR, Lee YH, Kim YJ, Shiota M, Yokomizo A, Naito S, Lee J, Jun W, Yoon HG. Histone acetyltransferase inhibitory activity of Bokbunja (Rubus coreanus Miq.) ethanol extract on androgen receptor-dependent prostate cancer cell growth. Food Sci Biotechnol 2010. [DOI: 10.1007/s10068-010-0214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
30
|
Procyanidin B3, an inhibitor of histone acetyltransferase, enhances the action of antagonist for prostate cancer cells via inhibition of p300-dependent acetylation of androgen receptor. Biochem J 2010; 433:235-44. [DOI: 10.1042/bj20100980] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increasing evidence suggests that AR (androgen receptor) acetylation is critical for prostate cancer cell growth. In the present study, we identified Pro-B3 (procyanidin B3) as a specific HAT (histone acetyltransferase) inhibitor. Pro-B3 selectively inhibited the activity of HATs, but not other epigenetic enzymes. Pro-B3 substantially inhibited the p300-mediated AR acetylation, both in vitro and in vivo. Pro-B3 inhibited both p300-dependent and agonist-induced AR transcription. We demonstrate that the p300-mediated AR acetylation is critical for the hormone responsiveness of AR. Interestingly, B3 treatment efficiently enhanced the antagonist activity of flutamide through suppression of p300 HAT activity, demonstrating that relative p300 activity is critical for the antagonist action. Finally, Pro-B3 treatment inhibited acetylation-dependent prostate cell proliferation and expression of cell-cycle control genes, subsequently increasing cell death, indicating the functional importance of AR acetylation for prostate cancer cell growth.
Collapse
|
31
|
Kortylewicz ZP, Nearman J, Baranowska-Kortylewicz J. Radiolabeled 5-iodo-3'-O-(17beta-succinyl-5alpha-androstan-3-one)-2'-deoxyuridine and its 5'-monophosphate for imaging and therapy of androgen receptor-positive cancers: synthesis and biological evaluation. J Med Chem 2010; 52:5124-43. [PMID: 19653647 DOI: 10.1021/jm9005803] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High levels of androgen receptor (AR) are often indicative of recurrent, advanced, or metastatic cancers. These conditions are also characterized by a high proliferative fraction. 5-Radioiodo-3'-O-(17beta-succinyl-5alpha-androstan-3-one)-2'-deoxyuridine 8 and 5-radioiodo-3'-O-(17beta-succinyl-5alpha-androstan-3-one)-2'-deoxyuridin-5'-yl monophosphate 13 target AR. They are also degraded intracellularly to 5-radioiodo-2'-deoxyuridine 1 and its monophosphate 20, respectively, which can participate in the DNA synthesis. Both drugs were prepared at the no-carrier-added level. Precursors and methods are readily adaptable to radiolabeling with various radiohalides suitable for SPECT and PET imaging, as well as endoradiotherapy. In vitro and in vivo studies confirm the AR-dependent interactions. Both drugs bind to sex hormone binding globulin. This binding significantly improves their stability in serum. Biodistribution and imaging studies show preferential uptake and retention of 8 and 13 in ip xenografts of human ovarian adenocarcinoma cells NIH:OVCAR-3, which overexpress AR. When these drugs are administered at therapeutic dose levels, a significant tumor growth arrest is observed.
Collapse
Affiliation(s)
- Zbigniew P Kortylewicz
- Department of Radiation Oncology, J. Bruce Henriksen Cancer Research Laboratories, University of Nebraska Medical Center, 986850 Nebraska Medical Center, Omaha, Nebraska 68198-6850, USA.
| | | | | |
Collapse
|
32
|
Godfrey B, Lin Y, Larson J, Haferkamp B, Xiang J. Proteasomal degradation unleashes the pro-death activity of androgen receptor. Cell Res 2010; 20:1138-47. [PMID: 20479785 DOI: 10.1038/cr.2010.65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Androgen receptor (AR) is able to promote stress-induced cell death independently of its transcription activity in androgen-independent prostate cancer cells. Yet, the underlying mechanism is incompletely understood. Here, we report that stress-induced proteasomal degradation of AR contributes to its pro-death activity. Upon exposure to ultraviolet light and staurosporine, AR underwent proteasomal degradation. Blockade of AR degradation significantly suppressed stress-induced apoptosis in androgen-independent prostate cancer cells. Ectopic expression of the AR N-terminal (AR-N) domain, which lacks DNA- and ligand-binding abilities, led to cell death without any additional death stimuli. Truncation analysis revealed that AR-N domain contains several sub-domains that regulate the pro-death activity of AR, specifically the first 105 amino acids, which function as a minimal pro-death domain acting upstream of caspases. The pro-apoptotic activity of AR N-terminal fragments was suppressed by ectopic expression of Bcl-2 or selected caspase inhibitors. Thus, our results reveal a novel mechanism by which AR promotes stress-induced cell death in androgen-independent prostate cancer cells.
