1
|
Liu X, Ji C, Xu L, Yu T, Dong C, Luo J. Hmox1 promotes osteogenic differentiation at the expense of reduced adipogenic differentiation induced by BMP9 in C3H10T1/2 cells. J Cell Biochem 2018; 119:5503-5516. [PMID: 29377252 DOI: 10.1002/jcb.26714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors that can differentiate into a variety of cell types under proper stimuli. Bone morphogenetic protein 9 (BMP9) is able to simultaneously induce both adipogenic and osteogenic differentiation of MSCs although the regulatory molecules involved remain to be fully identified and characterized. Heme oxygenase 1 (Hmox1) plays an essential role not only in fat metabolism, but also in bone development. In the present study, we investigated the functional role of Hmox1 in BMP9-induced osteogenic/adipogenic differentiation in MSCs line C3H10T1/2 and probed the possible mechanism involved. We found that BMP9 promoted the endogenous expression of Hmox1 in C3H10T1/2 cells. Overexpression of Hmox1 or cobalt protoporphyrin (CoPP), an inducer of Hmox1, increased BMP9-induced osteogenic differentiation in vitro. Subcutaneous stem cell implantation in nude mice further confirmed that Hmox1 potentiated BMP9-induced ectopic bone formation in vivo. In contrast, Hmox1 reduced BMP9-induced adipogenic differentiation in C3H10T1/2 cells. Although had no obvious effect on BMP9-induced Smad1/5/8 phosphorylation, Hmox1 enhanced phosphorylation of p38, and AKT, while decreased phosphorylation of ERK1/2. Furthermore, Hmox1 increased total β-catenin protein level, and promoted the nuclear translocation of β-catenin in C3H10T1/2 cells. Taken together, our study strongly suggests that Hmox1 is likely to potentiate osteogenic differentiation and yet decrease adipogenic differentiation induced by BMP9 possibly through regulation of multiple signaling pathways.
Collapse
Affiliation(s)
- Xiaohua Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Caixia Ji
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Li Xu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - TingTing Yu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Chaoqun Dong
- Department of Orthorpedic, Children Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
2
|
Dai H, Wang M, Patel PN, Kalogeris T, Liu Y, Durante W, Korthuis RJ. Preconditioning with the BK Ca channel activator NS-1619 prevents ischemia-reperfusion-induced inflammation and mucosal barrier dysfunction: roles for ROS and heme oxygenase-1. Am J Physiol Heart Circ Physiol 2017; 313:H988-H999. [PMID: 28822969 DOI: 10.1152/ajpheart.00620.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Activation of large-conductance Ca2+-activated K+ (BKCa) channels evokes cell survival programs that mitigate intestinal ischemia and reperfusion (I/R) inflammation and injury 24 h later. The goal of the present study was to determine the roles of reactive oxygen species (ROS) and heme oxygenase (HO)-1 in delayed acquisition of tolerance to I/R induced by pretreatment with the BKCa channel opener NS-1619. Superior mesentery arteries were occluded for 45 min followed by reperfusion for 70 min in wild-type (WT) or HO-1-null (HO-1-/-) mice that were pretreated with NS-1619 or saline vehicle 24 h earlier. Intravital microscopy was used to quantify the numbers of rolling and adherent leukocytes. Mucosal permeability, tumor necrosis factor-α (TNF-α) levels, and HO-1 activity and expression in jejunum were also determined. I/R induced leukocyte rolling and adhesion, increased intestinal TNF-α levels, and enhanced mucosal permeability in WT mice, effects that were largely abolished by pretreatment with NS-1619. The anti-inflammatory and mucosal permeability-sparing effects of NS-1619 were prevented by coincident treatment with the HO-1 inhibitor tin protoporphyrin-IX or a cell-permeant SOD mimetic, Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), in WT mice. NS-1619 also increased jejunal HO-1 activity in WT animals, an effect that was attenuated by treatment with the BKCa channel antagonist paxilline or MnTBAP. I/R also increased postischemic leukocyte rolling and adhesion and intestinal TNF-α levels in HO-1-/- mice to levels comparable to those noted in WT animals. However, NS-1619 was ineffective in preventing these effects in HO-1-deficient mice. In summary, our data indicate that NS-1619 induces the development of an anti-inflammatory phenotype and mitigates postischemic mucosal barrier disruption in the small intestine by a mechanism that may involve ROS-dependent HO-1 activity.NEW & NOTEWORTHY Antecedent treatment with the large-conductance Ca2+-activated K+ channel opener NS-1619 24 h before ischemia-reperfusion limits postischemic tissue injury by an oxidant-dependent mechanism. The present study shows that NS-1619-induced oxidant production prevents ischemia-reperfusion-induced inflammation and mucosal barrier disruption in the small intestine by provoking increases in heme oxygenase-1 activity.
