1
|
Goudarzi S, Jones RM, Lee YHW, Hynynen K. Transducer module apodization to reduce bone heating during focused ultrasound uterine fibroid ablation with phased arrays: A numerical study. Med Phys 2024; 51:8670-8687. [PMID: 39341358 DOI: 10.1002/mp.17427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND During magnetic resonance-guided focused ultrasound (MRgFUS) surgery for uterine fibroids, ablation of fibrous tissues in proximity to the hips and spine is challenging due to heating within the bone that can cause patients to experience pain and potentially damage nerves. This far-field bone heating limits the volume of fibroid tissue that is treatable via MRgFUS. PURPOSE To investigate transducer module apodization for improving the ratio of focal-to-bone heating (Δ T ratio $\Delta T_{\mathrm{ratio}}$ ) when targeting fibroid tissue close to the hips and spine, to enable MRgFUS treatments closer to the bone. METHODS Acoustic and thermal simulations were performed using 3D magnetic resonance imaging (MRI)-derived anatomies of ten patients who underwent MRgFUS ablation for uterine fibroids using a low-frequency (0.5 MHz $0.5 \ \text{MHz}$ ) 6144-element flat fully-populated modular phased array system (Arrayus Technologies Inc., Burlington, Canada) at our institution as part of a larger clinical trial (NCT03323905). Transducer modules (64 elements $64 \ \text{elements}$ per module) whose beams intersected with no-pass zones delineated within the field were identified, their output power levels were reduced by varying blocking percentage levels, and the resulting temperature field distributions were evaluated across multiple sonications near the hip and spine bones in each patient. Acoustic and thermal simulations took approximately20 min $20 \ \text{min}$ (7 min $7 \ \text{min}$ ) and1 min $1 \ \text{min}$ (30 s $30 \ \text{s}$ ) to run for a single near-spine (near-hip) target, respectively. RESULTS For all simulated sonications, transducer module blocking improvedΔ T ratio $\Delta T_{\mathrm{ratio}}$ compared to the no blocking case. In just over half of sonications, full module blocking maximizedΔ T ratio $\Delta T_{\mathrm{ratio}}$ (increase of 82% ± $\pm$ 38% in 50% of hip targets and 49% ± $\pm$ 30% in 62% of spine targets vs. no blocking; mean ± SD), at the cost of more diffuse focusing (focal heating volumes increased by 13% ± 13% for hip targets and 39% ± 27% for spine targets) and thus requiring elevated total (hip: 6% ± 17%, spine: 37% ± 17%) and peak module-wise (hip: 65% ± 36%, spine: 101% ± 56%) acoustic power levels to achieve equivalent focal heating as the no blocking control case. In the remaining sonications, partial module blocking provided further improvements in bothΔ T ratio $\Delta T_{\mathrm{ratio}}$ (increased by 29% ± 25% in the hip and 15% ± 12% in the spine) and focal heating volume (decrease of 20% ± 10% in the hip and 34% ± 17% in the spine) relative to the full blocking case. The optimal blocking percentage value was dependent on the specific patient geometry and target location of interest. Although not all individual target locations saw the benefit, element-wise phase aberration corrections improved the averageΔ T ratio $\Delta T_{\mathrm{ratio}}$ compared to the no correction case (increase of 52% ± 47% in the hip, 35% ± 24% in the spine) and impacted the optimal blocking percentage value. Transducer module blocking enabled ablative treatments to be carried out closer to both hip and spine without overheating or damaging the bone (no blocking:42 ± 1 mm $42\pm 1 \ \text{mm}$ /17 ± 2 mm $17 \pm 2 \ \text{mm}$ , full blocking:38 ± 1 mm $38\pm 1 \ \text{mm}$ /8 ± 1 mm $8\pm 1 \ \text{mm}$ , optimal partial blocking:36 ± 1 mm $36\pm 1 \ \text{mm}$ /7 ± 1 mm $7\pm 1 \ \text{mm}$ for hip/spine). CONCLUSION The proposed transducer apodization scheme shows promise for improving MRgFUS treatments of uterine fibroids, and may ultimately increase the effective treatment envelope of MRgFUS surgery in the body by enabling tissue ablation closer to bony structures.
Collapse
Affiliation(s)
- Sobhan Goudarzi
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ryan Matthew Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Yin Hau Wallace Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Lari S, Kohandel M, Kwon HJ. Model based deep learning method for focused ultrasound pathway scanning. Sci Rep 2024; 14:20042. [PMID: 39198623 PMCID: PMC11358149 DOI: 10.1038/s41598-024-70689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
The primary purpose of high-intensity focused ultrasound (HIFU), a non-invasive medical therapy, is to precisely target and ablate tumors by focusing high-frequency ultrasound from an external power source. A series of ablations must be performed in order to treat a big volume of tumors, as a single ablation can only remove a small amount of tissue. To maximize therapeutic efficacy while minimizing adverse side effects such as skin burns, preoperative treatment planning is essential in determining the focal site and sonication duration for each ablation. Here, we introduce a machine learning-based approach for designing HIFU treatment plans, which makes use of a map of the material characteristics unique to a patient alongside an accurate thermal simulation. A numerical model was employed to solve the governing equations of HIFU process and to simulate the HIFU absorption mechanism, including ensuing heat transfer process and the temperature rise during the sonication period. To validate the accuracy of this numerical model, a series of tests was conducted using ex vivo bovine liver. The findings indicate that the developed models properly represent the considerable variances observed in tumor geometrical shapes and proficiently generate well-defined closed treated regions based on imaging data. The proposed strategy facilitated the formulation of high-quality treatment plans, with an average tissue over- or under-treatment rate of less than 0.06%. The efficacy of the numerical model in accurately predicting the heating process of HIFU, when combined with machine learning techniques, was validated through quantitative comparison with experimental data. The proposed approach in cooperation with HIFU simulation holds the potential to enhance presurgical HIFU plan.
Collapse
Affiliation(s)
- Salman Lari
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hyock Ju Kwon
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
3
|
Sriram S, Root K, Chacko K, Patel A, Lucke-Wold B. Surgical Management of Synucleinopathies. Biomedicines 2022; 10:biomedicines10102657. [PMID: 36289920 PMCID: PMC9599076 DOI: 10.3390/biomedicines10102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Synucleinopathies represent a diverse set of pathologies with significant morbidity and mortality. In this review, we highlight the surgical management of three synucleinopathies: Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). After examining underlying molecular mechanisms and the medical management of these diseases, we explore the role of deep brain stimulation (DBS) in the treatment of synuclein pathophysiology. Further, we examine the utility of focused ultrasound (FUS) in the treatment of synucleinopathies such as PD, including its role in blood–brain barrier (BBB) opening for the delivery of novel drug therapeutics and gene therapy vectors. We also discuss other recent advances in the surgical management of MSA and DLB. Together, we give a diverse overview of current techniques in the neurosurgical management of these pathologies.
Collapse
|
4
|
Do MT, Ly TH, Choi MJ, Cho SY. Clinical application of the therapeutic ultrasound in urologic disease: Part II of the therapeutic ultrasound in urology. Investig Clin Urol 2022; 63:394-406. [PMID: 35670002 PMCID: PMC9262482 DOI: 10.4111/icu.20220060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
This article aimed to review the clinical application and evidence of the therapeutic ultrasound in detail for urological diseases such as prostate cancer, kidney tumor, erectile dysfunction, and urolithiasis. We searched for articles about high-intensity focused ultrasound (HIFU), extracorporeal shock wave therapy, ultrasound lithotripsy, and extracorporeal shockwave lithotripsy (ESWL) in the MEDLINE and Embase. HIFU may be indicated as a primary treatment for low- or intermediate-risk prostate cancer, and salvage therapy for local recurrence as a promising way to address the limitations of current standard therapies. The application of HIFU in treating kidney tumors has scarcely been reported with unsatisfactory results. Evidence indicates that low-intensity shockwave therapy improves subjective and objective erectile function in patients with erectile dysfunction. Regarding the application of ultrasound in stone management, the novel combination of ultrasound lithotripsy and other energy sources in a single probe promises to be a game-changer in efficiently disintegrating large kidney stones in percutaneous nephrolithotomy. ESWL is losing its role in managing upper urinary tract calculi worldwide. The burst-wave lithotripsy and ultrasound propulsion could be the new hope to regain its position in the lithotripsy field. According to our investigations and reviews, cavitation bubbles of the therapeutic ultrasound are actively being used in the field of urology. Although clinical evidence has been accumulated in urological diseases such as prostate cancer, kidney tumor, erectile dysfunction, and lithotripsy, further development is needed to be a game-changer in treating these diseases.
