1
|
Carvalho NZM, Chiarotto GB, Bernardes D, Kempe PRG, Oliveira ALR. Neuroprotection by dimethyl fumarate following ventral root crush in C57BL/6J mice. Brain Res Bull 2020; 164:184-197. [PMID: 32866558 DOI: 10.1016/j.brainresbull.2020.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 01/22/2023]
Abstract
CNS lesions usually result in permanent loss of function and are an important problem in the medical field. In order to investigate neuroprotection/degeneration mechanisms and the synaptic plasticity of motoneurons, in addition to the potential for a variety of treatments, different experimental models of axonal injury have been proposed. Recent studies have tested the immunomodulatory drug dimethyl fumarate (DMF) for the treatment of neurodegenerative diseases and have shown promising outcomes. Therefore, in this work, we investigated the effects of DMF with regard to neuroprotection and its influence on the glial response in C57BL/6J animals subjected to crushing of the motor roots in the lumbar intumescence of the spinal cord. The animals were divided into a vehicle-treated injury group (0.08 % methylcellulose solution control group, n = 7) and injured groups treated with DMF at different doses (15, 30, 45, 90 and 180 mg/kg; n = 6-7 per dose). The 90 mg/kg dose showed the best neuroprotective results, so it was used for treatment over a period of eight weeks. Neuronal survival was assessed through Nissl staining, and functional recovery was evaluated with the CatWalk system (walking track test) and the von Frey test (mechanoreception). Immunohistochemistry was used to assess synaptic coverage and astroglial and microglial reactivity using the primary antibodies anti-synaptophysin (pre-synaptic terminal pan marker), GAD65 (GABAergic pre-synaptic terminations - inhibitory), and VGLUT1 (glutamatergic pre-synaptic terminations - excitatory). Glial reactions were evaluated with anti-IBA1 (microglia) and GFAP (astrocytes). Gene transcript levels of IL-3, IL-4, TNF-α, IL-6, TGF-β, iNOS-M1, and arginase-M2 were quantified by RT-qPCR. The results indicated that treatment with DMF, at a dose of 90 mg/kg, promoted neuroprotection and immunomodulation towards an anti-inflammatory response. It also resulted in greater preservation of inhibitory synapses and reduced astroglial reactivity, providing a more favorable environment for sensorimotor recovery.
Collapse
Affiliation(s)
| | - Gabriela Bortolança Chiarotto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil; University Center of Herminio Ometto Foundation, Post Graduate Program in Biomedical Science, Brazil.
| | - Danielle Bernardes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil; University Center of Herminio Ometto Foundation, Post Graduate Program in Biomedical Science, Brazil.
| | - Paula Regina Gelinski Kempe
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil.
| | - Alexandre Leite Rodrigues Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Lin J, Wu W, Xu Z, Liu S, Lu W, Pan M. Effects of NaHS and hydroxylamine on the expressions of brain-derived neurotrophic factor and its receptors in rats after cardiac arrest and cardiopulmonary resuscitation. Scand J Trauma Resusc Emerg Med 2018; 26:109. [PMID: 30577733 PMCID: PMC6303943 DOI: 10.1186/s13049-018-0577-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND H2S can also protect nerve cells. The objective of the study is to investigate the effects of hydrogen sulfide (H2S) on the expressions of brain-derived neurotrophic factor (BDNF) and its receptors, tyrosine protein kinase B (TrkB) and p75 neurotrophin receptor (p75NTR), in brain tissues of rats with cardiac arrest and cardiopulmonary resuscitation (CA/CPR) following the restoration of spontaneous circulation (ROSC). METHODS Rats (n = 240) with CA/CPR were divided into three groups: Intervention (n = 80) that received sodium hydrosulfide (NaHS, 14 μmoL/kg·d) intervention after ROSC; Inhibition (n = 80) that received hydroxylamine (40 μmoL/kg·d) intervention after ROSC; and Control (n = 80) that received saline after ROSC. Kaplan-Meyer analysis was used to analyze the survival data. Quantitative real-time PCR (q-PCR), Western blot, immunohistochemistry and IODs (integrated optical density) were performed to determine the mRNA and protein expressions of BDNF, TrkB and p75NTR in rat brain tissues. RESULTS Survival rate of the three groups had significant difference (χ2 = 28.376, p = 0.000). The Intervention group had the highest survival rate (82.5%), while the Inhibition group had the lowest survival rate (62.5%). The mRNA and protein levels of BDNF and TrkB in the Intervention group were significantly higher compared to the Control group (p < 0.05); while the mRNA and protein levels of BDNF and TrkB in the Inhibition group was significantly lower than the Control group (p < 0.05) on days 1, 3, and 7. However, the mRNA and protein levels of p75NTR in the Intervention group were significantly lower than the Control group (p < 0.05); while the mRNA and protein levels of p75NTR in the Inhibition group were significantly higher than the Control group (p < 0.05) on days 1, 3, and 7. CONCLUSION NaHS treatment increases the survival rate of rats after CA and ROSC by upregulating the expression and activation of BDNF and its receptor TrkB, and down-regulating p75NTR expression.
