1
|
Lee CL, Chen KH, Liu W, Chen CH, Tsai SF. The association between bone density of lumbar spines and different daily protein intake in different renal function. Ren Fail 2024; 46:2298080. [PMID: 38186360 PMCID: PMC10776072 DOI: 10.1080/0886022x.2023.2298080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Low protein intake (LPI) has been suggested as a treatment for chronic kidney disease (CKD). However, protein intake is essential for bone health. METHODS We studied the database of the National Health and Nutrition Examination Survey, 2005-2010. Basic variables, metabolic diseases, and bone density of different femoral areas were stratified into four subgroups according to different protein intake (DPI) (that is, <0.8, 0.8-1.0, 1.0-1.2, and >1.2 g/kg/day). RESULTS Significant differences were found among all lumbar area bone mineral density (BMD) and T-scores (p < 0.0001). There was an apparent trend between a decreasing BMD in the CKD groups with increasing DPI in all single lumbar spines (L1, L2, L3, and L4) and all L spines (L1-L4). Compared with DPI (0.8-1.0 g/day/kg), higher risks of osteoporosis were noticed in the subgroup of >1.2 g/day/kg over L2 (relative risk (RR)=1.326, 95% confidence interval (CI)=1.062-1.656), subgroup >1.2 g/day/kg over L3 (RR = 1.31, 95%CI = 1.057-1.622), subgroup <0.8 g/day/kg over L4 (RR = 1.276, 95%CI = 1.015-1.605), subgroup <0.8 g/day/kg over all L spines (RR = 11.275, 95%CI = 1.051-1.548), and subgroup >1.2 g/day/kg over all L spines (RR = 0.333, 95%CI = 1.098-1.618). However, a higher risk of osteoporosis was observed only in the non-CKD group. There was an apparent trend of higher DPI coexisting with lower BMD and T scores in patients with CKD. For osteoporosis (reference:0.8-1.0 g/day/kg), lower (<0.8 g/day/kg) or higher DPI (>1.2 g/day/kg) was associated with higher risks in the non-CKD group, but not in the CKD group. CONCLUSIONS In the CKD group, LPI for renal protection was safe without threatening L spine bone density and without causing a higher risk of osteoporosis.
Collapse
Affiliation(s)
- Chia-Lin Lee
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Intelligent data mining laboratory, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Kun-Hui Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Orthopedic Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Computer Science & Information Engineering, College of Computing and Informatics, Providence University, Taichung, Taiwan
| | - Wei‑Ju Liu
- Intelligent data mining laboratory, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Hsien Chen
- Divisions of Nephrology and Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California at Davis, Davis, CA, USA
| | - Shang-Feng Tsai
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
2
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
3
|
Frassetto LA, Masharani U. Effects of Alterations in Acid-Base Effects on Insulin Signaling. Int J Mol Sci 2024; 25:2739. [PMID: 38473990 DOI: 10.3390/ijms25052739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Insulin tightly regulates glucose levels within a narrow range through its action on muscle, adipose tissue and the liver. The activation of insulin receptors activates multiple intracellular pathways with different functions. Another tightly regulated complex system in the body is acid-base balance. Metabolic acidosis, defined as a blood pH < 7.35 and serum bicarbonate < 22 mmol/L, has clear pathophysiologic consequences including an effect on insulin action. With the ongoing intake of typical acid-producing Western diets and the age-related decline in renal function, there is an increase in acid levels within the range considered to be normal. This modest increase in acidosis is referred to as "acid stress" and it may have some pathophysiological consequences. In this article, we discuss the effects of acid stress on insulin actions in different tissues.
Collapse
Affiliation(s)
- Lynda A Frassetto
- Department of Medicine, Division of Nephrology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Umesh Masharani
- Department of Medicine, Division of Endocrinology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Hughes L, Centner C. Idiosyncratic bone responses to blood flow restriction exercise: new insights and future directions. J Appl Physiol (1985) 2024; 136:283-297. [PMID: 37994414 PMCID: PMC11212818 DOI: 10.1152/japplphysiol.00723.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
Applying blood flow restriction (BFR) during low-load exercise induces beneficial adaptations of the myotendinous and neuromuscular systems. Despite the low mechanical tension, BFR exercise facilitates a localized hypoxic environment and increase in metabolic stress, widely regarded as the primary stimulus for tissue adaptations. First evidence indicates that low-load BFR exercise is effective in promoting an osteogenic response in bone, although this has previously been postulated to adapt primarily during high-impact weight-bearing exercise. Besides studies investigating the acute response of bone biomarkers following BFR exercise, first long-term trials demonstrate beneficial adaptations in bone in both healthy and clinical populations. Despite the increasing number of studies, the physiological mechanisms are largely unknown. Moreover, heterogeneity in methodological approaches such as biomarkers of bone metabolism measured, participant and study characteristics, and time course of measurement renders it difficult to formulate accurate conclusions. Furthermore, incongruity in the methods of BFR application (e.g., cuff pressure) limits the comparability of datasets and thus hinders generalizability of study findings. Appropriate use of biomarkers, effective BFR application, and befitting study design have the potential to progress knowledge on the acute and chronic response of bone to BFR exercise and contribute toward the development of a novel strategy to protect or enhance bone health. Therefore, the purpose of the present synthesis review is to 1) evaluate current mechanistic evidence; 2) discuss and offer explanations for similar and contrasting data findings; and 3) create a methodological framework for future mechanistic and applied research.
Collapse
Affiliation(s)
- Luke Hughes
- Department of Sport Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
- Praxisklinik Rennbahn, Muttenz, Switzerland
| |
Collapse
|
5
|
Easson M, Wong S, Moody M, Schmidt TA, Deymier A. Physiochemical effects of acid exposure on bone composition and function. J Mech Behav Biomed Mater 2024; 150:106304. [PMID: 38096610 DOI: 10.1016/j.jmbbm.2023.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/04/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
Bone is primarily composed of collagen and apatite, two materials which exhibit a high sensitivity to pH dysregulation. As a result, acid exposure of bone, both clinically and in the laboratory is expected to cause compositional and mechanical changes to the tissue. Clinically, Metabolic acidosis (MA), a condition characterized by a reduced physiological pH, has been shown to have negative implications on bone health, including a decrease in bone mineral density and volume as well as increased fracture risk. The addition of bone-like apatite to ionic solutions such as phosphate buffered saline (PBS) and media has been shown to acidify the solution leading to bone acid exposure. Therefore, is it essential to understand how reduced pH physiochemically affects bone composition and in turn its mechanical properties. This study investigates the specific changes in bone due to physiochemical dissolution in acid. Excised murine bones were placed in PBS solutions at different pHs: a homeostatic pH level (pH 7.4), an acidosis equivalent (pH 7.0), and an extreme acidic solution (pH 5.5). After 5 days, the bones were removed from the solutions and characterized to determine compositional and material changes. We found that bones, without cells, were able to regulate pH via buffering, leading to a decrease in bone mineral content and an increase in collagen denaturation. Both of these compositional changes contributed to an increase in bone toughness by creating a more ductile bone surface and preventing crack propagation. Therefore, we conclude that the skeletal systems' physiochemical response to acid exposure includes multifaceted and spatially variable compositional changes that affect bone mechanics.
Collapse
Affiliation(s)
- Margaret Easson
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephanie Wong
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Mikayla Moody
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Tannin A Schmidt
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Alix Deymier
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
6
|
Bagheri R, Karimi Z, Mousavi Z, Ziaee Bashirzad M, Camera DM, Sadeghi R, Dabbagh VR, Kargarfard M, Dutheil F. High-Protein Diets during either Resistance or Concurrent Training Have No Detrimental Effect on Bone Parameters in Resistance-Trained Males. Nutrients 2024; 16:325. [PMID: 38276563 PMCID: PMC10819948 DOI: 10.3390/nu16020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The effects of combining resistance training (RT) and concurrent training (CT; resistance + endurance training) with varied protein doses on bone measures remain poorly understood. Hence, we conducted a comparison of the impacts of two high-protein diets (1.6 or 3.2 g kg-1 d-1) over 16 weeks in resistance-trained males, either with CT or RT alone. METHODS A total of forty-eight males, all of whom were resistance-trained, had the following demographics: 26.6 ± 6 years, body mass index: 25.6 ± 2.9 kg m-2 administered either 3.2 g kg-1 d-1 protein (CT2; n = 12; RT2; n = 12) or 1.6 g kg-1 d-1 protein (CT1; n = 12; RT1; n = 12) during 16 weeks (four sessions·w-1). Bone parameters were assessed pre- and post-intervention. RESULTS There was no significant interaction between the intervention group and time for the legs, arms, ribs, or pelvis area BMC and BMD (p > 0.05). For the BMD of the pelvis and the BMC of the right ribs, however, there were significant time effects noted (p < 0.05). Furthermore, there was a significant interaction between the intervention group and time in the lumbar and thoracic spines, with a particular time effect noted for the thoracic spine region (p < 0.05). The regional differences in skeletal responses to the intervention are highlighted by these data. CONCLUSION Our findings show that the intake of two high-protein diets combined with RT and CT during 16 weeks had no adverse effects on bone tissue parameters. While these findings indicate that protein intake between 2 and 3 times the current RDI does not promote bone demineralization when consumed in conjunction with exercise, future studies investigating the long-term effects of chronic high protein intake on bone tissue health are warranted.
Collapse
Affiliation(s)
- Reza Bagheri
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan 8174673441, Iran;
| | - Zohreh Karimi
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Zeynabalsadat Mousavi
- Nutrition and Food Service, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1416634793, Iran;
| | - Mahdi Ziaee Bashirzad
- Department of Sport Science, Islamic Azad University, Bojnourd Branch, Bojnourd 9417697796, Iran;
| | - Donny M. Camera
- Department of Health and Biostatistics, Swinburne University, Melbourne, VIC 3122, Australia;
| | - Ramin Sadeghi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran; (R.S.); (V.R.D.)
| | - Vahid Reza Dabbagh
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran; (R.S.); (V.R.D.)
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan 8174673441, Iran;
| | - Frederic Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Witty Fit, F-63000 Clermont-Ferrand, France;
| |
Collapse
|
7
|
Nag S, De Bruyker I, Nelson A, Moody M, Fais M, Deymier AC. Acidosis induces significant changes to the murine supraspinatus enthesis organic matrix. Connect Tissue Res 2024; 65:41-52. [PMID: 37962089 DOI: 10.1080/03008207.2023.2275044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023]
Abstract
Rotator cuff pathology is a common musculoskeletal condition that disproportionately affects older adults, as well as patients with diabetes mellitus and chronic kidney disease. It is known that increased age and kidney dysfunction have been correlated to acidotic states, which may be related to the increased incidence of rotator cuff injury. In order to investigate the potential relationship between acidosis and rotator cuff composition and mechanics, this study utilizes a 14-day murine model of metabolic acidosis and examines the effects on the supraspinatus tendon-humeral head attachment complex. The elastic matrix in the enthesis exhibited significant changes beginning at day 3 of acidosis exposure. At day 3 and day 7 timepoints, there was a decrease in collagen content seen in both mineralized and unmineralized tissue as well as a decrease in mineral:matrix ratio. There is also evidence of both mineral dissolution and reprecipitation as buffering ions continually promote pH homeostasis. Mechanical properties of the tendon-to-bone attachment were studied; however, no significant changes were elicited in this 14-day model of acidosis. These findings suggest that acidosis can result in significant changes in enthesis composition over the course of 14 days; however, enthesis mechanics may be more structurally mediated rather than affected by compositional changes.