Collapse
Affiliation(s)
- Minh-Tung Do
- Department of Surgery, Hai Phong University of Medicine and Pharmacy, Hai Phong, Viet Nam
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Tam Hoai Ly
- Department of Urology, Cho Ray Hospital, Ho Chi Minh City, Viet Nam
| | - Min Joo Choi
- Department of Medicine, Jeju National University College of Medicine, Jeju, Korea
| | - Sung Yong Cho
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
5
|
Palumbo P, Daffinà J, Bruno F, Arrigoni F, Splendiani A, Di Cesare E, Barile A, Masciocchi C. Basics in Magnetic Resonance guided Focused Ultrasound: technical basis and clinical application. A brief overview. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021403. [PMID: 34505842 PMCID: PMC8477067 DOI: 10.23750/abm.v92is5.11881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
First applications of high focused ultrasound as intracranial ablative therapy were firstly described in early 50’. Since then, the technological innovations have shown an increasingly safe and effective face of this technique. And in the last few years, Magnetic Resonance (MR) guided Focused Ultrasound (gFUS) has become a valid minimally invasive technique in the treatment of several diseases, from bone tumors to symptomatic uterine fibroids or essential tremors. MR guidance, through the tomographic view, offers the advantage of an accurate target detection and treatment planning. Moreover, real-time monitoring sequences allow to avoid non-target ablation. An adequate knowledge of FUS is essential to understand its clinical effectiveness. Therefore, this brief review aims to debate the physical characteristics of US and the main fields of clinical application.
Collapse
Affiliation(s)
- Pierpaolo Palumbo
- Department of Diagnostic Imaging, area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, Italy and Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
| | - Julia Daffinà
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy and Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
| | - Francesco Arrigoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Ernesto Di Cesare
- Department of Clinical Medicine, Public Health, Life and Environmental Science, University of L'Aquila, L'Aquila, Italy.
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
6
|
Takagi R, Koseki Y, Yoshizawa S, Umemura SI. Investigation of feasibility of noise suppression method for cavitation-enhanced high-intensity focused ultrasound treatment. ULTRASONICS 2021; 114:106394. [PMID: 33657511 DOI: 10.1016/j.ultras.2021.106394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
In high-intensity focused ultrasound (HIFU) treatment, a method that monitors tissue changes while irradiating therapeutic ultrasound is needed to detect changes in the order of milliseconds due to thermal coagulation and the presence of cavitation bubbles. The new filtering method in which only the HIFU noise was reduced while the tissue signals remained intact was proposed in the conventional HIFU exposure in our preliminary study. However, HIFU was irradiated perpendicular to the direction of the imaging ultrasound in the preliminary experiment, which was believed to be impractical. This study investigated the efficacy of the proposed method a parallel setup, in which both HIFU and imaging beams have the same axis just as in a practical application. In addition, this filtering algorithm was applied to the "Trigger HIFU" sequence in which ultrasound-induced cavitation bubbles were generated in the HIFU focal region to enhance heating. In this setup and sequence, HIFU noise level was increased and the summation or difference tone induced by the interaction of HIFU waves with the imaging pulse has the potential to affect this proposed method. Ex-vivo experiments proved that the HIFU noise was selectively eliminated by the proposed filtering method in which chaotic acoustic signals were emitted by the cavitation bubbles at the HIFU focus. These results suggest that the proposed method was practically efficient for monitoring tissue changes in HIFU-induced cavitation bubbles.
Collapse
Affiliation(s)
- Ryo Takagi
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan.
| | - Yoshihiko Koseki
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| | - Shin Yoshizawa
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | | |
Collapse
|
7
|
Antoniou A, Giannakou M, Evripidou N, Evripidou G, Spanoudes K, Menikou G, Damianou C. Robotic system for magnetic resonance guided focused ultrasound ablation of abdominal cancer. Int J Med Robot 2021; 17:e2299. [PMID: 34105234 DOI: 10.1002/rcs.2299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND A prototype robotic system that uses magnetic resonance guided focused ultrasound (MRgFUS) technology is presented. It features three degrees of freedom (DOF) and is intended for thermal ablation of abdominal cancer. METHODS The device is equipped with three identical transducers being offset between them, thus focussing at different depths in tissue. The efficacy and safety of the system in ablating rabbit liver and kidney was assessed, both in laboratory and magnetic resonance imaging (MRI) conditions. RESULTS Despite these organs' challenging location, in situ coagulative necrosis of a tissue area was achieved. Heating of abdominal organs in rabbit was successfully monitored with MR thermometry. CONCLUSIONS The MRgFUS system was proven successful in creating lesions in the abdominal area of rabbits. The outcomes of the study are promising for future translation of the technology to the clinic.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | | | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Georgios Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Kyriakos Spanoudes
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Georgios Menikou
- Medical Physics Sector, State Health Services Organization, Nicosia General Hospital, Nicosia, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
8
|
Choromańska A, Chwiłkowska A, Kulbacka J, Baczyńska D, Rembiałkowska N, Szewczyk A, Michel O, Gajewska-Naryniecka A, Przystupski D, Saczko J. Modifications of Plasma Membrane Organization in Cancer Cells for Targeted Therapy. Molecules 2021; 26:1850. [PMID: 33806009 PMCID: PMC8037978 DOI: 10.3390/molecules26071850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Modifications of the composition or organization of the cancer cell membrane seem to be a promising targeted therapy. This approach can significantly enhance drug uptake or intensify the response of cancer cells to chemotherapeutics. There are several methods enabling lipid bilayer modifications, e.g., pharmacological, physical, and mechanical. It is crucial to keep in mind the significance of drug resistance phenomenon, ion channel and specific receptor impact, and lipid bilayer organization in planning the cell membrane-targeted treatment. In this review, strategies based on cell membrane modulation or reorganization are presented as an alternative tool for future therapeutic protocols.
Collapse
Affiliation(s)
- Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| |
Collapse
|
9
|
A Novel High-Intensity Focused Ultrasound-Treated Herpes Simplex Virus 2 Vaccine Induces Long-Term Protective Immunity against Lethal Challenge in Mice. mSphere 2020; 5:5/6/e00859-20. [PMID: 33361122 PMCID: PMC7763547 DOI: 10.1128/msphere.00859-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-intensity focused ultrasound (HIFU), a noninvasive ablation therapy that has been widely used clinically in ablation of solid tumors, induces immune sensitization. We therefore in this study investigated whether HIFU treatment could enhance the efficacy of a herpes simplex virus 2 (HSV-2) vaccine. First, we observed that in HSV-2-positive cervical intraepithelial neoplasia (CIN) II patients, HIFU treatment induced significantly higher anti-HSV-2 neutralization response than surgical removal. Next, we tested the efficacy of HIFU-treated, UV-inactivated HSV-2-infected cells as a proof-of-concept vaccine in mice. Our data showed that HIFU-treated formulation significantly enhanced HSV-2 antibody titers and neutralization titers, compared to UV-, microwave (MW)-, or freeze-thaw (FT)-treated formulations. HIFU treatment also promoted the Th1/2 cell-mediated response. A long-term full protection was observed in mice that received the HIFU-treated formulation, and no weight loss was detected. Our findings indicate that the novel application of HIFU in vaccine production may represent a rational way to improve vaccine efficacy.IMPORTANCE High-intensity focused ultrasound (HIFU) is mainly used in tumor ablation and tumor vaccinology study. It has been shown to induce immune sensitization and enhance tumor responsiveness to other therapies. Our study has shown enhanced anti-HSV-2 response in HIFU-treated CIN II patients. Furthermore, in a murine model, we have demonstrated that HIFU-treated HSV-2 vaccine induced long-term protective immunity against lethal challenge. Our findings indicate that the novel application of HIFU in vaccine production may represent a rational way to improve vaccine efficacy.
Collapse
|
10
|
Motta G, Ferraresso M, Lamperti L, Di Paolo D, Raison N, Perego M, Favi E. Treatment options for localised renal cell carcinoma of the transplanted kidney. World J Transplant 2020; 10:147-161. [PMID: 32742948 PMCID: PMC7360528 DOI: 10.5500/wjt.v10.i6.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, there is no consensus among the transplant community about the treatment of renal cell carcinoma (RCC) of the transplanted kidney. Until recently, graftectomy was universally considered the golden standard, regardless of the characteristics of the neoplasm. Due to the encouraging results observed in native kidneys, conservative options such as nephron-sparing surgery (NSS) (enucleation and partial nephrectomy) and ablative therapy (radiofrequency ablation, cryoablation, microwave ablation, high-intensity focused ultrasound, and irreversible electroporation) have been progressively used in carefully selected recipients with early-stage allograft RCC. Available reports show excellent patient survival, optimal oncological outcome, and preserved renal function with acceptable complication rates. Nevertheless, the rarity and the heterogeneity of the disease, the number of options available, and the lack of long-term follow-up data do not allow to adequately define treatment-specific advantages and limitations. The role of active surveillance and immunosuppression management remain also debated. In order to offer a better insight into this difficult topic and to help clinicians choose the best therapy for their patients, we performed and extensive review of the literature. We focused on epidemiology, clinical presentation, diagnostic work up, staging strategies, tumour characteristics, treatment modalities, and follow-up protocols. Our research confirms that both NSS and focal ablation represent a valuable alternative to graftectomy for kidney transplant recipients with American Joint Committee on Cancer stage T1aN0M0 RCC. Data on T1bN0M0 lesions are scarce but suggest extra caution. Properly designed multi-centre prospective clinical trials are warranted.