Collapse
Affiliation(s)
- Hongyan Dai
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Meifang Wang
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Parag N Patel
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Theodore Kalogeris
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Yajun Liu
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - William Durante
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
3
|
Ischemic post-conditioning attenuates acute lung injury induced by intestinal ischemia-reperfusion in mice: role of Nrf2. J Transl Med 2016; 96:1087-104. [PMID: 27501050 DOI: 10.1038/labinvest.2016.87] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/03/2016] [Accepted: 07/03/2016] [Indexed: 01/22/2023] Open
Abstract
Intestinal ischemic post-conditioning (IPo) protects against lung injury induced by intestinal ischemia-reperfusion (IIR) partly through promotion of expression and function of heme oxygenase-1 (HO-1). NF-E2-related factor-2 (Nrf2) is a key transcription factor that interacts with HO-1 and regulates antioxidant defense. However, the role of Nrf2 in IPo protection of IIR-induced pulmonary injury is not completely understood. Here we show that IPo significantly attenuated IIR-induced lung injury and suppressed oxidative stress and systemic inflammatory responses. IPo also increased the expression of both Nrf2 and HO-1. Consistently, the beneficial effects of IPo were abolished by ATRA and Brusatol, potent inhibitors of Nrf2. Moreover, the Nrf2 agonist t-BHQ showed similar activity as IPo. Taken together, our data suggest that Nrf2 activity, along with HO-1, plays an important role in the protective effects of IPo against IIR-induced acute lung injury.
Collapse
|
4
|
Pinheiro DFDC, Fontes B, Shimazaki JK, Heimbecker AMC, Jacysyn JDF, Rasslan S, Montero EFDS, Utiyama EM. Ischemic preconditioning modifies mortality and inflammatory response. Acta Cir Bras 2016; 31:1-7. [PMID: 26840349 DOI: 10.1590/s0102-865020160010000001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/12/2015] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To evaluate the effect of ischemic preconditioning on mortality, inflammatory mediators and oxidative stress after intestinal ischemia and reperfusion. METHODS Male Wistar rats were allocated according to the period of ischemia with or without ischemic preconditioning which consist on clamping the superior mesenteric artery for 10 minutes followed by reperfusion for 10 minutes before the sustained ischemia period. Mortality was assessed in Phase 1 study, and the CINC-1, CINC-2 and MDA levels in the lungs were analyzed in Phase 2. RESULTS Mortality was lower in the ischemic preconditioning group subjected to 90 minutes of ischemia compared to the group without ischemic preconditioning (I-90: 50% and IPC-90: 15%, p=0.018), and it was lower in the ischemic preconditioning group as a whole compared to the groups without ischemic preconditioning (IPC-14% and I=30%, p=0.006). Lower levels of MDA, CINC-1, and CINC-2 were observed in the animals that were subjected to ischemic preconditioning compared to the animals that were not (MDA: I-45=1.23 nmol/mg protein, and IPC-45=0.62 nmol/mg protein, p=0.0333; CINC-1: I-45=0.82 ng/mL and IPC-45=0.67 ng/mL, p=0.041; CINC-2: I-45=0.52 ng/mL and IPC-45=0.35 ng/mL, p=0.032). CONCLUSION Ischemic preconditioning reduces mortality, inflammatory process and oxidative stress in rats subjected to intestinal ischemia and reperfusion.