Collapse
Affiliation(s)
- Saparja Nag
- School of Medicine, University of Connecticut, Farmington, CT, USA
| | | | - Ashley Nelson
- Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mikayla Moody
- Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
| | - Marla Fais
- Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Alix C Deymier
- Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
8
|
Yamauchi M, Kamejima S, Ueda R, Nakashima A, Urabe F, Yamamoto I, Ohkido I, Yokoo T. Marked Metabolic Acidosis Due to a Transverse Stoma after Urethroplasty for Congenital Epispadias. Intern Med 2023; 62:3663-3668. [PMID: 37164676 PMCID: PMC10781559 DOI: 10.2169/internalmedicine.1523-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/23/2023] [Indexed: 05/12/2023] Open
Abstract
A 58-year-old woman was admitted to our hospital. At 10 years old, she had undergone bilateral uretero-sigmoid anastomosis for congenital epispadias, and at 57 years old, she had received transverse colostomy. Biochemical tests showed marked metabolic acidosis. Computed tomography showed urine stagnation in the sigmoid colon, leading to a diagnosis of metabolic acidosis associated with transverse stoma after bilateral uretero-sigmoid anastomosis. Her bone mineral density was below normal, and the bone metabolic marker levels were high, indicating high-turnover osteoporosis. Both metabolic acidosis and bone metabolism were stabilized by treatment with a transanal urinary catheter, sodium bicarbonate, and vitamin D.
Collapse
Affiliation(s)
- Mariko Yamauchi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Sahoko Kamejima
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Risa Ueda
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Akio Nakashima
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Japan
| | - Izumi Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Ichiro Ohkido
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| |
Collapse
|
9
|
Li P, Pang Y, He S, Duan J, Gong H, Yan Y, Shi J. Gamma-glutamyl transferase and calculus of kidney incidence: a Mendelian randomization study. Sci Rep 2023; 13:21821. [PMID: 38071316 PMCID: PMC10710451 DOI: 10.1038/s41598-023-48610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Elevated Gamma-glutamyl transferase (GGT) levels are often suggestive of cholelithiasis, and previous studies have indicated that GGT is highly expressed in the urinary system. Therefore, we hypothesized that there may be an association between GGT levels and calculus of kidney (CK) incidence. To investigate this potential causal relationship, we employed Mendelian randomization (MR) analysis. Additionally, we analyzed the levels of other liver enzymes, including alanine transaminase (ALT) and alkaline phosphatase (ALP). The relationship between GGT levels and CK incidence was analyzed using two-sample Mendelian randomization. Summary Genome-Wide Association Studies data were utilized for this analysis. 33 single nucleotide polymorphisms known to be associated with GGT levels were employed as instrumental variables. We employed several MR methods including IVW (inverse variance weighting), MR-Egger, weighted median, weighted mode, and MR-PRESSO (Mendelian Randomization Pleiotropy RESidual Sum and Outlier). Furthermore, we conducted tests for horizontal multivariate validity, heterogeneity, and performed leave-one-out analysis to ensure the stability of the results. Overall, several MR methods yielded statistically significant results with a p-value < 0.05. The results from the IVW analysis yielded an odds ratio (OR) of 1.0062 with a 95% confidence interval (CI) of 1.0016-1.0109 (p = 0.0077). Additional MR methods provided supplementary results: MR-Egger (OR 1.0167, 95% CI 1.0070-1.0266, p = 0.0040); weighted median (OR 1.0058, 95% CI 1.0002-1.0115, p = 0.0423); and weighted mode (OR 1.0083, 95% CI 1.0020-1.0146, p- = 0.0188). Sensitivity analyses did not reveal heterogeneity or outliers. Although potential horizontal pleiotropy emerged, we speculate that this could be attributed to inadequate test efficacy. However, subsequent use of MR-PRESSO did not provide evidence of pleiotropy. Our analysis suggests a positive association between elevated GGT levels and CK incidence, indicating an increased risk of CK development. However, no causal relationship was observed between levels of ALP or ALT and CK incidence.
Collapse
Affiliation(s)
- Peizhe Li
- Department of Urology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang On the 5th Zip, Dongcheng District, Beijing, 10000, China
| | - Yuewen Pang
- Department of Urology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang On the 5th Zip, Dongcheng District, Beijing, 10000, China
| | - Shuang He
- Department of Urology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang On the 5th Zip, Dongcheng District, Beijing, 10000, China
| | - Junyao Duan
- Department of Urology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang On the 5th Zip, Dongcheng District, Beijing, 10000, China
| | - Huijie Gong
- Department of Urology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang On the 5th Zip, Dongcheng District, Beijing, 10000, China
| | - Yongji Yan
- Department of Urology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang On the 5th Zip, Dongcheng District, Beijing, 10000, China.
| | - Jing Shi
- Department of Urology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang On the 5th Zip, Dongcheng District, Beijing, 10000, China.
| |
Collapse
|
10
|
Je M, Kang K, Yoo JI, Kim Y. The Influences of Macronutrients on Bone Mineral Density, Bone Turnover Markers, and Fracture Risk in Elderly People: A Review of Human Studies. Nutrients 2023; 15:4386. [PMID: 37892460 PMCID: PMC10610213 DOI: 10.3390/nu15204386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoporosis is a health condition that involves weak bone mass and a deteriorated microstructure, which consequently lead to an increased risk of bone fractures with age. In elderly people, a fracture attributable to osteoporosis elevates mortality. The objective of this review was to examine the effects of macronutrients on bone mineral density (BMD), bone turnover markers (BTMs), and bone fracture in elderly people based on human studies. A systematic search was conducted in the PubMed®/MEDLINE® database. We included human studies published up to April 2023 that investigated the association between macronutrient intake and bone health outcomes. A total of 11 meta-analyses and 127 individual human studies were included after screening the records. Carbohydrate consumption seemed to have neutral effects on bone fracture in limited studies, but human studies on carbohydrates' effects on BMD or/and BTMs are needed. The human studies analyzed herein did not clearly show whether the intake of animal, vegetable, soy, or milk basic proteins has beneficial effects on bone health due to inconsistent results. Moreover, several individual human studies indicated an association between eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and osteocalcin. Further studies are required to draw a clear association between macronutrients and bone health in elderly people.
Collapse
Affiliation(s)
- Minkyung Je
- Department of Food and Nutrition, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (M.J.); (K.K.)
| | - Kyeonghoon Kang
- Department of Food and Nutrition, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (M.J.); (K.K.)
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Inha University Hospital, 27 Inhang-Ro, Incheon 22332, Republic of Korea;
| | - Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| |
Collapse
|
11
|
Fratangelo L, Nguyen S, D'Amelio P. Hyponatremia and aging-related diseases: key player or innocent bystander? A systematic review. Syst Rev 2023; 12:84. [PMID: 37173774 PMCID: PMC10182618 DOI: 10.1186/s13643-023-02246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Hyponatremia is frequent in older age; whether it is a key player, a surrogate marker, or an innocent bystander in age-related diseases is still unclear. OBJECTIVE To understand the role of hyponatremia in falls, osteoporosis, fractures, and cognitive impairment in old patients. METHOD Eligibility criteria for study inclusions were: written in English, peer-reviewed observational and intervention studies, clinical trial, prospective and retrospective controlled cohort studies, and case-controlled studies without limitations regarding the date of publication. INFORMATION SOURCES Protocol available on the International Prospective Register of Systematic Reviews (PROSPERO, CRD42021218389). MEDLINE, Embase, and PsycINFO were searched. Final search done on August 8, 2021. Risk-of-bias assessment: Risk-of-Bias Assessment tool for Non-randomized Studies (RoBANS) and the Bradford Hill's criteria for causality. RESULTS Includes studies: One-hundred thirty-five articles retained for the revision. Synthesis of results - Falls: Eleven studies were included. Strong association between hyponatremia and falls in all the studies was found. Osteoporosis and fractures: nineteen articles were included. The association between hyponatremia and osteoporosis is unclear. Cognitive impairment: Five articles were included. No association between hyponatremia and cognitive impairment was found. DISCUSSION Interpretation: Falls, osteoporosis, and fractures are multifactorial. Hyponatremia is not temporally related with the outcomes; we suggest that hyponatremia may be regarded as a marker of unhealthy aging and a confounder instead of a causal factor or an innocent bystander for falls and fractures. Concerning cognitive impairment, there are no evidence supporting a real role of hyponatremia to be regarded as an innocent bystander in neurodegeneration.
Collapse
Affiliation(s)
- Luigia Fratangelo
- Service of Geriatric Medicine & Geriatric Rehabilitation, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Sylvain Nguyen
- Service of Geriatric Medicine & Geriatric Rehabilitation, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrizia D'Amelio
- Service of Geriatric Medicine & Geriatric Rehabilitation, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medical Science, Geriatric Unit, University of Torino, 10126, Turin, Italy
| |
Collapse
|
12
|
Levy RV, McMahon DJ, Agarwal S, Dempster D, Zhou H, Misof BM, Guo X, Kamanda-Kosseh M, Aponte MA, Reidy K, Kumar J, Fusaro M, Brown DD, Melamed ML, Nickolas TL. Comprehensive Associations between Acidosis and the Skeleton in Patients with Kidney Disease. J Am Soc Nephrol 2023; 34:668-681. [PMID: 36749125 PMCID: PMC10103353 DOI: 10.1681/asn.0000000000000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
SIGNIFICANCE STATEMENT Renal osteodystrophy (ROD) contributes substantially to morbidity in CKD, including increased fracture risk. Metabolic acidosis (MA) contributes to the development of ROD, but an up-to-date skeletal phenotype in CKD-associated acidosis has not been described. We comprehensively studied associations between acidosis and bone in patients with CKD using advanced methods to image the skeleton and analyze bone-tissue, along with biochemical testing. Cross-sectionally, acidosis was associated with higher markers of bone remodeling and female-specific impairments in cortical and trabecular bone quality. Prospectively, acidosis was associated with cortical expansion and trabecular microarchitectural deterioration. At the bone-tissue level, acidosis was associated with deficits in bone mineral content. Future work investigating acidosis correction on bone quality is warranted. BACKGROUND Renal osteodystrophy is a state of impaired bone quality and strength. Metabolic acidosis (MA) is associated with alterations in bone quality including remodeling, microarchitecture, and mineralization. No studies in patients with CKD have provided a comprehensive multimodal skeletal phenotype of MA. We aim to describe the structure and makeup of bone in patients with MA in the setting of CKD using biochemistry, noninvasive imaging, and histomorphometry. METHODS The retrospective cross-sectional analyses included 180 patients with CKD. MA was defined as bicarbonate ≤22 mEq/L. We evaluated circulating bone turnover markers and skeletal imaging with dual energy x-ray absorptiometry and high-resolution peripheral computed tomography. A subset of 54 participants had follow-up. We assessed associations between baseline and change in bicarbonate with change in bone outcomes. Histomorphometry, microCT, and quantitative backscatter electron microscopy assessed bone biopsy outcomes in 22 participants. RESULTS The mean age was 68±10 years, 54% of participants were male, and 55% were White. At baseline, acidotic subjects had higher markers of bone turnover, lower areal bone mineral density at the radius by dual energy x-ray absorptiometry, and lower cortical and trabecular volumetric bone mineral density and impaired trabecular microarchitecture. Over time, acidosis was associated with opposing cortical and trabecular effects: cortical expansion but trabecular deterioration. Bone-tissue analyses showed reduced tissue mineral density with increased heterogeneity of calcium distribution in acidotic participants. CONCLUSIONS MA is associated with multiple impairments in bone quality. Future work should examine whether correction of acidosis improves bone quality and strength in patients with CKD.