Collapse
Affiliation(s)
- Gloria Motta
- Urology, IRCCS Policlinico San Donato, San Donato Milanese 27288, Italy
| | - Mariano Ferraresso
- Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Luca Lamperti
- Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Dhanai Di Paolo
- Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Nicholas Raison
- MRC Centre for Transplantation, King’s College London, London WC2R 2LS, United Kingdom
| | - Marta Perego
- Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Evaldo Favi
- Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| |
Collapse
|
11
|
Filippiadis DK, Tselikas L, Bazzocchi A, Efthymiou E, Kelekis A, Yevich S. Percutaneous Management of Cancer Pain. Curr Oncol Rep 2020; 22:43. [DOI: 10.1007/s11912-020-00906-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Duc NM, Keserci B. Emerging clinical applications of high-intensity focused ultrasound. ACTA ACUST UNITED AC 2020; 25:398-409. [PMID: 31287428 DOI: 10.5152/dir.2019.18556] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-intensity focused ultrasound (HIFU) is a minimally-invasive and non-ionizing promising technology and has been assessed for its role in the treatment of not only primary tumors but also metastatic lesions under the guidance of ultrasound or magnetic resonance imaging. Its performance is notably effective in neurologic, genitourinary, hepato-pancreato-biliary, musculoskeletal, oncologic, and other miscellaneous applications. In this article, we reviewed the emerging technology of HIFU and its clinical applications.
Collapse
Affiliation(s)
- Nguyen Minh Duc
- Department of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Bilgin Keserci
- Department of Radiology, Universiti Sains Malaysia School of Medical Sciences, Kelantan, Malaysia; Department of Radiology, Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
13
|
Izadifar Z, Izadifar Z, Chapman D, Babyn P. An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J Clin Med 2020; 9:jcm9020460. [PMID: 32046072 PMCID: PMC7073974 DOI: 10.3390/jcm9020460] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/22/2022] Open
Abstract
Ultrasound can penetrate deep into tissues and interact with human tissue via thermal and mechanical mechanisms. The ability to focus an ultrasound beam and its energy onto millimeter-size targets was a significant milestone in the development of therapeutic applications of focused ultrasound. Focused ultrasound can be used as a non-invasive thermal ablation technique for tumor treatment and is being developed as an option to standard oncologic therapies. High-intensity focused ultrasound has now been used for clinical treatment of a variety of solid malignant tumors, including those in the pancreas, liver, kidney, bone, prostate, and breast, as well as uterine fibroids and soft-tissue sarcomas. Magnetic resonance imaging and Ultrasound imaging can be combined with high intensity focused ultrasound to provide real-time imaging during ablation. Magnetic resonance guided focused ultrasound represents a novel non-invasive method of treatment that may play an important role as an alternative to open neurosurgical procedures for treatment of a number of brain disorders. This paper briefly reviews the underlying principles of HIFU and presents current applications, outcomes, and complications after treatment. Recent applications of Focused ultrasound for tumor treatment, drug delivery, vessel occlusion, histotripsy, movement disorders, and vascular, oncologic, and psychiatric applications are reviewed, along with clinical challenges and potential future clinical applications of HIFU.
Collapse
Affiliation(s)
- Zahra Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-7827; Fax: +1-306-966-4651
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Dean Chapman
- Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Paul Babyn
- Department of Medical Imaging, Royal University Hospital, Saskatoon, SK S7N 0W8, Canada
| |
Collapse
|
14
|
Wośkowiak P, Lewicka K, Bureta A, Salagierski M. Active surveillance and focal ablation for small renal masses: a better solution for comorbid patients. Arch Med Sci 2020; 16:1111-1118. [PMID: 32864000 PMCID: PMC7444719 DOI: 10.5114/aoms.2019.86190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/01/2018] [Indexed: 01/04/2023] Open
Abstract
The natural history of small renal masses (SRM) is still not well understood and they are frequently incidentally diagnosed in elderly patients. Therefore, there is a need for less invasive options sparing the patient from the side-effects related to conventional surgical treatment. PubMed and Medline database search was performed to look for new findings on active surveillance and focal therapy for SRM. Sixty-one articles published between 2002 and 2018 were selected for the purpose of the review. There is growing evidence confirming the safety of active surveillance in patients at surgical risk and there appears to be a satisfactory intermediate-term outcome of focal treatment of SRM. In the group of elderly patients with a decreased life expectancy active surveillance appears to be the most appropriate approach. The future of minimally invasive therapy appears bright, especially with the improvement of new imaging modalities.
Collapse
Affiliation(s)
- Piotr Wośkowiak
- The Faculty of Medicine and Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - Katarzyna Lewicka
- The Faculty of Medicine and Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - Adrianna Bureta
- The Faculty of Medicine and Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - Maciej Salagierski
- The Faculty of Medicine and Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
15
|
Kim J, Choi W, Park EY, Kang Y, Lee KJ, Kim HH, Kim WJ, Kim C. Real-Time Photoacoustic Thermometry Combined With Clinical Ultrasound Imaging and High-Intensity Focused Ultrasound. IEEE Trans Biomed Eng 2019; 66:3330-3338. [PMID: 30869607 DOI: 10.1109/tbme.2019.2904087] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-intensity focused ultrasound (HIFU) treatment is a promising non-invasive method for killing or destroying the diseased tissues by locally delivering thermal and mechanical energy without damaging surrounding normal tissues. In HIFU, measuring the temperature at the site of delivery is important for improving therapeutic efficacy, controlling safety, and appropriately planning a treatment. Several researchers have proposed photoacoustic thermometry for monitoring HIFU treatment, but they had many limitations, including the inability to image while the HIFU is on, inability to provide two-dimensional monitoring, and the inability to be used clinically. In this paper, we propose a novel integrated real-time photoacoustic thermometry system for HIFU treatment monitoring. The system provides ultrasound B-mode imaging, photoacoustic structural imaging, and photoacoustic thermometry during HIFU treatment in real-time for both in vitro and in vivo environments, without any interference from the strong therapeutic HIFU waves. We have successfully tested the real-time photoacoustic thermometry by investigating the relationship between the photoacoustic amplitude and the measured temperature with in vitro phantoms and in vivo tumor-bearing mice. The results show the feasibility of a real-time photoacoustic thermometry system for safe and effective monitoring of HIFU treatment.
Collapse
|
16
|
Schostak M, Wendler JJ, Baumunk D, Blana A, Ganzer R, Franiel T, Hadaschik B, Henkel T, Köhrmann KU, Köllermann J, Kuru T, Machtens S, Roosen A, Salomon G, Schlemmer HP, Sentker L, Witzsch U, Liehr UB. Treatment of Small Renal Masses. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42623-5_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Suomi V, Jaros J, Treeby B, Cleveland RO. Full Modeling of High-Intensity Focused Ultrasound and Thermal Heating in the Kidney Using Realistic Patient Models. IEEE Trans Biomed Eng 2018; 65:2660-2670. [PMID: 30222549 DOI: 10.1109/tbme.2018.2870064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE High-intensity focused ultrasound (HIFU) therapy can be used for noninvasive treatment of kidney (renal) cancer, but the clinical outcomes have been variable. In this study, the efficacy of renal HIFU therapy was studied using a nonlinear acoustic and thermal simulations in three patients. METHODS The acoustic simulations were conducted with and without refraction in order to investigate its effect on the shape, size, and pressure distribution at the focus. The values for the attenuation, sound speed, perfusion, and thermal conductivity of the kidney were varied over the reported ranges to determine the effect of variability on heating. Furthermore, the phase aberration was studied in order to quantify the underlying phase shifts using a second order polynomial function. RESULTS The ultrasound field intensity was found to drop on average 11.1 dB with refraction and 6.4 dB without refraction. Reflection at tissue interfaces was found to result in a loss less than 0.1 dB. Focal point splitting due to refraction significantly reduced the heating efficacy. Perfusion did not have a large effect on heating during short sonication durations. Small changes in temperature were seen with varying attenuation and thermal conductivity, but no visible changes were present with sound speed variations. The aberration study revealed an underlying trend in the spatial distribution of the phase shifts. CONCLUSION The results show that the efficacy of HIFU therapy in the kidney could be improved with aberration correction. SIGNIFICANCE A method is proposed by that patient specific pre-treatment calculations could be used to overcome the aberration and therefore make ultrasound treatment possible.