Collapse
Affiliation(s)
| | - Belchor Fontes
- Department of Surgery, Medical School, FMUSP, Sao Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
5
|
Chi X, Guo N, Yao W, Jin Y, Gao W, Cai J, Hei Z. Induction of heme oxygenase-1 by hemin protects lung against orthotopic autologous liver transplantation-induced acute lung injury in rats. J Transl Med 2016; 14:35. [PMID: 26838179 PMCID: PMC4736160 DOI: 10.1186/s12967-016-0793-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Post-liver transplantation acute lung injury (ALI) severely affects patients' survival, whereas the mechanism is unclear and effective therapy is lacking. The authors postulated that reperfusion-induced increased oxidative stress plays a critical role in mediating post-liver transplantation ALI and that induction of heme oxgenase-1 (HO-1), an enzyme with anti-oxidative stress properties, can confer effective protection of lung against ALI. METHODS Male Sprague-Dawley rats underwent autologous orthotopic liver transplantation (OALT) in the absence or presence of treatments with the selective HO-1 inducer (Hemin) or HO-1 inhibitor (ZnPP). Lung tissues were collected at 8 h after OALT, pathological scores and lung water content were evaluated; survival rate of rats was analyzed; protein expression of HO-1 was determined by western blotting, and nuclear translocation of Nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor(NF)-κB p65 were detected by Immunofluorescence staining. The inflammatory cytokines and oxidative indexes of lung tissue were determined. RESULTS In lungs harvested at the early stage i.e. 8 h after OALT, Hemin treatment significantly increased superoxide dismutase activities, and reduced malondialdehyde, hydrogen peroxide, interleukin-6, myeloperoxidase, and tumor necrosis factor-α production,which were associated with increased HO-1 protein expression and lower pathological scores and increased survival rate of rats. The underline mechanisms might associate with activation of Nrf2 and inhibition of NF-κB p65 nuclear translocation. However, these changes were aggravated by ZnPP. CONCLUSIONS Hemin pretreatment, by enhancing HO-1 induction, increased lung antioxidant capacity and reduced inflammatory stress,protected the lung from OALT-induced ALI at early stage of reperfusion.
Collapse
Affiliation(s)
- Xinjin Chi
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Na Guo
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Weifeng Yao
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Yi Jin
- Department of Pathology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Wanling Gao
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Jun Cai
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Ziqing Hei
- Department of Anesthesiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
6
|
He XH, Li QW, Wang YL, Zhang ZZ, Ke JJ, Yan XT, Chen K. Transduced PEP-1-heme oxygenase-1 fusion protein reduces remote organ injury induced by intestinal ischemia/reperfusion. Med Sci Monit 2015; 21:1057-65. [PMID: 25863938 PMCID: PMC4404748 DOI: 10.12659/msm.893924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background A fusion protein composed of heme oxygenase-1 (HO-1) and cell-penetrating peptide PEP-1 has been shown to reduce local intestinal injury after intestinal ischemia/reperfusion (I/R). In this study, we investigated the effects of PEP-1-HO-1 fusion protein on remote organ injury induced by intestinal I/R in rats. Material/methods We randomly assigned 24 male Sprague-Dawley rats to 3 groups: Sham, I/R, and I/R plus PEP-1-HO-1 treatment (HO). The model of intestinal I/R was established by occluding the superior mesenteric artery for 45 min followed by 120-min reperfusion. In HO group, PEP-1-HO-1 was administered intravenously 30 min before ischemia, while animals in the Sham and I/R groups received the equal volume of physiological saline. At the end of the experiment, lung, liver, and blood samples were collected and analyzed. Results Malondialdehyde levels and histological injury scores were increased, and superoxide dismutase activities were decreased in the lung and liver tissues in the I/R group compared with the Sham group (P<0.05). Serum levels of alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor-α, interleukin-6, and lung tissue wet weight to dry weight ratio were increased in the I/R group compared with the Sham group (P<0.05). NF-κB expression in intestinal tissues was significantly higher in the I/R group than in the Sham group. These changes were significantly reversed by treatment with PEP-1-HO-1. Conclusions This study demonstrates that administration of PEP-1-HO-1 has a protective role against lung and liver injury after intestinal I/R, attributable to the reduction of released proinflammatory cytokines regulated by NF-κB.