Collapse
Affiliation(s)
- Bradley Godfrey
- Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA
| | | | | | | | | |
Collapse
|
33
|
Emami KH, Brown LG, Pitts TE, Sun X, Vessella RL, Corey E. Nemo-like kinase induces apoptosis and inhibits androgen receptor signaling in prostate cancer cells. Prostate 2009; 69:1481-92. [PMID: 19514049 PMCID: PMC2908180 DOI: 10.1002/pros.20998] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The mitogen-activated protein kinases (MAPKs) regulate cell growth, differentiation, and stress responses, and many critical signaling pathways are subject to cross-regulation by MAPK signaling. Previous studies have yielded evidence of cross-talk between the MAPK pathways and androgen receptor (AR) signaling, which plays a critical role in growth control of both normal prostate and prostate cancer (PCa). Objective of this study was to evaluate the expression of MAPK-like protein nemo-like kinase (NLK) in PCa and its effects on AR-mediated transcription. METHODS Real-time PCR and IHC were used to evaluate levels of NLK in prostatic samples. Effects of over-expression of NLK on apoptosis and proliferation were determined using Western blot and flow cytometry. Effects on AR signaling were evaluated using over-expression and knockdown of NLK in PCa cells in combination with PCR, Western blotting and reporter assays. RESULTS Our results show that the expression of NLK is decreased in PCa metastases in comparison to normal prostate epithelium and primary PCa. Our results also show that over-expression of NLK resulted in induction of apoptosis, which was more pronounced in AR-expressing LNCaP versus AR-negative PC-3 cells. Higher levels of NLK decreased levels of AR mRNA and protein as well as inhibited AR-mediated transcription. CONCLUSIONS NLK expression is altered during PCa progression and it is involved in regulation of AR signaling in these cells. A deeper understanding of the roles of NLK in regulation of AR-mediated transcription and control of PCa progression may point the way to new modes of therapeutic intervention in this disease.
Collapse
Affiliation(s)
- Katayoon H. Emami
- Department of Urology,Universityof Washington, Seattle, Washington
- Theriac Pharmaceutical Corp., Seattle, Washington
| | - Lisha G. Brown
- Department of Urology,Universityof Washington, Seattle, Washington
| | | | - Xizhang Sun
- Department of Urology,Universityof Washington, Seattle, Washington
| | - Robert L. Vessella
- Department of Urology,Universityof Washington, Seattle, Washington
- Puget Sound VA Health Care Systems, Seattle, Washington
| | - Eva Corey
- Department of Urology,Universityof Washington, Seattle, Washington
- Correspondence to: Eva Corey, PhD, Department of Urology, University of Washington, Mailstop 356510, Seattle, WA 98195.
| |
Collapse
|
34
|
He H, Morely JE, Silva-Lopez E, Bottenus B, Montajano M, Fugate GA, Twamley B, Benny PD. Synthesis and characterization of nonsteroidal-linked M(CO)(3)+ (M = 99mTc, Re) compounds based on the androgen receptor targeting molecule flutamide. Bioconjug Chem 2009; 20:78-86. [PMID: 19117492 DOI: 10.1021/bc8003183] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Androgen receptors are overexpressed in most primary and metastatic prostate cancers. A series of single photon emission computed tomography imaging agents (SPECT) utilizing the organometallic radioactive imaging species, fac-99mTc(OH(2))(3)(CO)(3)+, were prepared on the basis of the structure of Flutamide, a potent nonsteroidal antiandrogen prostate cancer drug. Novel bifunctional chelate-linked Flutamide analogues were prepared using a newly developed universal alkylating reagent, 2-bromo-N-[4-nitro-3-(trifluoromethyl)phenyl]-acetamide, 1. From compound 1, several ligands (i.e., cysteine 2, histidine 5, imidazole 3) were conjugated to the flutamide derivative to yield targeting ligands capable of either tridentate or monodentate coordination in a "2 + 1" complex. fac-Re(CO)(3)+ complexes were prepared and characterized with the functionalized conjugates to yield fac-Re(CO)(3)(2-amino-3-(1-(2-(4-nitro-3-(trifluoromethyl)phenylamino)-2-oxoethyl)-1H-imidazol-4-yl) propanoate), 4, fac-Re (CO)(3)(2-(S-cysteinyl)-N-[4-nitro-3-(trifluoromethyl) phenyl]-acetamide), 6, and fac-Re(CO)(3)(picolinate)(2-(1H-imidazol-1-yl)-N-[4-nitro-3-(trifluoromethyl)phenyl]-acetamide), 7. The corresponding radioactive 99mTc analogues were prepared and stability studies of the radioactive compounds were also conducted.