Collapse
|
18
|
Full Modeling of High-Intensity Focused Ultrasound and Thermal Heating in the Kidney Using Realistic Patient Models. IEEE Trans Biomed Eng 2018; 65:969-979. [DOI: 10.1109/tbme.2017.2732684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Taghaddos E, Ma T, Zhong H, Zhou Q, Wan MX, Safari A. Fabrication and Characterization of Single-Aperture 3.5-MHz BNT-Based Ultrasonic Transducer for Therapeutic Application. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:582-588. [PMID: 29610088 DOI: 10.1109/tuffc.2018.2793874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper discusses the fabrication and characterization of 3.5-MHz single-element transducers for therapeutic applications in which the active elements are made of hard lead-free BNT-based and hard commercial PZT (PZT-841) piezoceramics. Composition of (BiNa0.88K0.08Li0.04)0.5(Ti0.985Mn0.015)O3 (BNKLT88-1.5Mn) was used to develop lead-free piezoelectric ceramic. Mn-doped samples exhibited high mechanical quality factor ( ) of 970, thickness coupling coefficient ( ) of 0.48, a dielectric constant ( ) of 310 (at 1 kHz), depolarization temperature ( ) of 200 °C, and coercive field ( ) of 52.5 kV/cm. Two different unfocused single-element transducers using BNKLT88-1.5Mn and PZT-841 with the same center frequency of 3.5 MHz and similar aperture size of 10.7 and 10.5 mm were fabricated. Pulse-echo response, acoustic frequency spectrum, acoustic pressure field, and acoustic intensity field of transducers were characterized. The BNT-based transducer shows linear response up to the peak-to-peak voltage of 105 V in which the maximum rarefactional acoustic pressure of 1.1 MPa, and acoustic intensity of 43 W/cm2 were achieved. Natural focal point of this transducer was at 60 mm from the surface of the transducer.
Collapse
|
20
|
Singh VA, Shah SU, Yasin NF, Abdullah BJJ. Magnetic resonance guided focused ultrasound for treatment of bone tumors. J Orthop Surg (Hong Kong) 2018; 25:2309499017716256. [PMID: 28659052 DOI: 10.1177/2309499017716256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIMS Magnetic resonance guided focused ultrasound (MRgFUS) is a new modality in the management of primary and secondary bone tumors. We aimed to investigate the safety, efficacy, and feasibility of using MRgFUS for the treatment of (1) benign bone tumors with the intent of complete tumor ablation, (2) primary malignant bone tumors with the intent to assess its effectiveness in causing tumor necrosis, and (3) metastatic bone disease with the intent of pain relief. METHOD Twenty-four patients with benign bone tumors, primary malignant bone tumors, and metastatic bone disease were treated with one session of MRgFUS. Contrast-enhanced (CE) magnetic resonance imaging (MRI) was carried out post-procedure to assess and quantify the area of ablation. Those with malignant primary tumors had the tumors resected 2 weeks after the treatment and the ablated areas were examined histopathologically (HPE). The other patients were followed up for 3 months to assess for the side effects and pain scores. RESULTS Significant volume of ablation was noted on CE MRI after the treatment. Benign bone tumors were ablated with minimal adverse effects. Metastatic bone disease was successfully treated with significant decrease in pain scores. Ablated primary malignant tumors showed significant coagulative necrosis on MRI and the HPE showed 100% necrosis. Pain scores significantly decreased 3 months after the procedure. Only two patients had superficial skin blistering and three patients had increase in pain scores immediately after treatment. CONCLUSION MRgFUS is effective, safe, and noninvasive procedure that can be an adjunct in the management of primary and metastatic bone tumors.
Collapse
Affiliation(s)
- Vivek Ajit Singh
- 1 Department of Orthopaedics (Noceral), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Syed Usman Shah
- 1 Department of Orthopaedics (Noceral), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Faissal Yasin
- 1 Department of Orthopaedics (Noceral), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
21
|
Dababou S, Marrocchio C, Scipione R, Erasmus HP, Ghanouni P, Anzidei M, Catalano C, Napoli A. High-Intensity Focused Ultrasound for Pain Management in Patients with Cancer. Radiographics 2018; 38:603-623. [PMID: 29394144 DOI: 10.1148/rg.2018170129] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer-related pain affects up to 80% of patients with malignancies. Pain is an important distressing symptom that diminishes the quality of life and negatively affects the survival of patients. Opioid analgesics are generally the primary therapy for cancer-related pain, with surgery, radiation therapy, chemotherapy, and other interventions used in cases of treatment-resistant pain. These treatments, which can be associated with substantial side effects and systemic toxicity, may not be effective. High-intensity focused ultrasound is an entirely noninvasive technique that is approved for treatment of uterine fibroids, bone metastases, and essential tremors. With magnetic resonance imaging or ultrasonographic guidance, high-intensity ultrasound waves are focused on a small well-demarcated region to result in precise localized ablation. This treatment may represent a multimodality approach to treating patients with malignant diseases-facilitating pain palliation, enhanced local drug delivery and radiation therapy effects, and stimulation of anticancer specific immune responses, and potentially facilitating local tumor control. Focused ultrasound can be used to achieve pain palliation by producing several effects, including tissue denervation, tumor mass reduction, and neuromodulation, that can influence different pathways at the origin of the pain. This technology has several key advantages compared with other analgesic therapies: It is completely noninvasive, might be used to achieve rapid pain control, can be safely repeated, and can be used in combination with chemotherapy and radiation therapy to enhance their effects. Online supplemental material is available for this article. ©RSNA, 2018.
Collapse
Affiliation(s)
- Susan Dababou
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Cristina Marrocchio
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Roberto Scipione
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Hans-Peter Erasmus
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Pejman Ghanouni
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Michele Anzidei
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Carlo Catalano
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| | - Alessandro Napoli
- From the Department of Radiological Sciences, Sapienza University of Rome, School of Medicine, V.le Regina Elena 324, 00180 Rome, Italy (S.D., C.M., R.S., H.P.E., M.A., C.C., A.N.); and Department of Radiology, Stanford University School of Medicine, Stanford, Calif (P.G.)
| |
Collapse
|
22
|
Schostak M, Wendler JJ, Baumunk D, Blana A, Ganzer R, Franiel T, Hadaschik B, Henkel T, Köhrmann KU, Köllermann J, Kuru T, Machtens S, Roosen A, Salomon G, Schlemmer HP, Sentker L, Witzsch U, Liehr UB. Treatment of Small Renal Masses. Urol Oncol 2018. [DOI: 10.1007/978-3-319-42603-7_61-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Abstract
BACKGROUND The rising incidence of renal cell carcinoma, its more frequent early detection (stage T1a) and the increasing prevalence of chronic renal failure with higher morbidity and shorter life expectancy underscore the need for multimodal focal nephron-sparing therapy. DISCUSSION During the past decade, the gold standard shifted from radical to partial nephrectomy. Depending on the surgeon's experience, the patient's constitution and the tumor's location, the intervention can be performed laparoscopically with the corresponding advantages of lower invasiveness. A treatment alternative can be advantageous for selected patients with high morbidity and/or an increased risk of complications associated with anesthesia or surgery. Corresponding risk stratification necessitates previous confirmation of the small renal mass (cT1a) by histological examination of biopsy samples. Active surveillance represents a controlled delay in the initiation of treatment. RESULTS Percutaneous radiofrequency ablation (RFA) and laparoscopic cryoablation are currently the most common treatment alternatives, although there are limitations particularly for renal tumors located centrally near the hilum. More recent ablation procedures such as high intensity focused ultrasound (HIFU), irreversible electroporation, microwave ablation, percutaneous stereotactic ablative radiotherapy and high-dose brachytherapy have high potential in some cases but are currently regarded as experimental for the treatment of renal cell carcinoma.
Collapse
|
24
|
van Breugel JMM, de Greef M, Wijlemans JW, Schubert G, van den Bosch MAAJ, Moonen CTW, Ries MG. Thermal ablation of a confluent lesion in the porcine kidney with a clinically available MR-HIFU system. Phys Med Biol 2017; 62:5312-5326. [PMID: 28557798 DOI: 10.1088/1361-6560/aa75b3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The incidence of small renal masses (SRMs) sized <4 cm has increased over the decades (as co-findings/or due to introduction of cross sectional imaging). Currently, partial nephrectomy (PN) or watchful waiting is advised in these patients. Ultimately, 80-90% of these SRMs require surgical treatment and PN is associated with a 15% complication rate. In this aging population, with possible comorbidities and poor health condition, both PN and watchful waiting are non-ideal treatment options. This resulted in an increased need for early, non-invasive treatment strategies such as MR-guided high intensity focused ultrasound (MR-HIFU). (i) To investigate the feasibility of creating a confluent lesion in the kidney using respiratory-gated MR-HIFU under clinical conditions in a pre-clinical study and (ii) to evaluate the reproducibility of the MR-HIFU ablation strategy. Healthy pigs (n = 10) under general anesthesia were positioned on a clinical MR-HIFU system with integrated cooling. A honeycomb pattern of seven overlapping ablation cells (4 × 4 × 10 mm3, 450 W, <30 s) was ablated successively in the cortex of the porcine kidney. Both MR thermometry and acoustic energy delivery were respiratory gated using a pencil beam navigator on the contralateral kidney. The non-perfused volume (NPV) was visualized after the last sonication by contrast-enhanced (CE) T 1-weighted MR (T 1 w) imaging. Cell viability staining was performed to visualize the extent of necrosis. RESULTS a median NPV of 0.62 ml was observed on CE-T 1 w images (IQR 0.58-1.57 ml, range 0.33-2.75 ml). Cell viability staining showed a median damaged volume of 0.59 ml (IQR 0.24-1.35 ml, range 0-4.1 ml). Overlooking of the false rib, shivering of the pig, and too large depth combined with a large heat-sink effect resulted in insufficient heating in 4 cases. The NPV and necrosed volume were confluent in all cases in which an ablated volume could be observed. Our results demonstrated the feasibility of creating a confluent volume of ablated kidney cortical tissue in vivo with MR-HIFU on a clinically available system using respiratory gating and near-field cooling and showed its reproducibility.