Collapse
Affiliation(s)
- Xiang-Hu He
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Qing-Wen Li
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Yan-Lin Wang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Zong-Ze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Jian-Juan Ke
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Xue-Tao Yan
- Department of Anesthesiology, Shenzhen Boan Maternity and Child Health Hospital, Shenzhen, Guangdong, China (mainland)
| | - Kai Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
7
|
Yun N, Cho HI, Lee SM. Impaired autophagy contributes to hepatocellular damage during ischemia/reperfusion: heme oxygenase-1 as a possible regulator. Free Radic Biol Med 2014; 68:168-77. [PMID: 24365205 DOI: 10.1016/j.freeradbiomed.2013.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/15/2013] [Accepted: 12/11/2013] [Indexed: 12/14/2022]
Abstract
Liver ischemia and reperfusion (I/R) injury is characterized by oxidative stress that is accompanied by alterations of the endogenous defensive system. Emerging evidence suggests a protective role for autophagy induced by multiple stressors including reactive oxygen species. Meanwhile, heme oxygenase-1 (HO-1) has long been implicated in cytoprotection against oxidative stress in vitro and in vivo. Therefore, we investigated the impact of autophagy in the pathogenesis of liver I/R and its molecular mechanisms, particularly its linkage to HO-1. By using transmission electron microscopic analysis and biochemical autophagic flux assays with microtubule-associated protein 1 light chain 3-II, and beclin-1, representative autophagy markers, and p62, a selective substrate for autophagy, we found that reperfusion reduced autophagy both in the rat liver and in primary cultured hepatocytes. When autophagy was further inhibited with chloroquine or wortmannin, I/R-induced hepatocellular injury was aggravated. While livers that underwent I/R showed increased levels of mammalian target of rapamaycin and calpain 1 and 2, inhibition of calpain 1 and 2 induced an autophagic response in hepatocytes subjected to hypoxia/reoxygenation. HO-1 increased autophagy, and HO-1 reduced I/R-induced calcium overload in hepatocytes and prevented calpain 2 activation both in vivo and in vitro. Taken together, these findings suggest that the impaired autophagy during liver I/R, which is mediated by calcium overload and calpain activation, contributes to hepatocellular damage and the HO-1 system protects the liver from I/R injury through enhancing autophagy.
Collapse
Affiliation(s)
- Nari Yun
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Hong-Ik Cho
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea.
| |
Collapse
|
8
|
Liao YF, Zhu W, Li DP, Zhu X. Heme oxygenase-1 and gut ischemia/reperfusion injury: A short review. World J Gastroenterol 2013; 19:3555-3561. [PMID: 23801856 PMCID: PMC3691047 DOI: 10.3748/wjg.v19.i23.3555] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/19/2013] [Accepted: 04/11/2013] [Indexed: 02/06/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury of the gut is a significant problem in a variety of clinical settings and is associated with a high morbidity and mortality. Although the mechanisms involved in the pathogenesis of gut I/R injury have not been fully elucidated, it is generally believed that oxidative stress with subsequent inflammatory injury plays an important role. Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme, followed by production of CO, biliverdin, and free iron. The HO system is believed to confer cytoprotection by inhibiting inflammation, oxidation, and apoptosis, and maintaining microcirculation. HO-1, an inducible form of HO, serves a vital metabolic function as the rate-limiting step in the heme degradation pathway, and affords protection in models of intestinal I/R injury. HO-1 system is an important player in intestinal I/R injury condition, and may offer new targets for the management of this condition.
Collapse
|
9
|
Kang JW, Lee SM. Melatonin inhibits type 1 interferon signaling of toll-like receptor 4 via heme oxygenase-1 induction in hepatic ischemia/reperfusion. J Pineal Res 2012; 53:67-76. [PMID: 22288937 DOI: 10.1111/j.1600-079x.2012.00972.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cytoprotective mechanisms of melatonin in hepatic ischemia/reperfusion (I/R) injury associated with heme oxygenase-1 (HO-1) induction and type 1 interferon (IFN) signaling pathway downstream of toll-like receptor 4 (TLR4) were investigated. Rats were subjected to 60min of ischemia followed by 5-hr reperfusion. Melatonin (10mg/kg) or vehicle (5% ethanol in saline) was administered intraperitoneally 15min prior to ischemia and immediately before reperfusion. Rats were pretreated with zinc protoporphyrin (ZnPP, 10mg/kg, i.p.), a HO-1 inhibitor, at 16 and 3hr prior to ischemia. Melatonin attenuated the I/R-induced increase in serum alanine aminotransferase activity, and ZnPP reversed this attenuation. Melatonin augmented the levels of HO activity and HO-1 protein and mRNA expression, and this enhancement was reversed by ZnPP. Melatonin enhanced the level of NF-E2-related factor-2 (Nrf2) nuclear translocation, and ZnPP reversed this increase. Overexpression of TLR4 and its adaptor proteins, toll-receptor-associated activator of interferon (TRIF), and myeloid differentiation factor 88 (MyD88), induced by I/R, was attenuated by melatonin; ZnPP reversed the effect of melatonin on TLR4 and TRIF expression. Melatonin suppressed the increased interaction between TLR4/TRIF and TLR4/MyD88, which was reversed by ZnPP. Melatonin attenuated the increased levels of JAK2 and STAT1 activation as well as IFN-β, and ZnPP reversed these inhibitory effects of melatonin. Melatonin inhibited the level of chemokine (C-X-C motif) ligand 10 (CXCL-10), and ZnPP reversed this inhibition. Our findings suggest that melatonin protects the liver against I/R injury by HO-1 overexpression, which suppresses the type 1 IFN signaling pathway downstream of TLR4.