Collapse
Affiliation(s)
- Haiyang He
- Department of Chemistry, Washington State University, P.O. Box 644630, Pullman, Washington 99164, and University Research Office, University of Idaho, Moscow, Idaho 83844, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Chamie K, Ghosh PM, Koppie TM, Romero V, Troppmann C, deVere White RW. The effect of sirolimus on prostate-specific antigen (PSA) levels in male renal transplant recipients without prostate cancer. Am J Transplant 2008; 8:2668-73. [PMID: 18853950 PMCID: PMC4376320 DOI: 10.1111/j.1600-6143.2008.02430.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In kidney recipients, the immunosuppressant sirolimus has been associated with a decreased incidence of de novo posttransplant malignancies (including prostate cancer). But the effect of sirolimus on the prostate-specific antigen (PSA) blood level, an important prostate cancer screening tool, remains unknown. We studied male kidney recipients >50 years old (transplanted from January 1994 to December 2006) without clinical evidence for prostate cancer. Pre- and posttransplant PSA levels were analyzed for 97 recipients (n = 19 on sirolimus, n = 78 on tacrolimus [control group]). Pretransplant PSA was similar for sirolimus versus tacrolimus recipients (mean, 1.8 versus 1.7 ng/mL, p = 0.89), but posttransplant PSA was significantly lower for recipients on sirolimus (mean, 0.9 versus 1.9 ng/mL, respectively, p < 0.001). The mean difference between pretransplant and posttransplant PSA was -0.9 ng/mL (50.0%, p = 0.006) for the sirolimus group versus +0.2 ng/mL (+11.8%, p = 0.24) for the tacrolimus group. By multivariate analysis, only pretransplant PSA and immunosuppression with sirolimus independently impacted posttransplant PSA. Our data strongly suggest that sirolimus is associated with a significant PSA decrease in kidney recipients. Future studies must investigate the clinical implications of our findings for the use of PSA for prostate cancer screening in male kidney recipients on sirolimus.
Collapse
Affiliation(s)
- K. Chamie
- Department of Urology, University of California, Davis, Sacramento, CA
| | - P. M. Ghosh
- Department of Urology, University of California, Davis, Sacramento, CA
- VA Northern California Health Care System, Sacramento, CA
| | - T. M. Koppie
- Department of Urology, University of California, Davis, Sacramento, CA
- VA Northern California Health Care System, Sacramento, CA
| | - V. Romero
- Department of Urology, University of California, Davis, Sacramento, CA
| | - C. Troppmann
- Department of Surgery, University of California, Davis, Sacramento, CA
| | | |
Collapse
|
37
|
Rodriguez-Gonzalez A, Cyrus K, Salcius M, Kim K, Crews CM, Deshaies RJ, Sakamoto KM. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 2008; 27:7201-11. [PMID: 18794799 DOI: 10.1038/onc.2008.320] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteolysis targeting chimeric molecules (Protacs) target proteins for destruction by exploiting the ubiquitin-dependent proteolytic system of eukaryotic cells. We designed two Protacs that contain the peptide 'degron' from hypoxia-inducible factor-1alpha, which binds to the Von-Hippel-Lindau (VHL) E3 ubiquitin ligase complex, linked to either dihydroxytestosterone that targets the androgen receptor (AR; Protac-A), or linked to estradiol (E2) that targets the estrogen receptor-alpha (ERalpha; Protac-B). We hypothesized that these Protacs would recruit hormone receptors to the VHL E3 ligase complex, resulting in the degradation of receptors, and decreased proliferation of hormone-dependent cell lines. Treatment of estrogen-dependent breast cancer cells with Protac-B induced the degradation of ERalpha in a proteasome-dependent manner. Protac-B inhibited the proliferation of ERalpha-dependent breast cancer cells by inducing G(1) arrest, inhibition of retinoblastoma phosphorylation and decreasing expression of cyclin D1, progesterone receptors A and B. Protac-B treatment did not affect the proliferation of estrogen-independent breast cancer cells that lacked ERalpha expression. Similarly, Protac-A treatment of androgen-dependent prostate cancer cells induced G(1) arrest but did not affect cells that do not express AR. Our results suggest that Protacs specifically inhibit the proliferation of hormone-dependent breast and prostate cancer cells through degradation of the ERalpha and AR, respectively.