Collapse
Affiliation(s)
- J M M van Breugel
- Center for Imaging Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Dupré A, Pérol D, Blanc E, Peyrat P, Basso V, Chen Y, Vincenot J, Kocot A, Melodelima D, Rivoire M. Efficacy of high-intensity focused ultrasound-assisted hepatic resection (HIFU-AR) on blood loss reduction in patients with liver metastases requiring hepatectomy: study protocol for a randomized controlled trial. Trials 2017; 18:57. [PMID: 28166812 PMCID: PMC5294714 DOI: 10.1186/s13063-017-1801-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/16/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Liver resection is the only potentially curative treatment for colorectal liver metastases (LM). It is considered a safe procedure, but is often associated with blood loss during liver transection. Blood transfusions are frequently needed, but they are associated with increased morbidity and risk of recurrence. Many surgical devices have been developed to decrease blood loss. However, none of them has proven superior to the standard crushing technique. We developed a new, powerful intra-operative high-intensity focused ultrasound (HIFU) transducer which destroys tissue by coagulative necrosis. We aim to evaluate whether HIFU-assisted liver resection (HIFU-AR) results in reduced blood loss. METHODS This is a prospective, single-centre, randomized (1:1 ratio), comparative, open-label phase II study. Patients with LM requiring a hepatectomy for ≥ 2 segments will be included. Patients with cirrhosis or sinusoidal obstruction syndrome with portal hypertension will be excluded. The primary endpoint is normalized blood loss in millilitres per square centimetre of liver section plane. Secondary endpoints are: total blood loss, transection time, transection time per square centimetre of liver area, haemostasis time, clip density on the liver section area, rate and duration of the Pringle manœuvre, rate of patients needing a blood transfusion, length of hospital stay, morbidity, patients with positive resection margin, and local recurrence. Assuming a blood loss of 7.6 ± 3.7 mL/cm2 among controls, the study will have 85% power to detect a twofold decrease of blood loss in the experimental arm, using a Wilcoxon (Mann-Whitney) rank-sum test with a 0.05 two-sided significance level. Twenty-one randomized patients per arm are required. Considering the risk of contraindications at surgery, up to eight patients may be enrolled in addition to the 42 planned, with an enrolment period of 24 months. Randomization will be stratified by surgeon. DISCUSSION We previously demonstrated the safety and efficacy of intra-operative HIFU in patients operated on for LM. We also demonstrated the efficacy of HIFU-AR in a preclinical study. Participants in the HIFU-AR group of this randomized trial can expect to benefit from reduced blood loss and decreased ischemia of liver parenchyma. TRIAL REGISTRATION Clinicaltrial.gov, NCT02728167 . Registered on 22 March 2016.
Collapse
Affiliation(s)
- Aurélien Dupré
- Department of Surgical Oncology, Centre Léon Bérard, 28 Rue Laennec, Lyon, 69008, France. .,Inserm, U1032, LabTau, University of Lyon, Lyon, 69003, France.
| | - David Pérol
- Department of Clinical Research (DRCI), Centre Léon Bérard, Lyon, 69008, France
| | - Ellen Blanc
- Department of Clinical Research (DRCI), Centre Léon Bérard, Lyon, 69008, France
| | - Patrice Peyrat
- Department of Surgical Oncology, Centre Léon Bérard, 28 Rue Laennec, Lyon, 69008, France
| | - Valéria Basso
- Department of Surgical Oncology, Centre Léon Bérard, 28 Rue Laennec, Lyon, 69008, France
| | - Yao Chen
- Department of Surgical Oncology, Centre Léon Bérard, 28 Rue Laennec, Lyon, 69008, France
| | - Jérémy Vincenot
- Inserm, U1032, LabTau, University of Lyon, Lyon, 69003, France
| | - Anthony Kocot
- Inserm, U1032, LabTau, University of Lyon, Lyon, 69003, France
| | | | - Michel Rivoire
- Department of Surgical Oncology, Centre Léon Bérard, 28 Rue Laennec, Lyon, 69008, France.,Inserm, U1032, LabTau, University of Lyon, Lyon, 69003, France
| |
Collapse
|
26
|
Schostak M, Wendler JJ, Baumunk D, Blana A, Ganzer R, Franiel T, Hadaschik B, Henkel T, Köhrmann KU, Köllermann J, Kuru T, Machtens S, Roosen A, Salomon G, Schlemmer HP, Sentker L, Witzsch U, Liehr UB. Treatment of Small Renal Masses. Urol Oncol 2017. [DOI: 10.1007/978-3-319-42603-7_61-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Yoon HS, Chang C, Jang JH, Bhuyan A, Choe JW, Nikoozadeh A, Watkins RD, Stephens DN, Butts Pauly K, Khuri-Yakub BT. Ex Vivo HIFU Experiments Using a $32 \times 32$ -Element CMUT Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:2150-2158. [PMID: 27913330 PMCID: PMC5241055 DOI: 10.1109/tuffc.2016.2606126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
High-intensity focused ultrasound (HIFU) has been used as noninvasive treatment for various diseases. For these therapeutic applications, capacitive micromachined ultrasonic transducers (CMUTs) have advantages that make them potentially preferred transducers over traditional piezoelectric transducers. In this paper, we present the design and the fabrication process of an 8 ×8 -mm 2 32 ×32 -element 2-D CMUT array for HIFU applications. To reduce the system complexity for addressing the 1024 transducer elements, we propose to group the CMUT array elements into eight HIFU channels based on the phase delay from the CMUT element to the targeted focal point. Designed to focus at an 8-mm depth with a 5-MHz exciting frequency, this grouping scheme was realized using a custom application-specific integrated circuit. With a 40-V dc bias and a 60-V peak-to-peak ac excitation, the surface pressure was measured 1.2 MPa peak-to-peak and stayed stable for a long enough time to create a lesion. With this dc and ac voltage combination, the measured peak-to-peak output pressure at the focus was 8.5 MPa, which is expected to generate a lesion in a minute according to the temperature simulation. The following ex vivo tissue experiments successfully demonstrated its capability to make lesions in both bovine muscle and liver tissue.
Collapse
|
28
|
Peng S, Zhou P, He W, Liao M, Chen L, Ma CM. Treatment of hepatic tumors by thermal versus mechanical effects of pulsed high intensity focused ultrasound in vivo. Phys Med Biol 2016; 61:6754-6769. [PMID: 27580168 DOI: 10.1088/0031-9155/61/18/6754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of this study is to comparatively assess the thermal versus mechanical effects of pulsed high intensity focused ultrasound (HIFU) treatment on hepatic tumors in vivo. Forty-five rabbits with hepatic VX2 tumors were randomly separated into three groups (15 animals per group) before HIFU ablation. The total HIFU energy (in situ) of 1250 J was used for each tumor for three groups. In groups I and II, animals were treated with 1 MHz pulsed ultrasound at 1 Hz pulsed repetition frequency (PRF), 0.5 duty cycle (0.5 s on and 0.5 s off) and10 s duration for one spot sonication. For group II, in addition to HIFU treatment, microbubbles (SonoVue, Bracco, Milan, Italy) were injected via vein before sonication acting as a synergist. In group III, animals were treated with 1 MHz pulsed ultrasound at 10 Hz PRF, 0.1 duty cycle (0.1 s on and 0.9 s off) and 10 s duration for one sonication. The total treatment spots were calculated according to the tumor volume. Tumors were examined with contrast-enhanced computed tomography (CECT) immediately prior to and post HIFU treatment. Histopathologic assessment was performed 3 h after treatment. Our study showed that all animals tolerated the HIFU treatment well. Our data showed that mechanical HIFU could lead to controlled injury in rabbit hepatic tumors with different histological changes in comparison to thermal HIFU with or without microbubbles.