Collapse
Affiliation(s)
- Jung-Woo Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | | |
Collapse
|
10
|
Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers Med Sci 2012; 28:551-64. [PMID: 22562449 DOI: 10.1007/s10103-012-1088-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
Intestinal ischemia and reperfusion (i-I/R) is an insult associated with acute respiratory distress syndrome (ARDS). It is not known if pro- and anti-inflammatory mediators in ARDS induced by i-I/R can be controlled by low-level laser therapy (LLLT). This study was designed to evaluate the effect of LLLT on tracheal cholinergic reactivity dysfunction and the release of inflammatory mediators from the lung after i-I/R. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and preestablished periods of intestinal reperfusion (30 min, 2 or 4 h). The LLLT (660 nm, 7.5 J/cm(2)) was carried out by irradiating the rats on the skin over the right upper bronchus for 15 and 30 min after initiating reperfusion and then euthanizing them 30 min, 2, or 4 h later. Lung edema was measured by the Evans blue extravasation technique, and pulmonary neutrophils were determined by myeloperoxidase (MPO) activity. Pulmonary tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1), and isoform of NO synthase (iNOS) mRNA expression were analyzed by real-time PCR. TNF-α, IL-10, and iNOS proteins in the lung were measured by the enzyme-linked immunoassay technique. LLLT (660 nm, 7.5 J/cm(2)) restored the tracheal hyperresponsiveness and hyporesponsiveness in all the periods after intestinal reperfusion. Although LLLT reduced edema and MPO activity, it did not do so in all the postreperfusion periods. It was also observed with the ICAM-1 expression. In addition to reducing both TNF-α and iNOS, LLLT increased IL-10 in the lungs of animals subjected to i-I/R. The results indicate that LLLT can control the lung's inflammatory response and the airway reactivity dysfunction by simultaneously reducing both TNF-α and iNOS.
Collapse
|
11
|
Anti-inflammatory and antioxidant effects of infliximab on acute lung injury in a rat model of intestinal ischemia/reperfusion. J Mol Histol 2012; 43:361-9. [PMID: 22389028 DOI: 10.1007/s10735-012-9396-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/17/2012] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to investigate the role of infliximab on acute lung injury induced by intestinal ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ infliximab; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the infliximab group, 3 days before I/R, infliximab (3 mg/kg) was administered by intravenously. All animals were sacrificed at the end of reperfusion and lung tissues samples were obtained for biochemical and histopathological investigation in all groups. To date, no more biochemical and histopathological changes on intestinal I/R injury in rats by infliximab treatment have been reported. Infliximab treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in lung tissues samples. Intestinal I/R caused severe histopathological injury including edema, hemorrhage, increased thickness of the alveolar wall and a great number of inflammatory cells that infiltrated the interstitium and alveoli. Infliximab treatment significantly attenuated the severity of intestinal I/R injury. Furthermore, there is a significant reduction in the activity of inducible nitric oxide synthase and arise in the expression of surfactant protein D in lung tissue of acute lung injury induced by intestinal I/R with infliximab therapy. It was concluded that infliximab treatment might be beneficial in acute lung injury, therefore, shows potential for clinical use. Because of its anti-inflammatory and antioxidant effects, infliximab pretreatment may have protective effects in acute lung injury induced by intestinal I/R.