Collapse
Affiliation(s)
- A Rodriguez-Gonzalez
- Department of Pediatrics, Gwynne Hazen Cherry Laboratories, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Kalmadi S, Raghavan D. Evolving perspectives of the role of novel agents in androgen-independent prostate cancer. Indian J Urol 2008; 24:303-8. [PMID: 19468458 PMCID: PMC2684340 DOI: 10.4103/0970-1591.42609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Metastatic androgen-independent prostate cancer presents an intriguing clinical challenge, with a subtle interaction between hormone-responsive and refractory tumor cell elements. The treatment of advanced prostate carcinoma, which had remained stagnant for several decades following the understanding of the link between androgenic stimulation and carcinogenesis, has now started to make steady headway with chemotherapy and targeted approaches. Metastatic prostate cancer is almost always treated with initial androgen deprivation, in various forms. However, despite such treatment androgen-independent prostate cancer cells eventually emerge and progress to threaten life. The therapeutic objectives for treatment of metastatic prostate cancer are to maintain the quality of life and prolong survival. The out-dated nihilistic dogma of deferring chemotherapy until the most advanced stages in advanced prostate cancer is now falling by the wayside with the development of newer effective, tolerable agents.
Collapse
Affiliation(s)
- Sujith Kalmadi
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Derek Raghavan
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
39
|
Chandra S, Shao J, Li JX, Li M, Longo FM, Diamond MI. A common motif targets huntingtin and the androgen receptor to the proteasome. J Biol Chem 2008; 283:23950-5. [PMID: 18586675 DOI: 10.1074/jbc.m800467200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease derives from a critically expanded polyglutamine tract in the huntingtin (Htt) protein; a similar polyglutamine expansion in the androgen receptor (AR) causes spinobulbar muscular atrophy. AR activity also plays an essential role in prostate cancer. Molecular mechanisms that regulate Htt and AR degradation are not well understood but could have important therapeutic implications. We find that a pentapeptide motif (FQKLL) within the Htt protein regulates its degradation and subcellular localization to cytoplasm puncta. Disruption of the motif by alanine substitution at the hydrophobic residues increases the steady state level of the protein. Pulsechase analyses indicate that the motif regulates degradation. A similar motif (FQNLF) has corresponding activities in the AR protein. Transfer of the Htt motif with five flanking amino acids on either side to YFP reduces the steady state YFP level by rendering it susceptible to proteasome degradation. This work defines a novel proteasome-targeting motif that is necessary and sufficient to regulate the degradation of two disease-associated proteins.
Collapse
Affiliation(s)
- Shweta Chandra
- Departments of Neurology and Cellular and Molecular Pharmacology, University of California-San Francisco, 600 16th Street, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
40
|
Jones JO, Diamond MI. Design and implementation of cell-based assays to model human disease. ACS Chem Biol 2007; 2:718-24. [PMID: 18030988 DOI: 10.1021/cb700177u] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-based assays, if appropriately designed, can be used to rapidly identify molecular mechanisms of human disease and develop novel therapeutics. In the last 20 years, many genes that cause or contribute to diverse disorders, including cancer and neurodegenerative disease, have been identified. With such genes in hand, scientists have created numerous model systems to dissect the molecular mechanisms of basic cellular and developmental biology. Meanwhile, techniques for high-throughput screening that use large chemical libraries have been developed, as have cDNA and RNA interference libraries that cover the entire human genome. By combining cell-based assays with chemical and genetic screens, we now have vastly improved our ability to dissect molecular mechanisms of disease and to identify therapeutic targets and therapeutic lead compounds. However, cell-based screening systems have yet to yield many fundamental insights into disease pathogenesis, and the development of therapeutic leads is frustratingly slow. This may be due to a failure of such assays to accurately reflect key aspects of pathogenesis. This Review attempts to guide the design of productive cellular models of human disease that may be used in high-throughput chemical and genetic screens. We emphasize two points: (i) model systems should use quantifiable molecular indicators of a pathogenic process, and (ii) small chemical libraries that include molecules with known biological activity and/or acceptable safety profiles are very useful.