Collapse
Affiliation(s)
- Song Peng
- Department of Diagnostic Imaging, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
You Y, Wang Z, Ran H, Zheng Y, Wang D, Xu J, Wang Z, Chen Y, Li P. Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy. NANOSCALE 2016; 8:4324-39. [PMID: 26837265 DOI: 10.1039/c5nr08292g] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High-intensity focused ultrasound (HIFU) is being generally explored as a non-invasive therapeutic modality to treat solid tumors. However, the clinical use of HIFU for large and deep tumor-ablation applications such as hepatocellular carcinoma (HCC) is currently entangled with long treatment duration and high operating energy. This critical issue can be potentially resolved by the introduction of HIFU synergistic agents (SAs). Traditional SAs such as microbubbles and microparticles face the problem of large size, short cycle time, damage to mononuclear phagocytic system and unsatisfactory targeting efficiency. In this work, we have developed a facile and versatile nanoparticle-based HIFU synergistic cancer surgery enhanced by transarterial chemoembolization for high-efficiency HCC treatment based on elaborately designed Fe3O4-PFH/PLGA nanocapsules. Multifunctional Fe3O4-PFH/PLGA nanocapsules were administrated into tumor tissues via transarterial injection combined with Lipiodol to achieve high tumor accumulation because transarterial chemoembolization by Lipiodol could block the blood vessels. The high synergistic HIFU ablation effect was successfully achieved against HCC tumors based on the phase-transformation performance of the perfluorohexane (PFH) inner core in the composite nanocapsules, as systematically demonstrated in VX2 liver tumor xenograft in rabbits. Multifunctional Fe3O4-PFH/PLGA nanocapsules were also demonstrated as efficient contrast agents for ultrasound, magnetic resonance and photoacoustic tri-modality imagings, potentially applicable for imaging-guided HIFU synergistic surgery. Therefore, the elaborate integration of traditional transarterial chemoembolization with recently developed nanoparticle-enhanced HIFU cancer surgery could efficiently enhance the HCC cancer treatment outcome, initiating a new and efficient therapeutic protocol/modality for clinic cancer treatment.
Collapse
Affiliation(s)
- Yufeng You
- Institute of Ultrasound Imaging & Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, P. R. China. and Department of Radiology, Central Hospital of Enshi Autonomous Prefecture, Hubei, 445000, P. R. China
| | - Zhigang Wang
- Institute of Ultrasound Imaging & Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, P. R. China.
| | - Haitao Ran
- Institute of Ultrasound Imaging & Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, P. R. China.
| | - Yuanyi Zheng
- Institute of Ultrasound Imaging & Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, P. R. China.
| | - Dong Wang
- Department of Ultrasound, Children's Hospital Affiliated to Chongqing Medical University, Chongqing, 400014, P. R. China
| | - Jinshun Xu
- Institute of Ultrasound Imaging & Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, P. R. China.
| | - Zhibiao Wang
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Pan Li
- Institute of Ultrasound Imaging & Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, P. R. China.
| |
Collapse
|
30
|
Dillon CR, Borasi G, Payne A. Analytical estimation of ultrasound properties, thermal diffusivity, and perfusion using magnetic resonance-guided focused ultrasound temperature data. Phys Med Biol 2016; 61:923-36. [PMID: 26741344 DOI: 10.1088/0031-9155/61/2/923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one.
Collapse
Affiliation(s)
- C R Dillon
- Department of Radiology, University of Utah, 729 Arapeen Dr, Salt Lake City, UT 84108, USA
| | | | | |
Collapse
|
31
|
Hsiao YH, Kuo SJ, Tsai HD, Chou MC, Yeh GP. Clinical Application of High-intensity Focused Ultrasound in Cancer Therapy. J Cancer 2016; 7:225-31. [PMID: 26918034 PMCID: PMC4747875 DOI: 10.7150/jca.13906] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/03/2015] [Indexed: 12/25/2022] Open
Abstract
The treatment of cancer is an important issue in both developing and developed countries. Clinical use of ultrasound in cancer is not only for the diagnosis but also for the treatment. Focused ultrasound surgery (FUS) is a noninvasive technique. By using the combination of high-intensity focused ultrasound (HIFU) and imaging method, FUS has the potential to ablate tumor lesions precisely. The main mechanisms of HIFU ablation involve mechanical and thermal effects. Recent advances in HIFU have increased its popularity. Some promising results were achieved in managing various malignancies, including pancreas, prostate, liver, kidney, breast and bone. Other applications include brain tumor ablation and disruption of the blood-brain barrier. We aim at briefly outlining the clinical utility of FUS as a noninvasive technique for a variety of types of cancer treatment.
Collapse
Affiliation(s)
- Yi-Hsuan Hsiao
- 1. School of Medicine, Chung Shan Medical University, Taichung, Taiwan; 2. Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shou-Jen Kuo
- 3. Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Horng-Der Tsai
- 2. Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Chih Chou
- 1. School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Perng Yeh
- 1. School of Medicine, Chung Shan Medical University, Taichung, Taiwan; 2. Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
32
|
Copelan A, Hartman J, Chehab M, Venkatesan AM. High-Intensity Focused Ultrasound: Current Status for Image-Guided Therapy. Semin Intervent Radiol 2015; 32:398-415. [PMID: 26622104 DOI: 10.1055/s-0035-1564793] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Image-guided high-intensity focused ultrasound (HIFU) is an innovative therapeutic technology, permitting extracorporeal or endocavitary delivery of targeted thermal ablation while minimizing injury to the surrounding structures. While ultrasound-guided HIFU was the original image-guided system, MR-guided HIFU has many inherent advantages, including superior depiction of anatomic detail and superb real-time thermometry during thermoablation sessions, and it has recently demonstrated promising results in the treatment of both benign and malignant tumors. HIFU has been employed in the management of prostate cancer, hepatocellular carcinoma, uterine leiomyomas, and breast tumors, and has been associated with success in limited studies for palliative pain management in pancreatic cancer and bone tumors. Nonthermal HIFU bioeffects, including immune system modulation and targeted drug/gene therapy, are currently being explored in the preclinical realm, with an emphasis on leveraging these therapeutic effects in the care of the oncology patient. Although still in its early stages, the wide spectrum of therapeutic capabilities of HIFU offers great potential in the field of image-guided oncologic therapy.
Collapse
Affiliation(s)
- Alexander Copelan
- Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, Michigan
| | - Jason Hartman
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Monzer Chehab
- Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, Michigan
| | - Aradhana M Venkatesan
- Section of Abdominal Imaging, Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
33
|
Brown MRD, Farquhar-Smith P, Williams JE, ter Haar G, deSouza NM. The use of high-intensity focused ultrasound as a novel treatment for painful conditions-a description and narrative review of the literature. Br J Anaesth 2015; 115:520-30. [PMID: 26385662 DOI: 10.1093/bja/aev302] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
High-intensity focused ultrasound (HIFU) is a non-invasive technique that allows a small, well-circumscribed thermal lesion to be generated within a tissue target. Tissue destruction occurs due to direct heating within the lesion and the mechanical effects of acoustic cavitation. HIFU has been used in a broad range of clinical applications, including the treatment of malignancies, uterine fibroids and cardiac arrhythmias. Interest in the use of the technique to treat pain has recently increased. A number of painful conditions have been successfully treated, including musculoskeletal degeneration, bone metastases and neuropathic pain. The exact mechanism by which HIFU results in analgesia remains poorly understood, but it is thought to be due to localised denervation of tissue targets and/or neuromodulatory effects. The majority of studies conducted investigating the use of HIFU in pain are still at an early stage, although initial results are encouraging. Further research is indicated to improve our understanding of the mechanisms underlying this treatment and to fully establish its efficacy; however, it is likely that HIFU will play a role in pain management in the future. This narrative review provides a synthesis of the recent, salient clinical and basic science research related to this topic and gives a general introduction to the mechanisms by which HIFU exerts its effects.
Collapse
Affiliation(s)
- M R D Brown
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | | | - J E Williams
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - G ter Haar
- Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - N M deSouza
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
34
|
Abstract
High intensity focused ultrasound (HIFU), is a promising, non-invasive modality for treatment of tumours in conjunction with magnetic resonance imaging or diagnostic ultrasound guidance. HIFU is being used increasingly for treatment of prostate cancer and uterine fibroids. Over the last 10 years a growing number of clinical trials have examined HIFU treatment of both benign and malignant tumours of the liver, breast, pancreas, bone, connective tissue, thyroid, parathyroid, kidney and brain. For some of these emerging indications, HIFU is poised to become a serious alternative or adjunct to current standard treatments--including surgery, radiation, gene therapy, immunotherapy, and chemotherapy. Current commercially available HIFU devices are marketed for their thermal ablation applications. In the future, lower energy treatments may play a significant role in mediating targeted drug and gene delivery for cancer treatment. In this article we introduce currently available HIFU systems, provide an overview of clinical trials in emerging oncological targets, and briefly discuss selected pre-clinical research that is relevant to future oncological HIFU applications.