Collapse
|
12
|
de Lima FM, Villaverde A, Albertini R, Corrêa J, Carvalho R, Munin E, Araújo T, Silva J, Aimbire F. Dual Effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: Action on anti- and pro-inflammatory cytokines. Lasers Surg Med 2011; 43:410-20. [DOI: 10.1002/lsm.21053] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Lv X, Yang L, Tao K, Liu Y, Yang T, Chen G, Yu W, Lv H, Wu F. Isoflurane preconditioning at clinically relevant doses induce protective effects of heme oxygenase-1 on hepatic ischemia reperfusion in rats. BMC Gastroenterol 2011; 11:31. [PMID: 21453462 PMCID: PMC3088533 DOI: 10.1186/1471-230x-11-31] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 03/31/2011] [Indexed: 12/20/2022] Open
Abstract
Background Activation of heme oxygenase-1 (HO-1) has been proved to reduce damages to the liver in ischemia reperfusion injury. The objective of present study was to determine whether clinic relevant doses of isoflurane treatment could be sufficient to activate HO-1 inducing, which confers protective effect against hepatic ischemia-reperfusion injury. Methods The hepatic artery and portal vein to the left and the median liver lobes of forty male Sprague-Dawley rats were occluded for 60 minutes. Reperfusion was allowed for 4 hours before the animal subjects were sacrificed. Six groups (n = 12) were included in the study. A negative control group received sham operation and positive control group a standard ischemia-reperfusion regimen. The third group was pretreated with isoflurane prior to the ischemia-reperfusion. The fourth group received an HO-1 inhibitor zinc protoporphyrin (Znpp) prior to the isoflurane pretreatment and the ischemia-reperfusion. The fifth group received Znpp alone before ischemia-reperfusion procedure, and the sixth group was administrated with a HO-1 inducer hemin prior to IR. HO-1 in the liver was measured using an enzymatic activity assay, a Western blot analysis, as well as immunohistochemical method. Extent of liver damage was estimated by determination of the serum transaminases, liver lipid peroxidation and hepatic histology. Infiltration of the liver by neutrophils was measured using a myeloperoxidase activity assay. TNFα mRNA in the liver was measured using RT-PCR. Results Isoflurane pretreatment significantly attenuated the hepatic injuries and inflammatory responses caused by the ischemia reperfusion. Selectively inhibiting HO-1 with ZnPP completed blocked the protective effects of isoflurane. Inducing HO-1 with hemin alone produced protective effects similar in magnitude to that of isoflurane. Conclusions Clinic relevant doses of isoflurane attenuate ischemia reperfusion injury in rats by increasing the HO-1 expression and activity.
Collapse
Affiliation(s)
- Xin Lv
- Department of Anesthesia and Intensive Care, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, 225 Changhai Road, Shanghai 200438, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yun N, Eum HA, Lee SM. Protective role of heme oxygenase-1 against liver damage caused by hepatic ischemia and reperfusion in rats. Antioxid Redox Signal 2010; 13:1503-12. [PMID: 20446775 DOI: 10.1089/ars.2009.2873] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study investigated the time course of heme oxygenase (HO)-1 expression and the role of endogenous HO-1 in hepatic ischemia and reperfusion (I/R). Rats were pretreated with hemin, an HO-1 inducer, and zinc protoporphyrin (ZnPP), an HO-1 inhibitor. Hepatic HO activity increased at 1 h after reperfusion, reaching a maximum at 6 h after reperfusion and then declined. HO-1 mRNA and protein expression in I/R liver were upregulated prior to reperfusion and highly induced again by reperfusion. The ALT level was upregulated at all time points, with a peak at 4-6 h. This increase was augmented by ZnPP but attenuated by hemin. Lipid peroxidation and serum HMGB1 release significantly increased at 1 h after reperfusion and remained elevated throughout the 24 h of reperfusion period, whereas the glutathione content decreased markedly at 4-6 h after reperfusion. These changes were attenuated by hemin but augmented by ZnPP. The levels of serum TNF-α, iNOS, and COX-2 protein and mRNA expressions were upregulated after reperfusion, further enhanced by ZnPP, and suppressed by hemin. HO-1 overexpression protects the liver against I/R injury by modulating oxidative stress and proinflammatory mediators.