Collapse
Affiliation(s)
- Rebecca V. Levy
- Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, New York, USA
- Pediatric Nephrology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | - David Dempster
- Columbia University Irving Medical Center, New York, USA
| | - Hua Zhou
- Columbia University Irving Medical Center, New York, USA
| | - Barbara M. Misof
- Ludwig Boltzmann Institute for Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - X.E. Guo
- Columbia University Biomedical Engineering, New York, New York, USA
| | | | | | - Kimberly Reidy
- Nephrology, Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Juhi Kumar
- Nephrology, Department of Pediatrics, Weill-Cornell Medical Center, New York, New York
| | - Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), Pisa, Italy
- Department of Medicine, University of Padova, Padova, Padua, Italy
| | - Denver D. Brown
- Division of Nephrology, Children's National Hospital, Washington, DC
| | - Michal L. Melamed
- Nephrology, Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | | |
Collapse
|
13
|
Osman O, Manzi S, Wasko MC, Clark BA. Case report: disease mechanisms and medical management of calcium nephrolithiasis in rheumatologic diseases. BMC Urol 2023; 23:42. [PMID: 36959633 PMCID: PMC10035194 DOI: 10.1186/s12894-023-01203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/19/2023] [Indexed: 03/25/2023] Open
Abstract
Background Nephrolithiasis as a feature of rheumatologic diseases is under recognized. Understanding presenting features, diagnostic testing is crucial to proper management. Case presentation A 32 year old woman with a history of recurrent complicated nephrolithiasis presented to a rheumatologist for a several month history of fatigue, dry eyes, dry mouth, arthralgias. She had a positive double-stranded DNA, positive SSA and SSB antibodies. She was diagnosed with Systemic Lupus erythematosus (SLE) and Sjogren's syndrome and was started on mycophenalate mofetil. Of relevance was a visit to her local emergency room 4 years earlier with profound weakness with unexplained marked hypokalemia and a non-anion gap metabolic acidosis. Approximately one year after that episode she developed flank pain and nephrocalcinosis. She had multiple issues over the ensuing years with stones and infections on both sides. Interventions included extracorporeal shockwave lithotripsy as well as open lithotomy and eventual auto-transplantation of left kidney for recurrent ureteric stenosis. 24 h stone profile revealed marked hypocitraturia, normal urine calcium, normal urine oxalate and uric acid. She was treated with potassium citrate. Mycophenolate was eventually stopped due to recurrent urinary tract infections and she was started on Belimumab. Because of recurrent SLE flares, treatment was changed to Rituximab (every 6 months) with clinical and serologic improvement. Her kidney stone frequency gradually improved and no further interventions needed although she continued to require citrate repletion for hypocitraturia. Conclusions Nephrolithiasis can be a prominent and even presenting feature in Sjogrens syndrome as well as other rheumatologic diseases. Prompt recognition and understanding disease mechanisms is important for best therapeutic interventions for kidney stone prevention as well as treatment of underlying bone mineral disease.
Collapse
Affiliation(s)
- Omar Osman
- grid.417046.00000 0004 0454 5075Department of Medicine, Allegheny Health Network, 320 East North Ave, Pittsburgh, PA 15212 USA
| | - Susan Manzi
- grid.417046.00000 0004 0454 5075Department of Medicine, Allegheny Health Network, 320 East North Ave, Pittsburgh, PA 15212 USA
| | - Mary Chester Wasko
- grid.417046.00000 0004 0454 5075Department of Medicine, Allegheny Health Network, 320 East North Ave, Pittsburgh, PA 15212 USA
| | - Barbara A. Clark
- grid.417046.00000 0004 0454 5075Department of Medicine, Allegheny Health Network, 320 East North Ave, Pittsburgh, PA 15212 USA
| |
Collapse
|
14
|
Valldecabres A, Silva-Del-Río N. Negative dietary cation-anion difference in prepartum dairy cow diets: a pragmatic study in two commercial dairy farms. Animal 2023; 17:100731. [PMID: 36868058 DOI: 10.1016/j.animal.2023.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Pragmatic studies, evaluating the effectiveness of an intervention under its usual conditions, are less commonly reported than the explanatory trials. For instance, the effectiveness of prepartum negative dietary cation-anion difference (DCAD) diets on inducing a compensated metabolic acidosis that promotes a higher blood Ca concentration at calving has not been frequently described under commercial farm management conditions without researchers' interference. Thus, the objectives were to study cows under commercial farm management conditions to (1) describe the daily close-up dairy cows' urine pH and fed DCAD, and (2) evaluate the association between urine pH and fed DCAD, and preceding urine pH and blood Ca at calving. A total of 129 close-up Jersey cows about to commence their ≥2nd lactation were enrolled in the study after 7 days of exposure to DCAD diets in two commercial dairy herds. Urine pH was determined daily from mid-stream urine samples from enrollment to calving. Fed DCAD was determined from feed bunk samples obtained during 29 (Herd 1) and 23 (Herd 2) consecutive days. Plasma Ca concentration was determined within 12 h after calving. Descriptive statistics were generated at the herd- and cow-level. Multiple linear regression was used to evaluate the associations between urine pH and fed DCAD for each herd, and preceding urine pH and plasma Ca concentration at calving for both herds. At herd-level, the average urine pH and CV during the study period were 6.1 and 12.0% (Herd 1) and 5.9 and 10.9% (Herd 2), respectively. At the cow-level, the average urine pH and CV during the study period were 6.1 and 10.3% (Herd 1) and 6.1 and 12.3% (Herd 2), respectively. During the study period, fed DCAD averages were -121.3 and -165.7 mEq/kg of DM and CV 22.8 and 60.6% for Herd 1 and Herd 2, respectively. No evidence of association between cows' urine pH and fed DCAD was observed in Herd 1, whereas a quadratic association was observed in Herd 2. When both herds were combined, a quadratic association was observed between the urine pH intercept (at calving) and plasma Ca concentration. Although average urine pH and fed DCAD were within recommended ranges, the high variability observed indicates that acidification and fed DCAD are not constant, and often outside the recommended ranges in commercial settings. Monitoring of DCAD programs is warranted to ensure their effectiveness under commercial settings.
Collapse
Affiliation(s)
- Ainhoa Valldecabres
- Veterinary Medicine Teaching and Research Center, University of California, Davis, 18830 Road 112, Tulare, CA 93274, United States; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis 95616, United States
| | - Noelia Silva-Del-Río
- Veterinary Medicine Teaching and Research Center, University of California, Davis, 18830 Road 112, Tulare, CA 93274, United States; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis 95616, United States.
| |
Collapse
|
15
|
Abstract
Changes in bone architecture and metabolism with aging increase the likelihood of osteoporosis and fracture. Age-onset osteoporosis is multifactorial, with contributory extrinsic and intrinsic factors including certain medical problems, specific prescription drugs, estrogen loss, secondary hyperparathyroidism, microenvironmental and cellular alterations in bone tissue, and mechanical unloading or immobilization. At the histological level, there are changes in trabecular and cortical bone as well as marrow cellularity, lineage switching of mesenchymal stem cells to an adipogenic fate, inadequate transduction of signals during skeletal loading, and predisposition toward senescent cell accumulation with production of a senescence-associated secretory phenotype. Cumulatively, these changes result in bone remodeling abnormalities that over time cause net bone loss typically seen in older adults. Age-related osteoporosis is a geriatric syndrome due to the multiple etiologies that converge upon the skeleton to produce the ultimate phenotypic changes that manifest as bone fragility. Bone tissue is dynamic but with tendencies toward poor osteoblastic bone formation and relative osteoclastic bone resorption with aging. Interactions with other aging physiologic systems, such as muscle, may also confer detrimental effects on the aging skeleton. Conversely, individuals who maintain their BMD experience a lower risk of fractures, disability, and mortality, suggesting that this phenotype may be a marker of successful aging. © 2023 American Physiological Society. Compr Physiol 13:4355-4386, 2023.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Endocrinology, and Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,The Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Smith C, Hiam D, Tacey A, Lin X, Woessner MN, Zarekookandeh N, Garnham A, Chubb P, Lewis JR, Sim M, Herrmann M, Duque G, Levinger I. Higher bone remodeling biomarkers are related to a higher muscle function in older adults: Effects of acute exercise. Bone 2022; 165:116545. [PMID: 36108920 DOI: 10.1016/j.bone.2022.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/14/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
Bone and muscle are closely linked mechanically and biochemically. Bone hormones secreted during bone remodeling might be linked to muscle mass and strength maintenance. Exercise elicits high mechanical strain and is essential for bone health. However, the relationship between commonly used bone turnover markers (BTMs) and muscle function in community dwelling older adults remains unclear. It is also unknown how acute exercise with differing mechanical strain may affect BTMs, and whether baseline muscle function alters BTM responses differently. We tested the hypothesis that BTMs are associated with muscle function, and that acute exercise could change the circulating levels of BTMs. Thirty-five older adults (25 females/10 males, 72.8 ± 6.0 years) participated. Baseline assessments included body composition (DXA), handgrip strength and a physical performance test (PPT) (gait speed, timed-up-and-go [TUG], stair ascent/descent). Leg muscle quality (LMQ) and stair climb power (SCP) were calculated. Participants performed (randomized) 30 min aerobic (AE) (cycling 70%HRPeak) and resistance (RE) (leg press 70%RM, jumping) exercise. Serum β-isomerized C-terminal telopeptides (β-CTX), procollagen of type I propeptide (P1NP), total osteocalcin (t)OC and ucOC were assessed at baseline and post-exercise. Data were analyzed using linear mixed models and simple regressions, adjusted for sex. At baseline, higher muscle strength (LMQ, handgrip) was related to higher P1NP, higher SCP was related to higher P1NP and β-CTX, and better physical performance (lower PPT) related to higher P1NP and β-CTX (p < 0.05). Exercise, regardless of mode, decreased β-CTX and tOC (all p < 0.05), while P1NP and ucOC remained unaltered. Higher baseline handgrip strength, SCP and LMQ was associated with lower post-exercise β-CTX responses, and poorer baseline mobility (increased TUG time) was associated with higher post-exercise β-CTX. Independently of exercise mode, acute exercise decreased β-CTX and tOC. Our data suggest that in older adults at baseline, increased BTM levels were linked to better muscle function. Altogether, our data strengthens the evidence for bone-muscle interaction, however, mechanisms behind this specific component of bone-muscle crostalk remain unclear.