Collapse
Affiliation(s)
- Ezekiel Maloney
- Department of Radiology, University of Washington , Seattle and
| | | |
Collapse
|
35
|
Kopechek JA, Park EJ, Zhang YZ, Vykhodtseva NI, McDannold NJ, Porter TM. Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions. Phys Med Biol 2014; 59:3465-81. [PMID: 24899634 PMCID: PMC4119424 DOI: 10.1088/0031-9155/59/13/3465] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acoustic emissions that increase tissue absorption and accelerate HIFU-induced heating. Unfortunately, initiating inertial cavitation in tumors requires high intensities and can be unpredictable. To address this need, phase-shift nanoemulsions (PSNE) have been developed. PSNE consist of lipid-coated liquid perfluorocarbon droplets that are less than 200 nm in diameter, thereby allowing passive accumulation in tumors through leaky tumor vasculature. PSNE can be vaporized into microbubbles in tumors in order to nucleate cavitation activity and enhance HIFU-mediated heating. In this study, MR-guided HIFU treatments were performed on intramuscular rabbit VX2 tumors in vivo to assess the effect of vaporized PSNE on acoustic cavitation and HIFU-mediated heating. HIFU pulses were delivered for 30 s using a 1.5 MHz, MR-compatible transducer, and cavitation emissions were recorded with a 650 kHz ring hydrophone while temperature was monitored using MR thermometry. Cavitation emissions were significantly higher (P < 0.05) after PSNE injection and this was well correlated with enhanced HIFU-mediated heating in tumors. The peak temperature rise induced by sonication was significantly higher (P < 0.05) after PSNE injection. For example, the mean per cent change in temperature achieved at 5.2 W of acoustic power was 46 ± 22% with PSNE injection. The results indicate that PSNE nucleates cavitation which correlates with enhanced HIFU-mediated heating in tumors. This suggests that PSNE could potentially be used to reduce the time and/or acoustic intensity required for HIFU-mediated heating, thereby increasing the feasibility and clinical efficacy of HIFU thermal ablation therapy.
Collapse
|
36
|
Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J. MR-guided focused ultrasound surgery, present and future. Med Phys 2014; 40:080901. [PMID: 23927296 DOI: 10.1118/1.4811136] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MR-guided focused ultrasound surgery (MRgFUS) is a quickly developing technology with potential applications across a spectrum of indications traditionally within the domain of radiation oncology. Especially for applications where focal treatment is the preferred technique (for example, radiosurgery), MRgFUS has the potential to be a disruptive technology that could shift traditional patterns of care. While currently cleared in the United States for the noninvasive treatment of uterine fibroids and bone metastases, a wide range of clinical trials are currently underway, and the number of publications describing advances in MRgFUS is increasing. However, for MRgFUS to make the transition from a research curiosity to a clinical standard of care, a variety of challenges, technical, financial, clinical, and practical, must be overcome. This installment of the Vision 20∕20 series examines the current status of MRgFUS, focusing on the hurdles the technology faces before it can cross over from a research technique to a standard fixture in the clinic. It then reviews current and near-term technical developments which may overcome these hurdles and allow MRgFUS to break through into clinical practice.
Collapse
Affiliation(s)
- David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Häcker A, Dinter D, Michel MS, Alken P. High-intensity focused ultrasound as a treatment option in renal cell carcinoma. Expert Rev Anticancer Ther 2014; 5:1053-9. [PMID: 16336096 DOI: 10.1586/14737140.5.6.1053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Due to the widespread use of modern imaging modalities, small renal masses are discovered incidentally at increasing rates. Advances in minimally invasive technologies have changed the treatment options for renal cell carcinoma. High-intensity focused ultrasound aims to completely ablate renal tumors in a noninvasive manner. Experimental studies have demonstrated principle feasibility and safety of the technology. However, clinical studies on renal cell carcinoma are very limited and no substantial oncologic results are available to date. Major technical improvements are mandatory to enable high-intensity focused ultrasound as an effective treatment option for patients with small renal masses.
Collapse
Affiliation(s)
- Axel Häcker
- Department of Urology, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68135 Mannheim, Germany.
| | | | | | | |
Collapse
|
38
|
Bucknor MD, Rieke V, Do L, Majumdar S, Link TM, Saeed M. MRI-guided high-intensity focused ultrasound ablation of bone: evaluation of acute findings with MR and CT imaging in a swine model. J Magn Reson Imaging 2013; 40:1174-80. [PMID: 24925593 DOI: 10.1002/jmri.24451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To evaluate hyperacute (<1 hour) changes on magnetic resonance (MR) and computed tomography (CT) imaging following MR-guided high-intensity focused ultrasound (MRgHIFU) in a swine bone model as a function of sonication number and energy. MATERIALS AND METHODS Experimental procedures received approval from the local Institutional Animal Care and Use Committee. MRgHIFU was used to create distal and proximal ablations in the right femur of eight pigs. Each target was dosed with four or six sonications within similar volumes. The energy dosed to the distal target was higher (419 ± 19 J) than the proximal target (324 ± 17 J). The targeted femur and contralateral control were imaged before and after ablation using MR at 3T. Qualitative changes in signal on T1-weighted, T2-weighted, and T1-weighted postcontrast images were assessed. Ablation dimensions were calculated from postcontrast MRI. The 64-slice CT images were also obtained before and after ablation and qualitative changes were assessed. RESULTS MRgHIFU bone ablation size measured on average 8.5 × 21.1 × 16.2 mm (transverse × craniocaudal × anteroposterior). Interestingly, within similar prescribed volumes, increasing the number of sonications from 4 to 6 increased the depth of the intramedullary hypoenhanced zone from 2.9 mm to 6.5 mm (P < 0.001). There was no difference in the appearance of low versus high energy ablations. CT imaging did not show structural abnormalities. CONCLUSION The number of MRgHIFU focal sonications can be used to increase the depth of treatment within the targeted bone. Unlike CT, T2-weighted and contrast-enhanced MR demonstrated the hyperacute structural changes in the femur and surrounding soft tissue.
Collapse
Affiliation(s)
- Matthew D Bucknor
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
39
|
Muller A, Petrusca L, Auboiroux V, Valette PJ, Salomir R, Cotton F. Management of Respiratory Motion in Extracorporeal High-Intensity Focused Ultrasound Treatment in Upper Abdominal Organs: Current Status and Perspectives. Cardiovasc Intervent Radiol 2013; 36:1464-1476. [DOI: 10.1007/s00270-013-0713-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 05/08/2013] [Indexed: 12/25/2022]
|
40
|
Zhang P, Kopechek JA, Porter TM. The impact of vaporized nanoemulsions on ultrasound-mediated ablation. J Ther Ultrasound 2013; 1:2. [PMID: 24761223 PMCID: PMC3988615 DOI: 10.1186/2050-5736-1-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/13/2013] [Indexed: 01/08/2023] Open
Abstract
Background The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. Methods PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm2) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Results Bubbles formed at the HIFU focus via PSNE vaporization enhanced HIFU-mediated heating. Broadband emissions detected during HIFU exposure coincided in time with measured accelerated heating, which suggested that IC played an important role in bubble-enhanced heating. In the presence of bubbles, the acoustic power required for the formation of a 9-mm3 lesion was reduced by 72% and the exposure time required for the onset of albumin denaturation was significantly reduced (by 4 s), provided that the PSNE volume fraction in the polyacrylamide gel was at least 0.008%. Conclusions The time or acoustic power required for lesion formation in gel phantoms was dramatically reduced by vaporizing PSNE into bubbles. These results suggest that PSNE may improve the efficiency of HIFU-mediated thermal ablation of solid tumors; thus, further investigation is warranted to determine whether bubble-enhanced HIFU may potentially become a viable option for cancer therapy.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Street, Boston, MA, 02215, USA
| | - Jonathan A Kopechek
- Department of Mechanical Engineering, Boston University, 110 Cummington Street, Boston, MA, 02215, USA
| | - Tyrone M Porter
- Department of Mechanical Engineering, Boston University, 110 Cummington Street, Boston, MA, 02215, USA
| |
Collapse
|
41
|
MR-guided high-intensity focused ultrasound: current status of an emerging technology. Cardiovasc Intervent Radiol 2013; 36:1190-203. [PMID: 23474917 DOI: 10.1007/s00270-013-0592-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 01/19/2013] [Indexed: 02/06/2023]
Abstract
The concept of ideal tumor surgery is to remove the neoplastic tissue without damaging adjacent normal structures. High-intensity focused ultrasound (HIFU) was developed in the 1940s as a viable thermal tissue ablation approach. In clinical practice, HIFU has been applied to treat a variety of solid benign and malignant lesions, including pancreas, liver, prostate, and breast carcinomas, soft tissue sarcomas, and uterine fibroids. More recently, magnetic resonance guidance has been applied for treatment monitoring during focused ultrasound procedures (magnetic resonance-guided focused ultrasound, MRgFUS). Intraoperative magnetic resonance imaging provides the best possible tumor extension and dynamic control of energy deposition using real-time magnetic resonance imaging thermometry. We introduce the fundamental principles and clinical indications of the MRgFUS technique; we also report different treatment options and personal outcomes.
Collapse
|
42
|
Malietzis G, Monzon L, Hand J, Wasan H, Leen E, Abel M, Muhammad A, Price P, Abel P. High-intensity focused ultrasound: advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology. Br J Radiol 2013; 86:20130044. [PMID: 23403455 DOI: 10.1259/bjr.20130044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
High-intensity focused ultrasound (HIFU) is a rapidly maturing technology with diverse clinical applications. In the field of oncology, the use of HIFU to non-invasively cause tissue necrosis in a defined target, a technique known as focused ultrasound surgery (FUS), has considerable potential for tumour ablation. In this article, we outline the development and underlying principles of HIFU, overview the limitations and commercially available equipment for FUS, then summarise some of the recent technological advances and experimental clinical trials that we predict will have a positive impact on extending the role of FUS in cancer therapy.