Collapse
Affiliation(s)
- Jeremy O. Jones
- Departments of Neurology and Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-2280
| | - Marc I. Diamond
- Departments of Neurology and Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-2280
| |
Collapse
|
41
|
Nelius T, Filleur S, Yemelyanov A, Budunova I, Shroff E, Mirochnik Y, Aurora A, Veliceasa D, Xiao W, Wang Z, Volpert OV. Androgen receptor targets NFkappaB and TSP1 to suppress prostate tumor growth in vivo. Int J Cancer 2007; 121:999-1008. [PMID: 17487836 PMCID: PMC2810747 DOI: 10.1002/ijc.22802] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The androgen role in the maintenance of prostate epithelium is subject to conflicting opinions. While androgen ablation drives the regression of normal and cancerous prostate, testosterone may cause both proliferation and apoptosis. Several investigators note decreased proliferation and stronger response to chemotherapy of the prostate cancer cells stably expressing androgen receptor (AR), however no mechanistic explanation was offered. In this paper we demonstrate in vivo anti-tumor effect of the AR on prostate cancer growth and identify its molecular mediators. We analyzed the effect of AR on the tumorigenicity of prostate cancer cells. Unexpectedly, the AR-expressing cells formed tumors in male mice at a much lower rate than the AR-negative controls. Moreover, the AR-expressing tumors showed decreased vascularity and massive apoptosis. AR expression lowered the angiogenic potential of cancer cells, by increasing secretion of an anti-angiogenic protein, thrombospondin-1. AR activation caused a decrease in RelA, a subunit of the pro-survival transcription factor NFkappaB, reduced its nuclear localization and transcriptional activity. This, in turn, diminished the expression of its anti-apoptotic targets, Bcl-2 and IL-6. Increased apoptosis within AR-expressing tumors was likely due to the NFkappaB suppression, since it was restricted to the cells lacking nuclear (active) NFkappaB. Thus we for the first time identified combined decrease of NFkappaB and increased TSP1 as molecular events underlying the AR anti-tumor activity in vivo. Our data indicate that intermittent androgen ablation is preferable to continuous withdrawal, a standard treatment for early-stage prostate cancer. (c) 2007 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Thomas Nelius
- Department of Urology, Texas Tech University Health Sciences Center, Texas Tech University, Lubbock, TX
| | - Stephanie Filleur
- Department of Urology, Texas Tech University Health Sciences Center, Texas Tech University, Lubbock, TX
| | - Alexander Yemelyanov
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Irina Budunova
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - E. Shroff
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yelena Mirochnik
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Arin Aurora
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Dorina Veliceasa
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Wuhan Xiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhou Wang
- Department of Urology and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA
| | - Olga V. Volpert
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Correspondence to: Department of Urology, Northwestern University Feinberg School of Medicine, 303 East Chicago Ave., Chicago, IL 60611. Fax: 312-908-7275.
| |
Collapse
|
42
|
Biancolella M, Valentini A, Minella D, Vecchione L, D'Amico F, Chillemi G, Gravina P, Bueno S, Prosperini G, Desideri A, Federici G, Bernardini S, Novelli G. Effects of dutasteride on the expression of genes related to androgen metabolism and related pathway in human prostate cancer cell lines. Invest New Drugs 2007; 25:491-7. [PMID: 17636412 DOI: 10.1007/s10637-007-9070-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
Androgens play an important role in controlling the growth of the normal prostate gland and in the pathogenesis of benign prostate hyperplasia, and prostate cancer. Although testosterone is the main androgen secreted from the testes, dihydrotestosterone (DHT), a more potent androgen converted from testosterone by 5alpha-reductase isozymes, type I and II, is the major androgen in the prostate cells. The aim of this study is to investigate the cellular and molecular effects of dutasteride, a potent inhibitor of 5alpha-reductase type I and type II, in androgen-responsive (LNCaP) and androgen-unresponsive (DU145) human prostate cancer(PCa) cell lines. The expression pattern of 190 genes, selected on the basis of their proved or potential role in prostate cancerogenesis related to androgen signalling, were analysed using a low density home-made oligoarray (AndroChip 2). Our results show that dutasteride reduces cell viability and cell proliferation in both cell lines tested. AndroChip 2 gene signature identified in LNCaP a total of 11 genes differentially expressed (FC >or= +/-1.5). Eight of these genes, were overexpressed and three were underexpressed. Overexpressed genes included genes encoding for proteins involved in biosynthesis and metabolism of androgen (HSD17B1;HSD17B3;CYP11B2), androgen receptor and androgen receptor co-regulators (AR;CCND1), and signal transduction(ERBB2; V-CAM; SOS1) whereas, underexpressed genes (KLK3; KLK2; DHCR24) were androgen-regulated genes (ARGs). No differentially expressed genes were scored in DU145. Microarray data were confirmed by quantitative real-time PCR assay (QRT-PCR). These data offer a selective genomic signature for dutasteride treatment in prostate epithelial cells and provide important insights in prostate cancer pathophysiology.