Collapse
Affiliation(s)
- Cassandra Smith
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Danielle Hiam
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Alexander Tacey
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Mary N Woessner
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Navabeh Zarekookandeh
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Andrew Garnham
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Paul Chubb
- PathWest Laboratory Medicine, Fiona Stanley Hospital, Perth, Australia; Medical School, University Western Australia, Perth, WA, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, University Western Australia, Perth, WA, Australia; Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Marc Sim
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, University Western Australia, Perth, WA, Australia
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Boyer O, Manso-Silván MA, Joukoff S, Berthaud R, Guittet C. Improved growth of a child with primary distal renal tubular acidosis after switching from a conventional alkalizing treatment to a new prolonged-release formulation containing potassium citrate and potassium bicarbonate: lessons for the clinical nephrologist. J Nephrol 2022; 35:2119-2122. [PMID: 35357683 PMCID: PMC9584875 DOI: 10.1007/s40620-022-01306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/05/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Olivia Boyer
- Néphrologie Pédiatrique, Centre de référence MARHEA, AP-HP, Hôpital Necker-Enfants Malades, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France.
| | | | | | - Romain Berthaud
- Néphrologie Pédiatrique, Centre de référence MARHEA, AP-HP, Hôpital Necker-Enfants Malades, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France
| | | |
Collapse
|
18
|
Dietary Acid Load Was Positively Associated with the Risk of Hip Fracture in Elderly Adults. Nutrients 2022; 14:nu14183748. [PMID: 36145124 PMCID: PMC9503794 DOI: 10.3390/nu14183748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Previous studies have shown that dietary acid load (DAL) harms bone health, but the evidence is inconsistent and insufficient. This study examined the relationships between DAL and the risk of hip fracture. This case−control study contained 1070 pairs of 1:1 age-, city-, and gender-matched incident cases and controls (mean age, 71 years) recruited in Guangdong, China. Dietary information was collected using a validated 79-item food frequency questionnaire through face-to-face interviews. DAL was estimated based on established algorithms for the potential renal acid load (PRAL) and net endogenous acid production (NEAP). Higher PRAL and NEAP were dose-dependently associated with a higher risk of hip fracture in both the conditional logistic regression model and restricted cubic spline analysis after adjusting for potential covariates. The multivariate-adjusted odds ratios and 95% CI of hip fracture for tertiles 2 and 3 (vs. 1) of DAL were 1.63 (1.18, 2.25) and 1.92 (1.36, 2.71) for PRAL and 1.81 (1.30, 2.53) and 2.55 (1.76, 3.71) for NEAP in all participants (all p-trends < 0.001), respectively. Subgroup analyses showed more pronounced associations in participants with a lower body mass index. Our findings suggested positive associations between the estimated DAL and the risk of hip fractures in the elderly Chinese population.
Collapse
|
19
|
The Bone Biomarker Response to an Acute Bout of Exercise: A Systematic Review with Meta-Analysis. Sports Med 2022; 52:2889-2908. [DOI: 10.1007/s40279-022-01718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/16/2022]
|
20
|
Moe OW, Maalouf NM, Sakhaee K, Lederer E. Preclinical and Clinical Evidence of Effect of Acid on Bone Health. Adv Chronic Kidney Dis 2022; 29:381-394. [PMID: 36175076 PMCID: PMC11375989 DOI: 10.1053/j.ackd.2022.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acid can have ill effect on bone health in the absence of frank clinical acidosis but affecting the bone mioneral matrix and bone cells via complex pathways botyh ascute;y and chronically. While the reaction of bone to an acid load is conserved in evolution and is adaptive, the capacity can be overwhelmed resulting in dire consequences. The preclinical an clincl evidence of the acdi effect on bone is very convincing and the clinical evidence in both association and interventiopn studies are also quite credible, The adverse effects of acid on bone is underappreoicated, under-investigated, and the potential benefits of alkali therapy is not generrally known.
Collapse
Affiliation(s)
- Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX.
| | - Naim M Maalouf
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Khashayar Sakhaee
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eleanor Lederer
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX; Medical Service, VA North Texas Health Care System, Dallas, TX
| |
Collapse
|
21
|
Abstract
Eating a net acid-producing diet can produce an "acid stress" of severity proportional to the diet net acid load, as indexed by the steady-state renal net acid excretion rate. Depending on how much acid or base is ingested or produced from endogenous metabolic processes and how well our homeostatic mechanisms can buffer or eliminate the additional acids or bases, we can alter our systemic acid-base balance. With increasing age, the kidney's ability to excrete daily net acid loads declines (a condition similar to that of mild CKD), invoking increased utilization of potential base stores (eg, bone, skeletal muscle) on a daily basis to mitigate the acid accumulation, thereby contributing to development of osteoporosis, loss of muscle mass, and age-related renal insufficiency. Patients suffering from more advanced CKD often present with more severe acid stress or metabolic acidosis, as the kidney can no longer excrete the entire acid load. Alkaline diets based on fruits and vegetables may have a positive effect on long-term preservation of renal function while maintaining nutritional status. This chapter discusses the biochemistry of dietary precursors that affect acid or base production.
Collapse
Affiliation(s)
- Lynda Frassetto
- Department of Medicine, University of California San Francisco, San Francisco, CA.
| | - Thomas Remer
- Department of Nutrition and Lifestyle Sciences, University of Bonn, Bonn, Germany
| | - Tanushree Banerjee
- Department of Medicine, University of California San Francisco, San Francisco, CA
| |
Collapse
|
22
|
Mathur V, Reaven NL, Funk SE, Whitlock R, Ferguson TW, Collister D, Tangri N. Association of metabolic acidosis with fractures, falls, protein-calorie malnutrition, and failure to thrive in patients with chronic kidney disease. Clin Kidney J 2022; 15:1379-1386. [PMID: 35756750 PMCID: PMC9217643 DOI: 10.1093/ckj/sfac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
The risk of adverse geriatric outcomes such as falls and fractures is high among patients with chronic kidney disease (CKD). Metabolic acidosis is associated with protein catabolism and bone loss in experimental animal and human studies. We sought to quantify the independent association of metabolic acidosis with adverse muscle, bone, and functional outcomes in a large U.S. community-based cohort.
Methods
The Optum's de-identified Integrated Claims-Clinical dataset of US patients (2007-2017) was used to generate a cohort of patients with non-dialysis-dependent CKD who had eGFR >10 to <60 mL/min/1.73 m2 and 2 serum bicarbonate values 12 to <22 mmol/L or 22-29 mmol/L. The primary outcomes were failure to thrive, protein-calorie malnutrition, and fall or fracture. Cox proportional hazards models were used for the primary outcomes for up to 10 years, while logistic regression models were used at 2 years.
Results
51,558 patients qualified for the study, with a median (IQR) follow-up time of 4.2 (2.5-5.8) years. Over a ≤ 10-year period, for each 1-mmol/L increase in serum bicarbonate, the hazard ratios (adjusted for age, sex, race, eGFR, serum albumin, hemoglobin, diabetes and cardiovascular comorbidities) for failure to thrive, protein-calorie malnutrition, and fall or fracture were 0.91 (95% confidence interval [CI], 0.90-0.92), 0.91 (95% CI, 0.90-0.92), and 0.95 (95% CI, 0.95-0.96), all P < 0.001, respectively.
Conclusions
The presence and severity of metabolic acidosis was a significant, independent risk factor for failure to thrive, protein-calorie malnutrition, and fall or fracture in this large community cohort of patients with stage 3-5 CKD.
Collapse
Affiliation(s)
| | | | - Susan E Funk
- Strategic Health Resources, La Canada, California, USA
| | - Reid Whitlock
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba; Winnipeg, Manitoba, Canada
| | - Thomas W Ferguson
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba; Winnipeg, Manitoba, Canada
| | - David Collister
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba; Winnipeg, Manitoba, Canada
| | - Navdeep Tangri
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba; Winnipeg, Manitoba, Canada
| |
Collapse
|
23
|
Bushinsky DA, Krieger NS. Effects of Acid on Bone. Kidney Int 2022; 101:1160-1170. [DOI: 10.1016/j.kint.2022.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
|
24
|
Boro H, Khatiwada S, Alam S, Kubihal S, Dogra V, Mannar V, Khadgawat R. Renal Tubular Acidosis Manifesting as Severe Metabolic Bone Disease. TOUCHREVIEWS IN ENDOCRINOLOGY 2022; 17:59-67. [PMID: 35118447 DOI: 10.17925/ee.2021.17.1.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/05/2021] [Indexed: 11/24/2022]
Abstract
Renal tubular acidosis (RTA) is a condition characterized by normal anion gap metabolic acidosis. Type 1 and type 2 RTA are the most common, and are caused by defective secretion of hydrogen ions and impaired absorption of bicarbonate, respectively. Long-standing uncorrected acidosis can lead to metabolic bone disease (MBD). Rickets and osteomalacia remain the commonest manifestations of uncorrected RTA. In addition, there can be a myriad of other skeletal manifestations like fractures, pseudofractures, secondary osteoporosis and even sclerotic bone disease. The postulated mechanism for bone involvement includes acidosis-mediated exaggerated osteoclastic bone resorption. Other contributory factors include abnormal renal handling of phosphate leading to hypophosphataemia in proximal RTA, and impaired vitamin D metabolism and action. In distal RTA, hypercalciuria and secondary hyperparathyroidism may play a key role for bone involvement. Recognizing the disease in its early course is important to prevent permanent sequelae of skeletal involvement. Most of these patients may, in fact, undergo orthopaedic interventions without primary correction of acidosis. We describe five cases who presented with MBD in varied forms. While evaluating the aetiology of MBD, they were diagnosed with RTA. Subsequently, we attempted to analyse the causes of RTA. Although the common causes were ruled out, genetic aetiology could not be ascertained due to resource constraints. RTA remains an important differential diagnosis of MBD. More awareness is required to diagnose the disease early and to treat it adequately. Our case series is an attempt to provide the clinical, biochemical and skeletal spectrum of RTA. In addition, we have attempted to provide algorithms for the approach and evaluation of RTA along with their varied causes.