Collapse
Affiliation(s)
- Jiyan Lin
- Emergency Department, The First Affiliated Hospital of Xiamen University, No 55, Zhenhai Rd, Xiamen, 361003, China.
| | - Weicheng Wu
- Emergency Department, The First Affiliated Hospital of Xiamen University, No 55, Zhenhai Rd, Xiamen, 361003, China
| | - Zhihong Xu
- Emergency Department, The First Affiliated Hospital of Xiamen University, No 55, Zhenhai Rd, Xiamen, 361003, China
| | - Siyao Liu
- Emergency Department, The First Affiliated Hospital of Xiamen University, No 55, Zhenhai Rd, Xiamen, 361003, China
| | - Wang Lu
- Emergency Department, The First Affiliated Hospital of Xiamen University, No 55, Zhenhai Rd, Xiamen, 361003, China
| | - Mandong Pan
- Emergency Department, The First Affiliated Hospital of Xiamen University, No 55, Zhenhai Rd, Xiamen, 361003, China.
| |
Collapse
|
3
|
Bergmeister KD, Daeschler SC, Rhodius P, Schoenle P, Böcker A, Kneser U, Harhaus L. Promoting axonal regeneration following nerve surgery: a perspective on ultrasound treatment for nerve injuries. Neural Regen Res 2018; 13:1530-1533. [PMID: 30127107 PMCID: PMC6126126 DOI: 10.4103/1673-5374.237113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nerve injury is often associated with limited axonal regeneration and thus leads to delayed or incomplete axonal reinnervation. As a consequence of slow nerve regeneration, target muscle function is often insufficient and leads to a lifelong burden. Recently, the diagnosis of nerve injuries has been improved and likewise surgical reconstruction has undergone significant developments. However, the problem of slow nerve regeneration has not been solved. In a recent meta-analysis, we have shown that the application of low-intensity ultrasound promotes nerve regeneration experimentally and thereby can improve functional outcomes. Here we want to demonstrate the experimental effect of low intensity ultrasound on nerve regeneration, the current state of investigations and its possible future clinical applications.
Collapse
Affiliation(s)
- Konstantin D Bergmeister
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - Simeon C Daeschler
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - Patrick Rhodius
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - Philipp Schoenle
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - Arne Böcker
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| |
Collapse
|
4
|
Gao R, Li X, Xi S, Wang H, Zhang H, Zhu J, Shan L, Song X, Luo X, Yang L, Huang J. Exogenous Neuritin Promotes Nerve Regeneration After Acute Spinal Cord Injury in Rats. Hum Gene Ther 2016; 27:544-54. [DOI: 10.1089/hum.2015.159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rui Gao
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xingyi Li
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Shaosong Xi
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Haiyan Wang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hong Zhang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jingling Zhu
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Liya Shan
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaoming Song
- School of Medicine & Health Management, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xing Luo
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lei Yang
- School of Medicine & Health Management, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jin Huang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| |
Collapse
|
5
|
Barbizan R, Castro MV, Ferreira RS, Barraviera B, Oliveira ALR. Long-term spinal ventral root reimplantation, but not bone marrow mononuclear cell treatment, positively influences ultrastructural synapse recovery and motor axonal regrowth. Int J Mol Sci 2014; 15:19535-51. [PMID: 25353176 PMCID: PMC4264127 DOI: 10.3390/ijms151119535] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/27/2014] [Accepted: 10/11/2014] [Indexed: 12/13/2022] Open
Abstract
We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and “g” ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion.