Collapse
Affiliation(s)
- Michela Biancolella
- Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu XH, Kirschenbaum A, Yao S, Liu G, Aaronson SA, Levine AC. Androgen-Induced Wnt Signaling in Preosteoblasts Promotes the Growth of MDA-PCa-2b Human Prostate Cancer Cells. Cancer Res 2007; 67:5747-53. [PMID: 17575141 DOI: 10.1158/0008-5472.can-07-0478] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The high morbidity and mortality associated with prostate cancer (PCa) result from its tendency to metastasize to bone where it produces predominantly osteoblastic lesions. The Wnt signaling pathway plays an important role in embryogenesis, tumorigenesis, osteoblast development, and bone formation. Androgen signaling via the androgen receptor (AR) is critical in both PCa and bone cell growth. We examined the effects of androgens on cell growth and Wnt signaling in the AR-positive MDA-PCa-2b cell line and MC3T3 preosteoblasts, grown alone and in coculture. We show that the potent androgen dihydrotestosterone increases AR expression and transcriptional activity only in the preosteoblasts. Although dihydrotestosterone induced an 80% increase in PCa cell growth when the cells were grown alone, dihydrotestosterone had a more significant effect on MDA-PCa-2b cell proliferation (3.2-fold increase) when the PCa cells were cocultured with preosteoblasts. Dihydrotestosterone addition to preosteoblasts promoted Wnt-dependent transcriptional reporter activity associated with GSK3beta(S-9) phosphorylation and accumulation of nuclear beta-catenin as well as elevated Runx2 expression. In addition, the increased proliferation of PCa cells in coculture with MC3T3 cells in response to dihydrotestosterone was abrogated by the addition of either exogenous DKK-1 or sFRP-1 protein, two naturally occurring Wnt antagonists. Finally, we show that the paracrine growth-promoting effect of androgens is limited to MDA-PCa-2b cells. These data imply that Wnt signaling is involved in the androgen-regulated crosstalk between preosteoblasts and PCa cells and suggest that androgens may stimulate growth of some prostate tumor cells indirectly, via up-regulation of Wnt signaling in bone cells.
Collapse
Affiliation(s)
- Xin-Hua Liu
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Dent MP. Strengths and limitations of using repeat-dose toxicity studies to predict effects on fertility. Regul Toxicol Pharmacol 2007; 48:241-58. [PMID: 17512650 DOI: 10.1016/j.yrtph.2007.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Indexed: 11/23/2022]
Abstract
The upcoming European chemicals legislation REACH (Registration, Evaluation, and Authorisation of Chemicals) will require the risk assessment of many thousands of chemicals. It is therefore necessary to develop intelligent testing strategies to ensure that chemicals of concern are identified whilst minimising the testing of chemicals using animals. Xenobiotics may perturb the reproductive cycle, and for this reason several reproductive studies are recommended under REACH. One of the endpoints assessed in this battery of tests is mating performance and fertility. Animal tests that address this endpoint use a relatively large number of animals and are also costly in terms of resource, time, and money. If it can be shown that data from non-reproductive studies such as in-vitro or repeat-dose toxicity tests are capable of generating reliable alerts for effects on fertility then some animal testing may be avoided. Available rat sub-chronic and fertility data for 44 chemicals that have been classified by the European Union as toxic to fertility were therefore analysed for concordance of effects. Because it was considered appropriate to read across data for some chemicals these data sets were considered relevant for 73 of the 102 chemicals currently classified as toxic to reproduction (fertility) under this system. For all but 5 of these chemicals it was considered that a well-performed sub-chronic toxicity study would have detected pathology in the male, and in some cases, the female reproductive tract. Three showed evidence of direct interaction with oestrogen or androgen receptors (linuron, nonylphenol, and fenarimol). The remaining chemicals (quinomethionate and azafenidin) act by modes of action that do not require direct interaction with steroid receptors. However, both these materials caused in-utero deaths in pre-natal developmental toxicity studies, and the relatively low NOAELs and the nature of the hazard identified in the sub-chronic tests provides an alert for possible effects on fertility (or early embryonic development), the biological significance of which can be ascertained in a littering (e.g. 2-generation) study. From the chemicals reviewed it would appear that where there are no alerts from a repeat-dose toxicity study, a pre-natal developmental toxicity study and sex steroid receptor binding assays, there exists a low priority for animal studies to address the fertility endpoint. The ability for these types of tests to provide alerts for effects on fertility is clearly dependent on the mode of action of the toxicant in question. Further work should therefore be performed to determine the 'failure rate' of this type of approach when applied to a larger group of chemicals with diverse modes of action.
Collapse
Affiliation(s)
- M P Dent
- Unilever Safety and Environmental Assurance Centre, Unilever Colworth, Bedfordshire MK44 1LQ, UK.
| |
Collapse
|
45
|
Li TH, Zhao H, Peng Y, Beliakoff J, Brooks JD, Sun Z. A promoting role of androgen receptor in androgen-sensitive and -insensitive prostate cancer cells. Nucleic Acids Res 2007; 35:2767-76. [PMID: 17426117 PMCID: PMC1885678 DOI: 10.1093/nar/gkm198] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although the vital role of the androgen receptor (AR) has been well demonstrated in primary prostate cancers, its role in the androgen-insensitive prostate cancers still remains unclear. Here, we used a small hairpin RNA approach to directly assess AR activity in prostate cancer cells. Reduction of AR expression in the two androgen-sensitive prostate cancer cell lines, LNCaP and LAPC4, significantly decreased AR-mediated transcription and cell growth. Intriguingly, in two androgen-insensitive prostate cell lines, LNCaP-C42B4 and CWR22Rv1, knockdown of AR expression showed a more pronounced effect on AR-induced transcription and cell growth than androgen depletion. Using cDNA microarrays, we also compared the transcriptional profiles induced by either androgen depletion or AR knockdown. Although a significant number of transcripts appear to be regulated by both androgen depletion and AR knockdown, we observed a subset of transcripts affected only by androgen depletion but not by AR knockdown, and vice versa. Finally, we demonstrated a direct role for AR in promoting tumor formation and growth in a xenograft model. Taken together, our results elucidate an important role for the AR in androgen-insensitive prostate cancer cells, and suggest that AR can be used as a therapeutic target for androgen-insensitive prostate cancers.