Collapse
Affiliation(s)
- Hiya Boro
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Saurav Khatiwada
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Sarah Alam
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Suraj Kubihal
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Vinay Dogra
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Velmurugan Mannar
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Khadgawat
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Kim HJ. Metabolic Acidosis in Chronic Kidney Disease: Pathogenesis, Clinical Consequences, and Treatment. Electrolyte Blood Press 2021; 19:29-37. [PMID: 35003283 PMCID: PMC8715222 DOI: 10.5049/ebp.2021.19.2.29] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
The kidneys play an important role in regulating the acid-base balance. Metabolic acidosis is common in chronic kidney disease (CKD) patients and can lead to poor outcomes, such as bone demineralization, muscle mass loss, and worsening of renal function. Metabolic acidosis is usually approached with evaluating the serum bicarbonate levels but should be assessed by counting blood pH. Current guidelines recommend oral bicarbonate supplementation to maintain the serum bicarbonate levels within the normal range. However, a slow decline in the glomerular filtration rate might occur, even though the serum bicarbonate levels were in the normal range. Because the serum bicarbonate levels decrease when metabolic acidosis advances, other biomarkers are necessary to indicate acid retention for early diagnosis of metabolic acidosis. For this, urine citrate and ammonium excretion may be used to follow the course of CKD patients. Metabolic acidosis can be treated with an increased fruit and vegetable intake and oral alkali supplementation. Previous studies have suggested that administration of oral sodium bicarbonate may preserve kidney function without significant increases in blood pressure and body weight. Veverimer, a non-absorbed, counterion-free, polymeric drug, is emerging to treat metabolic acidosis, but further researches are awaited. Further studies are also needed to clarify the target therapeutic range of serum bicarbonate and the drugs used for metabolic acidosis.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
26
|
Abstract
Nephrolithiasis is a worldwide problem with increasing prevalence, enormous costs, and significant morbidity. Calcium-containing kidney stones are by far the most common kidney stones encountered in clinical practice. Consequently, hypercalciuria is the greatest risk factor for kidney stone formation. Hypercalciuria can result from enhanced intestinal absorption, increased bone resorption, or altered renal tubular transport. Kidney stone formation is complex and driven by high concentrations of calcium-oxalate or calcium-phosphate in the urine. After discussing the mechanism mediating renal calcium salt precipitation, we review recent discoveries in renal tubular calcium transport from the proximal tubule, thick ascending limb, and distal convolution. Furthermore, we address how calcium is absorbed from the intestine and mobilized from bone. The effect of acidosis on bone calcium resorption and urinary calcium excretion is also considered. Although recent discoveries provide insight into these processes, much remains to be understood in order to provide improved therapies for hypercalciuria and prevent kidney stone formation. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- R T Alexander
- Departments of Physiology and Pediatrics, University of Alberta, Edmonton, Canada; .,Membrane Protein Disease Research Group, University of Alberta, Edmonton, Canada
| | - D G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - H Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
27
|
Holloway-Kew KL, Betson AG, Anderson KB, Gaston J, Kotowicz MA, Liao WH, Henneberg M, Pasco JA. Association between bone measures and use of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers. Arch Osteoporos 2021; 16:137. [PMID: 34536130 DOI: 10.1007/s11657-021-01004-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/13/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED Angiotensin-converting enzyme inhibitor use in women was associated with lower femoral neck and lumbar spine bone mineral density as well as trabecular bone score compared to non-users. No differences were identified for men or for those who used ARB medications. PURPOSE Many individuals at high fracture risk use medications such as angiotensin-converting enzyme inhibitors (ACEI) or angiotensin II receptor blockers (ARB) that could affect bone; thus, this study aimed to investigate whether there are any differences in bone mineral density (BMD) and trabecular bone score (TBS) between ACEI users, ARB users, and non-users. METHODS Participants (685 men, 573 women) were from the Geelong Osteoporosis Study. Current medication use was self-reported. BMD at the femoral neck (FNBMD) and lumbar spine (LSBMD) were measured using DXA. TBS was calculated using TBS iNsight software. Linear regression models were used to investigate associations between ACEI or ARB use and bone measures, adjusting for other potential confounders. Due to interaction terms, data were stratified by age. RESULTS There were 88 (12.8%) men and 41 (7.2%) women taking an ACEI medication, and 71 (10.4%) men and 76 (13.3%) women taking an ARB medication. Compared to non-users, ACEI use was associated with lower FNBMD (- 7.2%), LSBMD (- 12.2%), and TBS (- 9.0%) for women aged < 65 years. Lower TBS was also observed for women aged ≥ 65 years (- 17.3%). No differences were identified for ARB use. CONCLUSIONS Women who used an ACEI medication had lower values for FNBMD, LSBMD and TBS compared to non-users. No differences were identified for men or for those who used ARB medications.
Collapse
Affiliation(s)
- Kara L Holloway-Kew
- Epi-Centre for Healthy Ageing (ECHA), School of Medicine, Health Education and Research Building, IMPACT Institute, Deakin University, Level 3 (Barwon Health), PO Box 281, Geelong, VIC, 3220, Australia.
| | - Amelia G Betson
- Epi-Centre for Healthy Ageing (ECHA), School of Medicine, Health Education and Research Building, IMPACT Institute, Deakin University, Level 3 (Barwon Health), PO Box 281, Geelong, VIC, 3220, Australia
| | - Kara B Anderson
- Epi-Centre for Healthy Ageing (ECHA), School of Medicine, Health Education and Research Building, IMPACT Institute, Deakin University, Level 3 (Barwon Health), PO Box 281, Geelong, VIC, 3220, Australia
| | - James Gaston
- Epi-Centre for Healthy Ageing (ECHA), School of Medicine, Health Education and Research Building, IMPACT Institute, Deakin University, Level 3 (Barwon Health), PO Box 281, Geelong, VIC, 3220, Australia
| | - Mark A Kotowicz
- Epi-Centre for Healthy Ageing (ECHA), School of Medicine, Health Education and Research Building, IMPACT Institute, Deakin University, Level 3 (Barwon Health), PO Box 281, Geelong, VIC, 3220, Australia.,Barwon Health, Geelong, Australia.,Department of Medicine, The University of Melbourne-Western Health, St Albans, Australia
| | - Wan-Hui Liao
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Maciej Henneberg
- Biological and Comparative Anatomy Research Unit, Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Department of Archaeology, Flinders University, Adelaide, Australia
| | - Julie A Pasco
- Epi-Centre for Healthy Ageing (ECHA), School of Medicine, Health Education and Research Building, IMPACT Institute, Deakin University, Level 3 (Barwon Health), PO Box 281, Geelong, VIC, 3220, Australia.,Barwon Health, Geelong, Australia.,Department of Medicine, The University of Melbourne-Western Health, St Albans, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Prahran, Australia
| |
Collapse
|
28
|
Pozo C, Pradere B, Rebhan K, Chao C, Yang L, Abufaraj M, Shariat SF. Impact of Intestinal Urinary Diversion on the Risk of Fracture and Loss of Bone Mass: A Systematic Review. Bladder Cancer 2021; 7:365-376. [PMID: 38993611 PMCID: PMC11181699 DOI: 10.3233/blc-201526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/05/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Patients undergoing intestinal urinary diversion (IUD) may have a higher risk of osteoporosis and risk of fractures due to metabolic acidosis and decrease of intestinal absorption surface. OBJECTIVE We performed a systematic review of the available literature on the impact of IUD on bone demineralization. METHODS We systematically searched PubMed®, for original articles published before April 2020. Primary end points were the risk of fracture and loss of bone density. Secondary outcomes were the metabolic changes in biochemical and urine parameters related to calcium metabolism and histological changes. RESULTS Our electronic search identified a total of 2417 articles. After a detailed review, we selected 11 studies that addressed the impact of IUD on bone health in 10369 patients. The risk of bone fracture was studied in 3 articles, showing a higher risk in the IUD population. Of the 9 articles evaluating the relation between intestinal urinary diversion and bone density, 5 did find a positive association. One article evaluated the bone metabolism at a cellular level after IUD showing a decrease in bone turnover in this population. Three of the eight studies reporting data on serum parameters related to calcium and phosphate metabolism showed differences. Finally, a correlation between concentration of pyridolines in urine and loss of bone density was found in two of the three studies. CONCLUSIONS Although published data on BMD are contradictory, patients undergoing IUD seem to be at higher risk of bone fractures. Our finding support the need to implement accessible strategies on osteoporosis screening and prevention in IUD patients.
Collapse
Affiliation(s)
- Carmen Pozo
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Pradere
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, CHRU Tours, Francois Rabelais University, Tours, France
| | - Katharina Rebhan
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Cao Chao
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO, USA
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Lin Yang
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | | | - Shahrokh F. Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, University of Jordan, Amman, Jordan
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
- Department of Urology, University of Texas Southwestern, Dallas, TX, USA
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
- European Association of Urology Research Foundation, Arnhem, Netherlands
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Urology, Sechenov University, Moscow, Russia
| |
Collapse
|
29
|
Freitag JRB, Wilkens MR, Muscher-Banse AS, Gerstner K, Schnepel N, Torgerson PR, Liesegang A. Effects of diets differing in dietary cation-anion difference and calcium concentration on calcium homeostasis in neutered male sheep. J Dairy Sci 2021; 104:11537-11552. [PMID: 34419267 DOI: 10.3168/jds.2021-20334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Feeding low dietary cation-anion difference (DCAD) diets is one strategy to prevent milk fever in cows. The mechanism of action, as well as whether the calcium (Ca) supply of such diets combined with this feeding regimen should meet the requirements, is still unclear. Small ruminants are commonly used as models for cows. The goal of the present study was to demonstrate basic effects of DCAD against a background of different Ca supplies in a sheep model. Twenty-three castrated male East Friesian milk sheep, aged 11 to 12 mo, were randomly assigned to 4 different feeding groups. The ration of each group was either high (highDCAD) or low in DCAD (lowDCAD) combined with adequate (nCa) or restricted Ca supply (lowCa). At baseline, serum and urine were collected from all sheep and a peripheral quantitative computed tomography of the left metatarsus was performed. After a 14-d adaptation period to the different diets, the experiment started (d 0). Urine, feces, and serum were collected on d 0, 4, 7, 14, and 22, and peripheral quantitative computed tomography was performed on d 0 and 22. On d 22, the sheep were killed and sampled for functional studies. LowDCAD was significantly associated with lower urine pH, higher urinary Ca excretion, higher ionized Ca in blood, and higher serum Ca concentrations. Blood pH and bone parameters did not differ significantly between groups. It is unclear from which compartment the high amounts of Ca excreted with urine in the lowDCAD groups originated. Interestingly, lowDCAD resulted in higher renal mRNA abundance of parathyroid hormone receptor but unaffected mRNA abundance of Ca transporters. As neither renal abundance of these transporters nor Ca excretion were influenced by dietary Ca supply, our results support the hypothesis that increased urinary Ca observed with low DCAD diets represents a loss rather than an excretion of surplus Ca.
Collapse
Affiliation(s)
- J R B Freitag
- Institute of Animal Nutrition and Dietetics, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Centre for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - M R Wilkens
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Foundation Hannover, 30173 Hannover, Germany
| | - A S Muscher-Banse
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Foundation Hannover, 30173 Hannover, Germany
| | - K Gerstner
- Institute of Animal Nutrition and Dietetics, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - N Schnepel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Foundation Hannover, 30173 Hannover, Germany
| | - P R Torgerson
- Section of Veterinary Epidemiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - A Liesegang
- Institute of Animal Nutrition and Dietetics, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Centre for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Centre for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
30
|
Noce A, Marrone G, Wilson Jones G, Di Lauro M, Pietroboni Zaitseva A, Ramadori L, Celotto R, Mitterhofer AP, Di Daniele N. Nutritional Approaches for the Management of Metabolic Acidosis in Chronic Kidney Disease. Nutrients 2021; 13:2534. [PMID: 34444694 PMCID: PMC8401674 DOI: 10.3390/nu13082534] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic acidosis is a severe complication of chronic kidney disease (CKD) which is associated with nefarious impairments such as bone demineralization, muscle wasting, and hormonal alterations, for example, insulin resistance. Whilst it is possible to control this condition with alkali treatment, consisting in the oral administration of sodium citrate or sodium bicarbonate, this type of intervention is not free from side effects. On the contrary, opting for the implementation of a targeted dietetic-nutritional treatment for the control of CKD metabolic acidosis also comes with a range of additional benefits such as lipid profile control, increased vitamins, and antioxidants intake. In our review, we evaluated the main dietary-nutritional regimens useful to counteract metabolic acidosis, such as the Mediterranean diet, the alkaline diet, the low-protein diet, and the vegan low-protein diet, analyzing the potentialities and limits of every dietary-nutritional treatment. Literature data suggest that the Mediterranean and alkaline diets represent a valid nutritional approach in the prevention and correction of metabolic acidosis in CKD early stages, while the low-protein diet and the vegan low-protein diet are more effective in CKD advanced stages. In conclusion, we propose that tailored nutritional approaches should represent a valid therapeutic alternative to counteract metabolic acidosis.