Collapse
Affiliation(s)
- Roberta Barbizan
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), PO Box 6109, Campinas 13083-970, São Paulo, Brazil.
| | - Mateus V Castro
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), PO Box 6109, Campinas 13083-970, São Paulo, Brazil.
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu 18610-307, São Paulo, Brazil.
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu 18610-307, São Paulo, Brazil.
| | - Alexandre L R Oliveira
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), PO Box 6109, Campinas 13083-970, São Paulo, Brazil.
| |
Collapse
|
6
|
Barbizan R, Castro MV, Barraviera B, Ferreira RS, Oliveira ALR. Influence of delivery method on neuroprotection by bone marrow mononuclear cell therapy following ventral root reimplantation with fibrin sealant. PLoS One 2014; 9:e105712. [PMID: 25157845 PMCID: PMC4144952 DOI: 10.1371/journal.pone.0105712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022] Open
Abstract
The present work compared the local injection of mononuclear cells to the spinal cord lateral funiculus with the alternative approach of local delivery with fibrin sealant after ventral root avulsion (VRA) and reimplantation. For that, female adult Lewis rats were divided into the following groups: avulsion only, reimplantation with fibrin sealant; root repair with fibrin sealant associated with mononuclear cells; and repair with fibrin sealant and injected mononuclear cells. Cell therapy resulted in greater survival of spinal motoneurons up to four weeks post-surgery, especially when mononuclear cells were added to the fibrin glue. Injection of mononuclear cells to the lateral funiculus yield similar results to the reimplantation alone. Additionally, mononuclear cells added to the fibrin glue increased neurotrophic factor gene transcript levels in the spinal cord ventral horn. Regarding the motor recovery, evaluated by the functional peroneal index, as well as the paw print pressure, cell treated rats performed equally well as compared to reimplanted only animals, and significantly better than the avulsion only subjects. The results herein demonstrate that mononuclear cells therapy is neuroprotective by increasing levels of brain derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF). Moreover, the use of fibrin sealant mononuclear cells delivery approach gave the best and more long lasting results.
Collapse
Affiliation(s)
- Roberta Barbizan
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Mateus V. Castro
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Rui S. Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Alexandre L. R. Oliveira
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Li W, Sun H, Xu Z, Ding F, Gu X. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells. ACTA ACUST UNITED AC 2009; 52:267-77. [DOI: 10.1007/s11427-009-0033-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 12/11/2008] [Indexed: 01/09/2023]
|
8
|
Sharma HS. A select combination of neurotrophins enhances neuroprotection and functional recovery following spinal cord injury. Ann N Y Acad Sci 2008; 1122:95-111. [PMID: 18077567 DOI: 10.1196/annals.1403.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previously, we have shown that topical application of brain-derived neurotrophic factor (BDNF) or insulin-like growth factor 1 (IGF-1) given within 5 to 30 min after a focal trauma to the rat spinal cord attenuates spinal cord injury (SCI)-induced breakdown of the blood-spinal cord barrier (BSCB), edema formation, motor dysfunction, and cell injury. This investigation was undertaken to find out whether a combination of select neurotrophins (BDNF, glial cell line-derived neurotrophic factor [GDNF], neurotrophin 3 [NT-3], or nerve growth factor [NGF]) will further enhance the neuroprotective efficacy of growth factors in SCI. The neurotrophins (0.1-1 microg/10 microL in phosphate-buffered saline) were applied 30, 60, or 90 min after injury topically over the traumatized spinal cord either alone or in combination. The SCI was performed by making a unilateral incision into the right dorsal horn of the T10-T11 segment under Equithesin anesthesia. The rats were allowed to survive 5 h after trauma. Topical application of BDNF, GDNF, or NGF 30 min after SCI in high concentration (0.5 microg and 1 microg) significantly improved the motor functions and reduced the BSCB breakdown, edema formation, and cell injury seen at 5 h. These beneficial effects of neurotropins were absent when administered separately either 60 or 90 min after SCI. However, a combination of BDNF and GDNF (but not with NT-3 or NGF) given either 60 or 90 min after SCI significantly reduced the motor dysfunction and spinal cord pathology at 5 h. These novel observations suggest that a select group of neurotrophins in combination have potential therapeutic value for the treatment of SCI in clinical situations.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Department of Surgical Sciences, University Hospital, Uppsala University, SE-75421 Uppsala, Sweden.