Collapse
Affiliation(s)
- Tzu-Huey Li
- Department of Urology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5328, USA
| | - Hongjuan Zhao
- Department of Urology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5328, USA
| | - Yue Peng
- Department of Urology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5328, USA
| | - Jason Beliakoff
- Department of Urology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5328, USA
| | - James D. Brooks
- Department of Urology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5328, USA
| | - Zijie Sun
- Department of Urology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5328, USA
- *To whom correspondence should be addressed +1-650-498-7523+1-650-723-4200
| |
Collapse
|
46
|
Wang Y, Kreisberg JI, Bedolla RG, Mikhailova M, deVere White RW, Ghosh PM. A 90 kDa fragment of filamin A promotes Casodex-induced growth inhibition in Casodex-resistant androgen receptor positive C4-2 prostate cancer cells. Oncogene 2007; 26:6061-70. [PMID: 17420725 DOI: 10.1038/sj.onc.1210435] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prostate tumors are initially dependent on androgens for growth, but the majority of patients treated with anti-androgen therapy progress to androgen-independence characterized by resistance to such treatment. This study investigates a novel role for filamin A (FlnA), a 280 kDa cytoskeletal protein (consisting of an actin-binding domain (ABD) followed by 24 sequential repeats), in androgen-independent (AI) growth. Full-length FlnA is cleaved to 170 kDa (ABD+FlnA1-15) and 110 kDa fragments (FlnA16-24); the latter is further cleaved to a 90 kDa fragment (repeats 16-23) capable of nuclear translocation and androgen receptor (AR) binding. Here, we demonstrate that in androgen-dependent LNCaP prostate cancer cells, the cleaved 90 kDa fragment is localized to the nucleus, whereas in its AI subline C4-2, FlnA failed to cleave and remained cytoplasmic. Transfection of FlnA16-24 cDNA in C4-2 cells restored expression and nuclear localization of 90 kDa FlnA. Unlike LNCaP, C4-2 cells proliferate in androgen-reduced medium and in the presence of the AR-antagonist Casodex. They also exhibit increased Akt phosphorylation compared to LNCaP, which may contribute to their AI phenotype. Nuclear expression of 90 kDa FlnA in C4-2 cells decreased Akt phosphorylation, prevented proliferation in androgen-reduced medium and restored Casodex sensitivity. This effect was inhibited by constitutive activation of Akt indicating that FlnA restored Casodex sensitivity in C4-2 cells by decreasing Akt phosphorylation. In addition, FlnA-specific siRNA which depleted FlnA levels, but not control siRNA, induced resistance to Casodex in LNCaP cells. Our results demonstrate that expression of nuclear FlnA is necessary for androgen dependence in these cells.
Collapse
Affiliation(s)
- Y Wang
- Department of Urology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | | | | | | | | | | |
Collapse
|
47
|
Tavassoli P, Snoek R, Ray M, Rao LG, Rennie PS. Rapid, non-destructive, cell-based screening assays for agents that modulate growth, death, and androgen receptor activation in prostate cancer cells. Prostate 2007; 67:416-26. [PMID: 17219378 DOI: 10.1002/pros.20532] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND We developed non-invasive, cell-based screening assays to rapidly and biologically assess factors that modulate prostate cancer growth and affect androgen receptor (AR) activity. METHODS LNCaP cells, which stably express enhanced green fluorescent protein (EGFP) either constitutively or upon AR activation, were treated with a variety of agents, and then monitored by fluorescence and MTS assays for dose-dependent changes in cell number and AR activity. RESULTS The assays were validated for rapid, fluorescence-based, quantitative measurement for the presence of growth and AR modulators. Using these assays, we found that osteoblast conditioned media (CM) enhanced prostate cancer cell growth, but not AR activity. After priming with androgen (<1 nM R1881), forskolin or the pesticide dichlorvos enhanced AR activation, whereas interleukin-6 (IL-6) inhibited it. CONCLUSION These non-destructive, cell-based assays enable rapid systematic monitoring of the effects of drugs or complex mixtures on prostate cancer cell growth and/or AR activity.