Collapse
Affiliation(s)
- Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
| | - Georgia Wilson Jones
- Center of Research of Immunopathology and Rare Diseases—Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy;
| | - Manuela Di Lauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
| | - Anna Pietroboni Zaitseva
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
| | - Linda Ramadori
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
- School of Specialization in Geriatrics, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Celotto
- Department of Cardiovascular Disease, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Anna Paola Mitterhofer
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.D.L.); (A.P.Z.); (L.R.); (A.P.M.); (N.D.D.)
| |
Collapse
|
31
|
The Role of Diet in Bone and Mineral Metabolism and Secondary Hyperparathyroidism. Nutrients 2021; 13:nu13072328. [PMID: 34371838 PMCID: PMC8308808 DOI: 10.3390/nu13072328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Bone disorders are a common complication of chronic kidney disease (CKD), obesity and gut malabsorption. Secondary hyperparathyroidism (SHPT) is defined as an appropriate increase in parathyroid hormone (PTH) secretion, driven by either reduced serum calcium or increased phosphate concentrations, due to an underlying condition. The available evidence on the effects of dietary advice on secondary hyperparathyroidism confirms the benefit of a diet characterized by decreased phosphate intake, avoiding low calcium and vitamin D consumption (recommended intakes 1000-1200 mg/day and 400-800 UI/day, respectively). In addition, low protein intake in CKD patients is associated with a better control of SHPT risk factors, although its strength in avoiding hyperphosphatemia and the resulting outcomes are debated, mostly for dialyzed patients. Ultimately, a consensus on the effect of dietary acid loads in the prevention of SHPT is still lacking. In conclusion, a reasonable approach for reducing the risk for secondary hyperparathyroidism is to individualize dietary manipulation based on existing risk factors and concomitant medical conditions. More studies are needed to evaluate long-term outcomes of a balanced diet on the management and prevention of secondary hyperparathyroidism in at-risk patients at.
Collapse
|
32
|
Di Pompo G, Errani C, Gillies R, Mercatali L, Ibrahim T, Tamanti J, Baldini N, Avnet S. Acid-Induced Inflammatory Cytokines in Osteoblasts: A Guided Path to Osteolysis in Bone Metastasis. Front Cell Dev Biol 2021; 9:678532. [PMID: 34124067 PMCID: PMC8194084 DOI: 10.3389/fcell.2021.678532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bone metastasis (BM) is a dismal complication of cancer that frequently occurs in patients with advanced carcinomas and that often manifests as an osteolytic lesion. In bone, tumor cells promote an imbalance in bone remodeling via the release of growth factors that, directly or indirectly, stimulate osteoclast resorption activity. However, carcinoma cells are also characterized by an altered metabolism responsible for a decrease of extracellular pH, which, in turn, directly intensifies osteoclast bone erosion. Here, we speculated that tumor-derived acidosis causes the osteoblast–osteoclast uncoupling in BM by modulating the pro-osteoclastogenic phenotype of osteoblasts. According to our results, a low pH recruits osteoclast precursors and promotes their differentiation through the secretome of acid-stressed osteoblasts that includes pro-osteoclastogenic factors and inflammatory mediators, such as RANKL, M-CSF, TNF, IL-6, and, above the others, IL-8. The treatment with the anti-IL-6R antibody tocilizumab or with an anti-IL-8 antibody reverted this effect. Finally, in a series of BM patients, circulating levels of the osteolytic marker TRACP5b significantly correlated with IL-8. Our findings brought out that tumor-derived acidosis promotes excessive osteolysis at least in part by inducing an inflammatory phenotype in osteoblasts, and these results strengthen the use of anti-IL-6 or anti-IL-8 strategies to treat osteolysis in BM.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Costantino Errani
- Orthopaedic Oncology Surgical Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Robert Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Jacopo Tamanti
- National Tumor Assistance (ANT) Foundation, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Abstract
Potassium is an essential nutrient that performs a vital role in cellular functions including maintaining fluid balance and osmolality of cells. Potassium balance is maintained by the kidney and the majority of ingested potassium is excreted in the urine. There is strong evidence of a negative association between dietary potassium and blood pressure, and some evidence (much of it indirect) of negative associations between dietary potassium and cardiovascular disease (particularly stroke and coronary heart disease) and kidney disease (chronic renal failure, and kidney stones). Blood pressure lowering is particularly associated with high potassium and low sodium diets. Important dietary sources of potassium include fruit and vegetables (including rice, potatoes, legumes and wholegrains), dairy products, and animal proteins. Worldwide, diets are low in potassium compared to dietary guidelines. Interventions focused on increasing dietary potassium will have major benefits including improvements in diet, reducing non-communicable disease and enhancing planetary health.
Collapse
Affiliation(s)
- Rachael Mira McLean
- Department of Preventive & Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Nan Xin Wang
- Department of Preventive & Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
34
|
Bjørklund G, Dadar M, Doşa MD, Chirumbolo S, Pen JJ. Insights into the Effects of Dietary Omega-6/Omega-3 Polyunsaturated Fatty Acid (PUFA) Ratio on Oxidative Metabolic Pathways of Oncological Bone Disease and Global Health. Curr Med Chem 2021; 28:1672-1682. [PMID: 32338204 DOI: 10.2174/0929867327666200427095331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
Various nutrients have been designated as antioxidants, with a possible effect on diseases like cancer. This is partly due to their effect on prostaglandins, thereby affecting local pathological metabolic acidosis. This paper aims to summarize the culprit pathophysiological mechanisms involved, with a focus on the bone microenvironment. The omega- 6/omega-3 PUFA ratio is particularly investigated for its antioxidative effects, countering these pathways to fight the disease. This feature is looked at concerning its impact on health in general, with a particular focus on malignant bone metastasis.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanta, Romania
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
35
|
Dube P, DeRiso A, Patel M, Battepati D, Khatib-Shahidi B, Sharma H, Gupta R, Malhotra D, Dworkin L, Haller S, Kennedy D. Vascular Calcification in Chronic Kidney Disease: Diversity in the Vessel Wall. Biomedicines 2021; 9:biomedicines9040404. [PMID: 33917965 PMCID: PMC8068383 DOI: 10.3390/biomedicines9040404] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Vascular calcification (VC) is one of the major causes of cardiovascular morbidity and mortality in patients with chronic kidney disease (CKD). VC is a complex process expressing similarity to bone metabolism in onset and progression. VC in CKD is promoted by various factors not limited to hyperphosphatemia, Ca/Pi imbalance, uremic toxins, chronic inflammation, oxidative stress, and activation of multiple signaling pathways in different cell types, including vascular smooth muscle cells (VSMCs), macrophages, and endothelial cells. In the current review, we provide an in-depth analysis of the various kinds of VC, the clinical significance and available therapies, significant contributions from multiple cell types, and the associated cellular and molecular mechanisms for the VC process in the setting of CKD. Thus, we seek to highlight the key factors and cell types driving the pathology of VC in CKD in order to assist in the identification of preventative, diagnostic, and therapeutic strategies for patients burdened with this disease.
Collapse
|
36
|
Han Y, An M, Yang L, Li L, Rao S, Cheng Y. Effect of Acid or Base Interventions on Bone Health: A Systematic Review, Meta-Analysis, and Meta-Regression. Adv Nutr 2021; 12:1540-1557. [PMID: 33684217 PMCID: PMC8321841 DOI: 10.1093/advances/nmab002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
Osteoporosis is a global health issue among the aging population. The effect of the acid or base interventions on bone health remains controversial. This study performed a systematic review and meta-analysis to investigate effects of acidic diets and alkaline supplements on bone health simultaneously. We conducted a comprehensive literature search in 5 available databases and 1 registered clinical trial system to identify randomized controlled trials (RCTs) that assessed effects of the acid-base intervention on bone health. Depending on heterogeneity across studies, the pooled effects were calculated by fixed-effects or random-effects models. The present study included 13 acidic diet intervention studies and 13 alkaline supplement studies for final quantitative assessments. The meta-analysis showed that acidic diets significantly increased net acid excretion [NAE; standardized mean difference (SMD) = 2.99; P = 0.003] and urinary calcium excretion (SMD = 0.47, P < 0.00001) but had no significant effect on bone turnover markers and bone mineral density (BMD). On the other hand, alkaline supplement intervention significantly reduced NAE (SMD = -1.29, P < 0.00001), urinary calcium excretion (SMD = -0.44, P = 0.007), bone resorption marker aminoterminal cross-linking telopeptide (NTX; SMD = -0.29, P = 0.003), and bone formation marker osteocalcin (OC; SMD = -0.23, P = 0.02), but did not affect the other bone turnover markers. Furthermore, alkaline supplements significantly increased BMD in femoral neck [mean difference (MD) = 1.62, P < 0.00001, I2 = 0%], lumbar spine (MD = 1.66, P < 0.00001, I2 = 87%), and total hip (MD = 0.98, P = 0.02, I2 = 99%). Subsequently, meta-regression analyses identified 1 study that substantially contributed to the high heterogeneity of BMD in the latter 2 sites, but sensitivity analysis suggested that this study did not affect the significant pooled effects. Despite that, the results should be interpreted with caution and need to be further validated by a larger RCT. In summary, through integrating evidence from RCTs, the present meta-analysis initially suggests that alkaline supplements may be beneficial to bone metabolism and acidic diets may not be harmful to bone health. This work may be clinically useful for both clinicians and patients with osteoporosis.
Collapse
Affiliation(s)
- Yibing Han
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Min An
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Li Yang
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Liuran Li
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | | | | |
Collapse
|
37
|
Bu T, Zheng J, Liu L, Li S, Wu J. Milk proteins and their derived peptides on bone health: Biological functions, mechanisms, and prospects. Compr Rev Food Sci Food Saf 2021; 20:2234-2262. [PMID: 33522110 DOI: 10.1111/1541-4337.12707] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone is a dynamic organ under constant metabolism (or remodeling), where a delicate balance between bone resorption and bone formation is maintained. Disruption of this coordinated bone remodeling results in bone diseases, such as osteoporosis, the most common bone disorder characterized by decreased bone mineral density and microarchitectural deterioration. Epidemiological and clinical evidence support that consumption of dairy products is beneficial for bone health; this benefit is often attributed to the presence of calcium, the physiological contributions of milk proteins on bone metabolism, however, are underestimated. Emerging evidence highlighted that not only milk proteins (including individual milk proteins) but also their derived peptides positively regulate bone remodeling and attenuate bone loss, via the regulation of cellular markers and signaling of osteoblasts and osteoclasts. This article aims to review current knowledge about the roles of milk proteins, with an emphasis on individual milk proteins, bioactive peptides derived from milk proteins, and effect of milk processing in particular fermentation, on bone metabolism, to highlight the potential uses of milk proteins in the prevention and treatment of osteoporosis, and, to discuss the knowledge gap and to recommend future research directions.