| |
Collapse
|
9
|
Lang EM, Schlegel N, Reiners K, Hofmann GO, Sendtner M, Asan E. Single-Dose Application of CNTF and BDNF Improves Remyelination of Regenerating Nerve Fibers after C7 Ventral Root Avulsion and Replantation. J Neurotrauma 2008; 25:384-400. [DOI: 10.1089/neu.2007.0396] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Eva M. Lang
- Department of Plastic and Hand Surgery, Albert Ludwigs University, Freiburg, Germany
| | - Nicholas Schlegel
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Karlheinz Reiners
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
| | - Gunther O. Hofmann
- Clinic of Trauma Surgery, Friedrich Schiller University, Jena, and BG-TraumaCenter, Halle, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
10
|
Schlegel N, Asan E, Hofmann GO, Lang EM. Reactive changes in dorsal roots and dorsal root ganglia after C7 dorsal rhizotomy and ventral root avulsion/replantation in rabbits. J Anat 2007; 210:336-51. [PMID: 17331182 PMCID: PMC2100279 DOI: 10.1111/j.1469-7580.2007.00695.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Current surgical treatment of spinal root injuries aims at reconnecting ventral roots to the spinal cord while severed dorsal roots are generally left untreated. Reactive changes in dorsal root ganglia (DRGs) and in injured dorsal roots after such complex lesions have not been analysed in detail. We studied dorsal root remnants and lesioned DRGs 6 months after C7 dorsal rhizotomy, ventral root avulsion and immediate ventral root replantation in adult rabbits. Replanted ventral roots were fixed to the spinal cord with fibrin glue only or with glue containing ciliary neurotrophic factor and/or brain-derived neurotrophic factor. Varying degrees of degeneration were observed in the deafferented dorsal spinal cord in all experimental groups. In cases with well-preserved morphology, small myelinated axons extended into central tissue protrusions at the dorsal root entry zone, suggesting sprouting of spinal neuron processes into the central dorsal root remnant. In lesioned DRGs, the density of neurons and myelinated axons was not significantly altered, but a slight decrease in the relative frequency of large neurons and an increase of small myelinated axons was noted (significant for axons). Unexpectedly, differences in the degree of these changes were found between control and neurotrophic factor-treated animals. Central axons of DRG neurons formed dorsal root stumps of considerable length which were attached to fibrous tissue surrounding the replanted ventral root. In cases where gaps were apparent in dorsal root sheaths, a subgroup of dorsal root axons entered this fibrous tissue. Continuity of sensory axons with the spinal cord was never observed. Some axons coursed ventrally in the direction of the spinal nerve. Although the animal model does not fully represent the situation in human plexus injuries, the present findings provide a basis for devising further experimental approaches in the treatment of combined motor/sensory root lesions.
Collapse
Affiliation(s)
- N Schlegel
- University of Würzburg, Institute for Anatomy and Cell Biology, Germany
| | | | | | | |
Collapse
|
11
|
Niere M, Braun B, Gass R, Sturany S, Volkmer H. Combination of engineered neural cell adhesion molecules and GDF-5 for improved neurite extension in nerve guide concepts. Biomaterials 2006; 27:3432-40. [PMID: 16497371 DOI: 10.1016/j.biomaterials.2006.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 01/24/2006] [Indexed: 12/27/2022]
Abstract
Current therapeutical approaches for the treatment of severe lesions in the peripheral nervous system rely on the use of autologous tissue or the body's own Schwann cells. However, these approaches are limited and alternative strategies for peripheral nerve regeneration are required. Here we evaluate combinations of a variety of neuronal regeneration factors including engineered cell adhesion molecules and growth factors in embryonic model neurons to test the possible improvement of artificial nerve guides by cooperative mechanisms. Cell adhesion molecules L1 and neurofascin synergistically promote neurite elongation. The outgrowth promoting properties of both proteins can be combined and further increased within one chimeric protein. Addition of growth and differentiation factor 5 (GDF-5) further enhances neurite outgrowth in a substrate-independent manner. This effect is not due to a protective mode of action of GDF-5 against pro-apoptotic stimuli. Consequently, the study supports the idea that different modes of action of pro-regenerative factors may contribute synergistically to neurite outgrowth and emphasizes the applicability of combinations of proteins specifically involved in development of the nervous system for therapeutical approaches.