Collapse
Affiliation(s)
- Peyman Tavassoli
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
48
|
Abstract
Since the original observations of Huggins and Hodges that prostate cancers are androgen dependent, androgen ablation therapy has been the gold standard for the treatment of advanced prostate cancer (CaP). Androgen receptor (AR) is believed to play critical roles in the development and progression of CaP. Treatment for neoadjuvant, adjuvant and recurrent disease all center on the regulation and manipulation of the androgen pathway, in which AR plays an integral role. Recent discoveries that frequent overexpression of ETS-related proto-oncogenes may be driven by AR as a consequence of common genomic rearrangements can hold the key towards the understanding of early phases of prostate cancer. Furthermore, AR function evolves as the cell changes towards a clinically androgen depletion independent state. Comprehension of AR function, regulation and abnormalities are increasingly refined towards the understanding of the role of AR in CaP, and in therapeutic applications. Development of future therapy for CaP will be aided by improving the knowledge of dysfunctions of AR and its network in prostate cancer. This review focuses salient features of AR and on the recent advances addressing AR dysfunctions in prostate cancer.
Collapse
Affiliation(s)
- E Richter
- Center for Prostate Disease Research, Department of Surgery, US Military Cancer Institute, Uniformed Services University, Rockville, MD 20852, USA
| | | | | |
Collapse
|
49
|
Wafa LA, Palmer J, Fazli L, Hurtado-Coll A, Bell RH, Nelson CC, Gleave ME, Cox ME, Rennie PS. Comprehensive expression analysis of l-dopa decarboxylase and established neuroendocrine markers in neoadjuvant hormone-treated versus varying Gleason grade prostate tumors. Hum Pathol 2007; 38:161-70. [PMID: 16997353 DOI: 10.1016/j.humpath.2006.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/01/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
Current hormone withdrawal therapies used for treatment of advanced prostate cancer lead to androgen-independent tumor growth. Increased prostatic neuroendocrine (NE) cell density has been implicated in promoting progression of prostate cancer, but the process by which this occurs remains unclear. The aim of this study was to determine whether there is an association of increased NE differentiation with neoadjuvant hormone therapy and Gleason grade. Using adjacently sectioned tissue microarrays, the expression profile of novel and known NE markers were monitored. L-Dopa decarboxylase (DDC), a catecholamine synthesis enzyme and androgen receptor (AR) coregulator protein, was identified as an additional NE marker of prostate cancer. Immunohistochemical analysis of DDC with the established NE markers, chromogranin A and bombesin, revealed a significant increase in NE differentiation after 6 months of hormone therapy and after progression to androgen independence but no apparent correlation with Gleason grade. In addition, dual immunofluorescence analysis revealed that approximately 55% of the mixed population of DDC- and chromogranin A-expressing NE cells continue to express AR. Taken together, these results suggest that the increase of NE differentiation in prostate cancers depends specifically on duration of hormone therapy. This increase may be due to the transdifferentiation of AR-expressing epithelial-derived adenocarcinoma cells into an NE cell phenotype.
Collapse
Affiliation(s)
- Latif A Wafa
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada V6T 2B5
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim KH, Dobi A, Shaheduzzaman S, Gao CL, Masuda K, Li H, Drukier A, Gu Y, Srikantan V, Rhim JS, Srivastava S. Characterization of the androgen receptor in a benign prostate tissue-derived human prostate epithelial cell line: RC-165N/human telomerase reverse transcriptase. Prostate Cancer Prostatic Dis 2006; 10:30-8. [PMID: 17075604 DOI: 10.1038/sj.pcan.4500915] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The majority of prostate epithelial cell lines stably expressing wild-type (wt) or mutant (mt) androgen receptor (AR) are derived from metastatic prostate cancers. Therefore, the wt AR-expressing RC-165N/human telomerase reverse transcriptase (hTERT) cell line derived from the benign prostate tissue of an African-American patient provides a unique opportunity to assess the functional status of AR in a cellular context not studied before. Although androgen-induced expression of known androgen responsive genes such as PMEPA1, and NDRG1 was observed in RC-165N/hTERT, this cell line expresses prostate-specific antigen (PSA) at significantly lower levels. Chromatin immunoprecipitation assay revealed androgen-dependent binding of AR to androgen response elements of PSA, PMEPA1 and NDRG1 genes. Similarities, as well as differences were noted in the expression of androgen responsive genes between RC-165N/hTERT and LNCaP cells. Comprehensive evaluations of AR functions in RC-165N/hTERT cells suggest that whereas some features of known AR functions are maintained in this benign prostatic tissue-derived cell line, other AR functions are not retained. Objective evaluations of similar cell lines will lead to the understanding of AR functions in prostate growth and differentiation.
Collapse
Affiliation(s)
- K-H Kim
- Department of Surgery, Center for Prostate Disease Research, Uniformed Services University, Bethesda, MD 20852, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|