Collapse
Affiliation(s)
- G Malietzis
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kopechek JA, Park E, Mei CS, McDannold NJ, Porter TM. Accumulation of phase-shift nanoemulsions to enhance MR-guided ultrasound-mediated tumor ablation in vivo. JOURNAL OF HEALTHCARE ENGINEERING 2013; 4:109-26. [PMID: 23502252 PMCID: PMC3912248 DOI: 10.1260/2040-2295.4.1.109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Magnetic resonance-guided high intensity focused ultrasound (MRgHIFU) is being explored as a non-invasive technology to treat solid tumors. However, the clinical use of HIFU for tumor ablation applications is currently limited by the long treatment times required. Phase-shift nanoemulsions (PSNE), consisting of liquid perfluorocarbon droplets that can be vaporized into microbubbles, are being developed to accelerate HIFU-mediated heating. The purpose of this study was to examine accumulation of PSNE in intramuscular rabbit tumors in vivo. MR images were acquired before and after intravenous injection of gadolinium-containing PSNE. MR signal enhancement was observed in rabbit tumors up to six hours after injection, indicating that PSNE accumulated in the tumors. In addition, PSNE vaporization was detected in the tumor with B-mode ultrasound imaging, and MR thermometry measurements indicated that PSNE accelerated the rate of HIFU-mediated heating. These results suggest that PSNE could dramatically improve the efficiency and clinical feasibility of MRgHIFU.
Collapse
|
44
|
Jenne JW, Preusser T, Günther M. High-intensity focused ultrasound: principles, therapy guidance, simulations and applications. Z Med Phys 2012; 22:311-22. [PMID: 22884198 DOI: 10.1016/j.zemedi.2012.07.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 07/09/2012] [Accepted: 07/23/2012] [Indexed: 12/19/2022]
Abstract
In the past two decades, high-intensity focused ultrasound (HIFU) in combination with diagnostic ultrasound (USgFUS) or magnetic resonance imaging (MRgFUS) opened new ways of therapeutic access to a multitude of pathologic conditions. The therapeutic potential of HIFU lies in the fact that it enables the localized deposition of high-energy doses deep within the human body without harming the surrounding tissue. The addition of diagnostic ultrasound or in particular MRI with HIFU allows for planning, control and direct monitoring of the treatment process. The clinical and preclinical applications of HIFU range from the thermal treatment of benign and malign lesions, targeted drug delivery, to the treatment of thrombi (sonothrombolysis). Especially the therapy of prostate cancer under US-guidance and the ablation of benign uterine fibroids under MRI monitoring are now therapy options available to a larger number of patients. The main challenges for an abdominal application of HIFU are posed by partial or full occlusion of the target site by bones or air filled structures (e.g. colon), as well as organ motion. In non-trivial cases, the implementation of computer based modeling, simulation and optimization is desirable. This article describes the principles of HIFU, ultrasound and MRI therapy guidance, therapy planning and simulation, and gives an overview of the current and potential future applications.
Collapse
|
45
|
Fan Z, Luo W, Song Z, Zheng W, Hu H, Du L, Zhou X. Effect of healthy tissue ablation surrounding VX2 rabbit liver tumors by high-intensity focused ultrasound combined with an ultrasound contrast agent. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2012; 31:863-871. [PMID: 22644682 DOI: 10.7863/jum.2012.31.6.863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OBJECTIVES The purpose of this study was to determine the minimum amount of healthy peripheral tissue that should be ablated when treating VX2 liver tumors with high-intensity focused ultrasound combined with an ultrasound contrast agent. METHODS Fifty-one rabbits with hepatic tumors were established and randomly divided into the following groups: group A, which only had their tumors ablated; group B, which had their tumors and 2 mm of healthy adjacent tissue ablated; and group C, which had their tumors and 4 mm of healthy adjacent tissue ablated. The pathologic characteristics of the target tissue, serum alanine aminotransferase (ALT) level, presence of intrahepatic and distant metastases, and survival time between different groups were compared after high-intensity focused ultrasound treatment. RESULTS After ablation, coagulative necrosis was observed in all targeted tissue. The serum ALT level in group C was the highest and the level in group A was the lowest on the third and fifth days after ablation (P < .05), respectively. Fourteen days later, the serum ALT level in groups B and C decreased to normal, whereas the level in group A was abnormal and significantly higher (P < .05). Compared with group A, the prevalence of metastases in groups B and C was significantly lower (P < .05), and the survival time was significantly longer (P < .05); there appeared to be no statistically significant difference between groups B and C (P > .05). CONCLUSIONS Ablation of a tumor along with 2 mm of healthy surrounding tissue is a more effective strategy for treating hepatic cancer with high-intensity focused ultrasound coupled with an ultrasound contrast agent.
Collapse
Affiliation(s)
- Zhiyong Fan
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Cornelis F, Balageas P, Le Bras Y, Rigou G, Boutault JR, Bouzgarrou M, Grenier N. Radiologically-guided thermal ablation of renal tumours. Diagn Interv Imaging 2012; 93:246-61. [DOI: 10.1016/j.diii.2012.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Zhang D, Zhang S, Wan M, Wang S. A fast tissue stiffness-dependent elastography for HIFU-induced lesions inspection. ULTRASONICS 2011; 51:857-869. [PMID: 21683972 DOI: 10.1016/j.ultras.2011.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
To monitor HIFU-induced lesion with elastography in quasi-real time, a fast correlation based elastographic algorithm using tissue stiffness-dependent displacement estimation (SdDE) is developed in this paper. The high time efficiency of the proposed method contributes to the reduction on both the number of the displacement points and the computational time of most of the points by utilizing local uniformity of the tissue under HIFU treatment. To obtain admirable comprehensive performance, the key algorithm parameter, a threshold to densify the displacement points, is optimized with simulation over a wedge-inclusion tissue model by compromising the axial resolution (AR) and the computational cost. With the optimum parameter, results from both simulations and phantom experiments show that the SdDE is faster in about one order of magnitude than the traditional correlation based algorithm. At the same time, other performance parameters, such as the signal-to-noise ratio (SNRe), the contrast-to-noise ratio (CNRe) and the axial resolution (AR), are superior to or comparable with that obtained from the traditional algorithm. In vitro experiments on bovine livers validate the improvement on the time efficiency under the circumstances of real tissue and real radio frequency (RF) signal. This preliminary work implies potential of the SdDE in dynamic or close real time guidance and monitoring of HIFU treatment.
Collapse
Affiliation(s)
- Dachun Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, PR China
| | | | | | | |
Collapse
|
48
|
Marquet F, Aubry JF, Pernot M, Fink M, Tanter M. Optimal transcostal high-intensity focused ultrasound with combined real-time 3D movement tracking and correction. Phys Med Biol 2011; 56:7061-80. [DOI: 10.1088/0031-9155/56/22/005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat Rev 2011; 38:346-53. [PMID: 21924838 DOI: 10.1016/j.ctrv.2011.08.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/20/2011] [Indexed: 12/29/2022]
Abstract
High intensity focused ultrasound (HIFU) or focused ultrasound (FUS) is a promising modality to treat tumors in a complete, non invasive fashion where online image guidance and therapy control can be achieved by magnetic resonance imaging (MRI) or diagnostic ultrasound (US). In the last 10 years, the feasibility and the safety of HIFU have been tested in a growing number of clinical studies on several benign and malignant tumors of the prostate, breast, uterine, liver, kidney, pancreas, bone, and brain. For certain indications this new treatment principle is on its verge to become a serious alternative or adjunct to the standard treatment options of surgery, radiotherapy, gene therapy and chemotherapy in oncology. In addition to the now clinically available thermal ablation, in the future, focused ultrasound at much lower intensities may have the potential to become a major instrument to mediate drug and gene delivery for localized cancer treatment. We introduce the technology of MRI guided and ultrasound guided HIFU and present a critical overview of the clinical applications and results along with a discussion of future HIFU developments.
Collapse
|
50
|
Nabi G, Goodman C, Melzer A. High intensity focused ultrasound treatment of small renal masses: Clinical effectiveness and technological advances. Indian J Urol 2011; 26:331-7. [PMID: 21116349 PMCID: PMC2978429 DOI: 10.4103/0970-1591.70561] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The review summarises the technological advances in the application of high-intensity focused ultrasound for small renal masses presumed to be cancer including the systematic review of its clinical application. Current progress in the area of magnetic resonance image guided ultrasound ablation is also appraised. Specifically, organ tracking and real time monitoring of temperature changes during the treatment are discussed. Finally, areas of future research interest are outlined.
Collapse
Affiliation(s)
- G Nabi
- Department of Urology, University of Dundee, Scotland, DD1 9SY, UK
| | | | | |
Collapse
|