Collapse
Affiliation(s)
- Marc Niere
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Markwiesenstr. 55, D-72770 Reutlingen, Germany
| | | | | | | | | |
Collapse
|
12
|
Hoang TX, Nieto JH, Dobkin BH, Tillakaratne NJK, Havton LA. Acute implantation of an avulsed lumbosacral ventral root into the rat conus medullaris promotes neuroprotection and graft reinnervation by autonomic and motor neurons. Neuroscience 2006; 138:1149-60. [PMID: 16446042 DOI: 10.1016/j.neuroscience.2005.11.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 11/17/2005] [Accepted: 11/21/2005] [Indexed: 11/19/2022]
Abstract
Trauma to the conus medullaris and cauda equina may result in autonomic, sensory, and motor dysfunctions. We have previously developed a rat model of cauda equina injury, where a lumbosacral ventral root avulsion resulted in a progressive and parallel death of motoneurons and preganglionic parasympathetic neurons, which are important for i.e. bladder control. Here, we report that an acute implantation of an avulsed ventral root into the rat conus medullaris protects preganglionic parasympathetic neurons and motoneurons from cell death as well as promotes axonal regeneration into the implanted root at 6 weeks post-implantation. Implantation resulted in survival of 44+/-4% of preganglionic parasympathetic neurons and 44+/-4% of motoneurons compared with 22% of preganglionic parasympathetic neurons and 16% of motoneurons after avulsion alone. Retrograde labeling from the implanted root at 6 weeks showed that 53+/-13% of surviving preganglionic parasympathetic neurons and 64+/-14% of surviving motoneurons reinnervated the graft. Implantation prevented injury-induced atrophy of preganglionic parasympathetic neurons and reduced atrophy of motoneurons. Light and electron microscopic studies of the implanted ventral roots demonstrated a large number of both myelinated axons (79+/-13% of the number of myelinated axons in corresponding control ventral roots) and unmyelinated axons. Although the diameter of myelinated axons in the implanted roots was significantly smaller than that of control roots, the degree of myelination was appropriate for the axonal size, suggesting normal conduction properties. Our results show that preganglionic parasympathetic neurons have the same ability as motoneurons to survive and reinnervate implanted roots, a prerequisite for successful therapeutic strategies for autonomic control in selected patients with acute conus medullaris and cauda equina injuries.
Collapse
Affiliation(s)
- T X Hoang
- Department of Neurology and Brain Research Institute, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | | | | | | | | |
Collapse
|
13
|
Lang EM, Schlegel N, Sendtner M, Asan E. Effects of root replantation and neurotrophic factor treatment on long-term motoneuron survival and axonal regeneration after C7 spinal root avulsion. Exp Neurol 2005; 194:341-54. [PMID: 16022862 DOI: 10.1016/j.expneurol.2005.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 02/09/2005] [Accepted: 02/14/2005] [Indexed: 12/28/2022]
Abstract
In order to determine the effect of nerve root replantation on motoneuron survival and regeneration, we have avulsed and replanted C7 ventral rootlets in adult rabbits under various conditions. Intraspinal alterations and exact positions of ventrolateral replantations were studied in each animal, and the effects of BDNF and/or CNTF administration during replantation investigated in different experimental groups. Six months after lesion, about 70% of motoneurons were lost on the lesioned sides in the C7 segment, without significant differences between groups. Retrograde fluorescent tracing and histological analysis documented that many axons had regrown through the original ventral exit zones or had exited the spinal cord at the lateral replantation site. However, many laterally exiting axons had not grown out directly from the ventral horn through the lateral white matter but had elongated vertically before leaving the spinal cord. The mean axonal diameter was significantly higher in regenerated axons that had exited through the original ventral exit zones in comparison with axons which had grown out laterally. Application of BDNF and/or CNTF did not show any effects on the pathways of regeneration into the replanted root. The results indicate that motoneuron survival cannot be significantly improved by a single dose of neurotrophic factors applied to a ventrolateral replantation site. However, a significant number of myelinating axons are found in replanted roots, and regeneration may be more efficient when outgrowth through the original ventral exit zone is supported.
Collapse
Affiliation(s)
- E M Lang
- Department of Plastic- and Handsurgery, Albert-Ludwigs-University, Medical Center, Hugstetterstrasse 55, 79106 Freiburg, Germany.
| | | | | | | |
Collapse
|