Collapse
Affiliation(s)
- Tingting Bu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Jiexia Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Shanshan Li
- College of Animal Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Jianping Wu
- ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.,Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Effects of acidosis on the structure, composition, and function of adult murine femurs. Acta Biomater 2021; 121:484-496. [PMID: 33242638 DOI: 10.1016/j.actbio.2020.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Physiologic pH is maintained in a narrow range through multiple systemic buffering systems. Metabolic Acidosis (MA) is an acid-base disorder clinically characterized by a decrease in systemic pH and bicarbonate (HCO3-) levels. Acidosis affects millions annually, resulting in decreased bone mineral density and bone volume and an increased rate of fracture. We developed an adult murine model of diet-induced metabolic acidosis via graded NH4Cl administration that successfully decreased systemic pH over a 14 day period to elucidate the effects of acidosis on the skeletal system. Blood gas analyses measured an increase in blood calcium and sodium levels indicating a skeletal response to 14 days of acidosis. MA also significantly decreased femur ultimate strength, likely due to modifications in bone morphology as determined from decreased microcomputed tomography values of centroid distance and area moment of inertia. These structural changes may be caused by aberrant remodeling based on histological data evidencing altered OCL activity in acidosis. Additionally, we found that acidosis significantly decreased bone CO3 content in a site-specific manner similar to the bone phenotype observed in human MA. We determined that MA decreased bone strength thus increasing fracture risk, which is likely caused by alterations in bone shape and compounded by changes in bone composition. Additionally, we suggest the temporal regulation of cell-mediated remodeling in MA is more complex than current literature suggests. We conclude that our model reliably induces MA and has deleterious effects on skeletal form and function, presenting similarly to the MA bone phenotype in humans.
Collapse
|
39
|
Boro H, Goyal A, Naik SS, Tandon N. Primary Sjögren's syndrome manifesting as sclerotic metabolic bone disease. BMJ Case Rep 2021; 14:14/1/e237987. [PMID: 33431459 PMCID: PMC7802734 DOI: 10.1136/bcr-2020-237987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic slowly progressive autoimmune disease characterised by lymphocytic infiltration of salivary and lacrimal glands with varying degree of systemic involvement. Renal involvement, a recognised extraglandular manifestation of pSS, is commonly related to tubular dysfunction and generally manifests as distal renal tubular acidosis (RTA), proximal RTA, tubular proteinuria and nephrogenic diabetes insipidus. Untreated long-standing RTA is known to cause metabolic bone disease. Here, we present the report of a patient with sclerotic metabolic bone disease related to pSS with combined distal and proximal RTA and negative workup for other causes of sclerotic bone disease. A significant clinical and biochemical improvement, including recovery of proximal tubular dysfunction, was noted with alkali therapy. This case suggests the need to consider pSS in the diagnostic algorithm of a patient presenting with sclerotic bone disease.
Collapse
Affiliation(s)
- Hiya Boro
- Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Alpesh Goyal
- Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | | | - Nikhil Tandon
- Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
40
|
Boro H, Khatiwada S, Alam S, Kubihal S, Dogra V, Mannar V, Khadgawat R. Renal Tubular Acidosis Manifesting as Severe Metabolic Bone Disease. EUROPEAN ENDOCRINOLOGY 2021. [DOI: 10.17925/ee.2021.1.1.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Dolan E, Dumas A, Keane KM, Bestetti G, Freitas LHM, Gualano B, Kohrt W, Kelley GA, Pereira RMR, Sale C, Swinton P. The influence of acute exercise on bone biomarkers: protocol for a systematic review with meta-analysis. Syst Rev 2020; 9:291. [PMID: 33308281 PMCID: PMC7733242 DOI: 10.1186/s13643-020-01551-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/30/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Bone is a plastic tissue that is responsive to its physical environment. As a result, exercise interventions represent a potential means to influence the bone. However, little is currently known about how various exercise and participant characteristics interact to influence bone metabolism. Acute, controlled, interventions provide an in vivo model through which the acute bone response to exercise can be investigated, typically by monitoring circulating bone biomarkers. Currently, substantial heterogeneity in factors such as study design, quality, exercise, and participant characteristics render it difficult to synthesize and evaluate the available evidence. Using a systematic review and meta-analytic approach, the aim of this investigation is to quantify the effect of an acute exercise bout on circulating bone biomarkers as well as examine the potential factors that may moderate this response, e.g., variation in participant, exercise, and sampling characteristics. METHODS This protocol was designed in accordance with the PRISMA-P guidelines. Seven databases (MEDLINE, Embase, Sport Discus, Cochrane CENTRAL, PEDro, LILACS, and Ibec) will be systematically searched and supplemented by a secondary screening of the reference lists of all included articles. The PICOS (Population, Intervention, Comparator, Outcomes and Study Design) approach was used to guide the determination of the eligibility criteria. Participants of any age, sex, training, or health status will be considered for inclusion. We will select studies that have measured the bone biomarker response before and after an acute exercise session. All biomarkers considered to represent the bone metabolism will be considered for inclusion, and sensitivity analyses will be conducted using reference biomarkers for the measurement of bone resorption and formation (namely β-CTX-1 and P1NP). Multi-level, meta-regression models within a Bayesian framework will be used to explore the main effect of acute exercise on bone biomarkers as well as potential moderating factors. The risk of bias for each individual study will be evaluated using a modified version of the Downs and Black checklist while certainty in resultant outcomes will be assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. DISCUSSION A better understanding of the bone metabolic response to an acute bout of exercise has the potential to advance our understanding of the mechanisms through which this stimulus impacts bone metabolism, including factors that may moderate this response. Additionally, we will identify current gaps in the evidence base and provide recommendations to inform future research. SYSTEMATIC REVIEW REGISTRATION This protocol was prospectively registered in the Open Science Framework Registry ( https://osf.io/6f8dz ).
Collapse
Affiliation(s)
- E Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil.
| | - A Dumas
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - K M Keane
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - G Bestetti
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - L H M Freitas
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - B Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Faculdade de Medicina FMUSP, University of Sao Paulo, Sao Paulo, Brazil.,Food Research Centre, University of São Paulo, Sao Paulo, SP, Brazil
| | - W Kohrt
- Centre for Women's Health Research, School of Medicine, University of Colorado, Aurora, USA
| | - G A Kelley
- Department of Biostatistics, West Virginia University, Morgantown, USA
| | - R M R Pereira
- Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - C Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - P Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| |
Collapse
|
42
|
Perut F, Graziani G, Columbaro M, Caudarella R, Baldini N, Granchi D. Citrate Supplementation Restores the Impaired Mineralisation Resulting from the Acidic Microenvironment: An In Vitro Study. Nutrients 2020; 12:E3779. [PMID: 33317151 PMCID: PMC7763163 DOI: 10.3390/nu12123779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic metabolic acidosis leads to bone-remodelling disorders based on excessive mineral matrix resorption and inhibition of bone formation, but also affects the homeostasis of citrate, which is an essential player in maintaining the acid-base balance and in driving the mineralisation process. This study aimed to investigate the impact of acidosis on the osteogenic properties of bone-forming cells and the effects of citrate supplementation in restoring the osteogenic features impaired by the acidic milieu. For this purpose, human mesenchymal stromal cells were cultured in an osteogenic medium and the extracellular matrix mineralisation was analysed at the micro- and nano-level, both in neutral and acidic conditions and after treatment with calcium citrate and potassium citrate. The acidic milieu significantly decreased the citrate release and hindered the organisation of the extracellular matrix, but the citrate supplementation increased collagen production and, particularly calcium citrate, promoted the mineralisation process. Moreover, the positive effect of citrate supplementation was observed also in the physiological microenvironment. This in vitro study proves that the mineral matrix organisation is influenced by citrate availability in the microenvironment surrounding bone-forming cells, thus providing a biological basis for using citrate-based supplements in the management of bone-remodelling disorders related to chronic low-grade acidosis.
Collapse
Affiliation(s)
- Francesca Perut
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (F.P.); (N.B.)
| | - Gabriela Graziani
- Laboratory of Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Marta Columbaro
- Electron Microscopy Platform, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Renata Caudarella
- Maria Cecilia Hospital, GVM Care and Research, Via Corriera 1, 48033 Cotignola (RA), Italy;
| | - Nicola Baldini
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (F.P.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, Via Pupilli 1, University of Bologna, 40136 Bologna, Italy
| | - Donatella Granchi
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (F.P.); (N.B.)
| |
Collapse
|
43
|
Krieger NS, Chen L, Becker J, Chan MR, Bushinsky DA. Deletion of the proton receptor OGR1 in mouse osteoclasts impairs metabolic acidosis-induced bone resorption. Kidney Int 2020; 99:609-619. [PMID: 33159961 DOI: 10.1016/j.kint.2020.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
Abstract
Metabolic acidosis induces osteoclastic bone resorption and inhibits osteoblastic bone formation. Previously we found that mice with a global deletion of the proton receptor OGR1 had increased bone density although both osteoblast and osteoclast activity were increased. To test whether direct effects on osteoclast OGR1 are critical for metabolic acidosis stimulated bone resorption, we generated knockout mice with an osteoclast-specific deletion of OGR1 (knockout mice). We studied bones from three-month old female mice and the differentiated osteoclasts derived from bone marrow of femurs from these knockout and wild type mice. MicroCT demonstrated increased density in tibiae and femurs but not in vertebrae of the knockout mice. Tartrate resistant acid phosphatase staining of tibia indicated a decrease in osteoclast number and surface area/bone surface from knockout compared to wild type mice. Osteoclasts derived from the marrow of knockout mice demonstrated decreased pit formation, osteoclast staining and osteoclast-specific gene expression compared to those from wild type mice. In response to metabolic acidosis, osteoclasts from knockout mice had decreased nuclear translocation of NFATc1, a transcriptional regulator of differentiation, and no increase in size or number compared to osteoclasts from wild type mice. Thus, loss of osteoclast OGR1 decreased both basal and metabolic acidosis-induced osteoclast activity indicating osteoclast OGR1 is important in mediating metabolic acidosis-induced bone resorption. Understanding the role of OGR1 in metabolic acidosis-induced bone resorption will provide insight into bone loss in acidotic patients with chronic kidney disease.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA.
| | - Luojing Chen
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Jennifer Becker
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Michaela R Chan
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
44
|
Dolan E, Varley I, Ackerman KE, Pereira RMR, Elliott-Sale KJ, Sale C. The Bone Metabolic Response to Exercise and Nutrition. Exerc Sport Sci Rev 2020; 48:49-58. [PMID: 31913188 DOI: 10.1249/jes.0000000000000215] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone (re)modeling markers can help determine how the bone responds to different types, intensities, and durations of exercise. They also might help predict those at risk of bone injury. We synthesized evidence on the acute and chronic bone metabolic responses to exercise, along with how nutritional factors can moderate this response. Recommendations to optimize future research efforts are made.
Collapse
Affiliation(s)
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Kathryn E Ackerman
- Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rosa Maria R Pereira
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Kirsty Jayne Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
45
|
Ponticelli C, Doria A, Moroni G. Renal disorders in rheumatologic diseases: the spectrum is changing (Part 1: connective tissue diseases). J Nephrol 2020; 34:1069-1080. [PMID: 32529559 DOI: 10.1007/s40620-020-00772-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/03/2020] [Indexed: 01/15/2023]
Abstract
The kidney is frequently involved by autoimmune rheumatic diseases. The renal manifestations may be variable, ranging from asymptomatic proteinuria and microscopic haematuria to nephrotic syndrome and rapidly progressive glomerulonephritis or vasculitis. In a number of cases the kidney involvement is related to the treatment of the original disease and may represent a major cause of morbidity and mortality. Thus, it is important for nephrologists and rheumatologists to remember that dysfunction of the kidney may be part of the primary systemic disorder or consequence of its pharmacotherapy. In the first part of this review we will analyse the kidney involvement in four autoimmune connective tissue diseases: systemic lupus erythematosus, Sjögren syndrome, polymyositis/dermatomyositis, and systemic sclerosis. Renal disease is common in lupus and is a main cause of morbidity and mortality. About 10% of patients with Sjögren syndrome may present interstitial nephritis or, more rarely, glomerulonephritis. Myoglobinuria and acute kidney injury is a frequent complication of polymyositis. Renal disease is one of the most serious complications of systemic sclerosis and may present with a dramatic renal crisis, characterized by malignant hypertension, oligo-anuria, and microangiopathic thrombocytopenic anaemia.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, IRCCS Ospedale Maggiore Milano, Via Ampere 126, 20131, Milano, Italy.
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine, DIMED, University of Padua, Padua, Italy
| | - Gabriella Moroni
- Division of Nephrology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico Milano, Milano, Italy
| |
Collapse
|
46
|
Laurie SS, Christian K, Kysar J, Lee SMC, Lovering AT, Macias BR, Moestl S, Sies W, Mulder E, Young M, Stenger MB. Unchanged cerebrovascular CO 2 reactivity and hypercapnic ventilatory response during strict head-down tilt bed rest in a mild hypercapnic environment. J Physiol 2020; 598:2491-2505. [PMID: 32196672 DOI: 10.1113/jp279383] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/16/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Carbon dioxide levels are mildly elevated on the International Space Station and it is unknown whether this chronic exposure causes physiological changes to astronauts. We combined ∼4 mmHg ambient P C O 2 with the strict head-down tilt bed rest model of spaceflight and this led to the development of optic disc oedema in one-half of the subjects. We demonstrate no change in arterialized P C O 2 , cerebrovascular reactivity to CO2 or the hypercapnic ventilatory response. Our data suggest that the mild hypercapnic environment does not contribute to the development of spaceflight associated neuro-ocular syndrome. ABSTRACT Chronically elevated carbon dioxide (CO2 ) levels can occur in confined spaces such as the International Space Station. Using the spaceflight analogue 30 days of strict 6° head-down tilt bed rest (HDTBR) in a mild hypercapnic environment ( P C O 2 = ∼4 mmHg), we investigated arterialized P C O 2 , cerebrovascular reactivity and the hypercapnic ventilatory response in 11 healthy subjects (five females) before, on days 1, 9, 15 and 30 of bed rest (BR), and 6 and 13 days after HDTBR. During all HDTBR time points, arterialized P C O 2 was not significantly different from the pre-HDTBR measured in the 6° HDT posture, with a mean (95% confidence interval) increase of 1.2 mmHg (-0.2 to 2.5 mmHg, P = 0.122) on day 30 of HDTBR. Respiratory acidosis was never detected, although a mild metabolic alkalosis developed on day 30 of HDTBR by a mean (95% confidence interval) pH change of 0.032 (0.022-0.043; P < 0.001), which remained elevated by 0.021 (0.011-0.031; P < 0.001) 6 days after HDTBR. Arterialized pH returned to pre-HDTBR levels 13 days after BR with a change of -0.001 (-0.009 to 0.007; P = 0.991). Compared to pre-HDTBR, cerebrovascular reactivity during and after HDTBR did not change. Baseline ventilation, ventilatory recruitment threshold and the slope of the ventilatory response were similar between pre-HDTBR and all other time points. Taken together, these data suggest that the mildly increased ambient P C O 2 combined with 30 days of strict 6° HDTBR did not change arterialized P C O 2 levels. Therefore, the experimental conditions were not sufficient to elicit a detectable physiological response.
Collapse
Affiliation(s)
| | - Kate Christian
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Jacob Kysar
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | | | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Piotrowska K, Zgutka K, Kupnicka P, Chlubek D, Pawlik A, Baranowska-Bosiacka I. Analysis of Bone Mineral Profile After Prolonged Every-Other-Day Feeding in C57BL/6J Male and Female Mice. Biol Trace Elem Res 2020; 194:177-183. [PMID: 31175634 PMCID: PMC6987084 DOI: 10.1007/s12011-019-01758-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/21/2019] [Indexed: 12/25/2022]
Abstract
Intermitted fasting or every-other-day feeding (EOD) has many positive effects in rodents and humans. Our goal was to describe how EOD influences bone mineral composition in female and male mice under prolonged EOD feeding. Male and female adult mice were fed EOD for 9 months. After this time, we used a direct method of measurement of mineral components in ashes of long bones (humerus and radius) to estimate the content of calcium (Ca), phosphorus (P), potassium (K), magnesium (Mg), and sodium (Na). We also performed histological analysis of sections of long bones. We found no significant changes in mineral composition between ad libitum and EOD fed males and females. We noted higher Ca and P contents in control males vs. females and lower content of Mg in control males vs. females. We observed the presence of marrow adipose tissue (MAT) in sections of EOD-fed females. EOD without supplementation during feeding days did not increase loss of mineral content of bones in C57BL/6J mice, but the presence of MAT only in EOD females indicates a gender-dependent response to EOD treatment in C57BL/6J mice.
Collapse
Affiliation(s)
- Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Katarzyna Zgutka
- Department of Physiology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
48
|
Alva S, Divyashree M, Kamath J, Prakash PS, Prakash KS. A Study on Effect of Bicarbonate Supplementation on the Progression of Chronic Kidney Disease. Indian J Nephrol 2020; 30:91-97. [PMID: 32269432 PMCID: PMC7132852 DOI: 10.4103/ijn.ijn_93_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/04/2019] [Accepted: 06/30/2019] [Indexed: 01/21/2023] Open
Abstract
Introduction: Chronic kidney disease (CKD) is a major health problem in India. Prevalence of CKD will continue to rise, reflecting the growing elderly population and increasing number of patients with diabetes and hypertension. Methods: A total of 67 patients with CKD participated in the study. Patients were randomized into two groups. Group 1 received oral bicarbonate and Group 2 was the control group. Their baseline, 6 and 9 months estimated glomerular filtration rate (eGFR), bicarbonate, muscle mass and serum albumin were estimated. We analysed the effect of bicarbonate supplementation on the progression of CKD. Results: Bicarbonate supplementation decreased the metabolic acidosis in CKD patients. After bicarbonate supplementation, the serum bicarbonate level increased time-dependently from 16.62 to 18.02 and 19.77 mEq/L after 6 and 9 months, respectively. It also restored the eGFR to its baseline value. The eGFR values of Group 1 at baseline, after 6 months and 9 months were 22.39, 22.66, and 22.65 mL/min/1.73 m2, respectively. In contrast, the eGFR value in Group 2 reduced significantly. Patients who received bicarbonate supplementation displayed increased serum albumin levels compared with the controls. The albumin level was significantly increased from 4.05 to 4.24 and 4.34 g/dL, respectively, after 6 and 9 months (P = 0.0001). Also, bicarbonate supplementation showed significant improvement in muscle mass. Conclusion: Study confirms the role of bicarbonate in relieving the metabolic acidosis and thereby its possible role in the management of CKD progression.
Collapse
Affiliation(s)
- Suhan Alva
- Department of General Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - M Divyashree
- Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - Janardhana Kamath
- Department of General Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - P S Prakash
- Department of General Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - K Shama Prakash
- Department of General Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| |
Collapse
|
49
|
Tan L, Hu Y, Hou Y, Chen M, Xue C, Chen M, Sun Y, Mu C, Luo Z, Cai K. Osteogenic differentiation of mesenchymal stem cells by silica/calcium micro-galvanic effects on the titanium surface. J Mater Chem B 2020; 8:2286-2295. [DOI: 10.1039/d0tb00054j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Si/CaCO3 nanoparticles were immobilized on titanium surface using micro-arc oxidation to produce micro-galvanic effects by Schottky contact for regulating the osteogenic responses of mesenchymal stem cells (MSCs).
Collapse
|
50
|
Kim HJ, Kang E, Ryu H, Han M, Lee KB, Kim YS, Sung S, Ahn C, Oh KH. Metabolic acidosis is associated with pulse wave velocity in chronic kidney disease: Results from the KNOW-CKD Study. Sci Rep 2019; 9:16139. [PMID: 31695082 PMCID: PMC6834555 DOI: 10.1038/s41598-019-52499-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
Metabolic acidosis is common in chronic kidney disease (CKD) and may have various deleterious consequences. Arterial stiffness in CKD patients is associated with poor cardiovascular outcomes. The present study aimed to evaluate the association between serum bicarbonate and arterial stiffness using the baseline cross-sectional data set of a large-scale Korean CKD cohort. 2,238 CKD patients were enrolled in the KoreaN Cohort Study for Outcome in Patients With Chronic Kidney Disease (KNOW-CKD) from 2011 to 2016. The present study was conducted on 1,659 patients included in this cohort with baseline serum bicarbonate and brachial-to-ankle pulse wave velocity (baPWV) data. Metabolic acidosis was defined as a serum bicarbonate level of <22 mmol/L, and baPWV was used as a surrogate of arterial stiffness. Mean serum bicarbonate was 25.8 ± 3.6 mmol/L. 210 (12.7%) patients had metabolic acidosis. baPWV was significantly higher in patients with metabolic acidosis (P < 0.001) and showed a significant inverse correlation with serum bicarbonate (Unstandardized β −16.0 cm/sec; 95% CI −20.5, −11.4; P < 0.001) in an unadjusted model, which was retained after adjustment (Unstandardized β −5.4 cm/sec; 95% CI −9.9, −1.0; P = 0.017). Metabolic acidosis was found to be associated with a high baPWV in pre-dialysis CKD patients.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Eunjeong Kang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Miyeun Han
- Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Kyu-Beck Lee
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong-Soo Kim
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Suah Sung
- Department of Internal Medicine, Eulji Medical Center, Eulji University, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|