Collapse
Affiliation(s)
- Nari Yun
- School of Pharmacy, Sungkyunkwan University , Suwon-si, South Korea
| | | | | |
Collapse
|
15
|
Xia ZY, Gao J, Ancharaz AK, Liu KX, Xia Z, Luo T. Ischaemic post-conditioning protects lung from ischaemia-reperfusion injury by up-regulation of haeme oxygenase-1. Injury 2010; 41:510-6. [PMID: 19524915 DOI: 10.1016/j.injury.2009.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/03/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The emergence of ischaemic post-conditioning (IPO) provides a potential method for experimentally and clinically attenuating various types of organ injuries. There has been little work, however, examining its effects in the setting of lung ischaemia reperfusion (IR). The stress protein, haeme oxygenase-1 (HO-1), has been found to exert a potent, protective role in a variety of lung injury models. In this study, we hypothesised that the induction of HO-1 by IPO plays a protective role against the deleterious effects of IR in the lung. METHODS Anaesthetised and mechanically ventilated adult Sprague-Dawley rats were randomly assigned to one of the following groups (n=8 each): the sham-operated control group, the IR group (40 min of left-lung ischaemia and 105 min of reperfusion), the IPO group (three successive cycles of 30-s reperfusion per 30-s occlusion before restoring full perfusion) and the ZnPPIX+IPO group (ZnPPIX, an inhibitor of HO-1, was injected intra-peritoneally at 20 mg kg(-1) 24h prior to the experiment and the rest of the procedures were similar to that of the IPO group). Lung injury was assessed by arterial blood gas analysis, wet-to-dry lung weight ratio and tissue histological changes. The extent of lipid peroxidation was determined by measuring plasma levels of malondialdehyde (MDA) production. Expression of HO-1 was determined by immunohistochemistry. RESULTS Lung IR resulted in a significant reduction of PaO(2) (data in IR, P<0.05 vs. data in sham) and increase of lung wet-to-dry weight ratio, accompanied with increased MDA production and severe lung pathological morphological changes as well as a compensatory increase in HO-1 protein expression, as compared with sham (All P<0.05). IPO markedly attenuated all the above pathological changes seen in the IR group and further increased HO-1 expression. Treatment with ZnPPIX abolished all the protective effects of post-conditioning. CONCLUSION It may be concluded that IPO protects IR-induced lung injury via induction of HO-1.
Collapse
Affiliation(s)
- Zhong-yuan Xia
- Anesthesiology Research Laboratory, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Local and remote tissue injury upon intestinal ischemia and reperfusion depends on the TLR/MyD88 signaling pathway. Med Microbiol Immunol 2009; 199:35-42. [DOI: 10.1007/s00430-009-0134-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Indexed: 01/01/2023]
|
17
|
Kostopanagiotou G, Avgerinos ED, Markidou E, Voiniadis P, Chondros C, Theodoraki K, Smyrniotis V, Arkadopoulos N. Protective effect of NAC preconditioning against ischemia-reperfusion injury in piglet small bowel transplantation: effects on plasma TNF, IL-8, hyaluronic acid, and NO. J Surg Res 2009; 168:301-5. [PMID: 20036383 DOI: 10.1016/j.jss.2009.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/08/2009] [Accepted: 09/02/2009] [Indexed: 01/12/2023]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is one of the main factors affecting the function and structure of small bowel transplantation (SBT), by generation of proinflammatory mediators such as reactive oxygen species, reactive nitrogen species, cytokines, and endotoxin. Experimental data have demonstrated that N-acetylcysteine (NAC) attenuates intestinal I/R injury. The objective of this study was to determine the effect of NAC preconditioning on the SBT-I/R induced inflammatory cascade, with particular focus on TNF, IL-8, hyaluronic acid, and NO. METHODS Fifteen domestic pigs were used as donors. Fifteen recipient animals were randomly assigned into two groups. Group 1: SBTx (n=7) served as controls and Group 2: SBTx (n=8) served as the experimental group (NAC administration). RESULTS NAC administration at a continuous 4 h intravenous bolus dose of 200 mg/kg of body weight, starting before initiation of bowel transplantation, resulted in statistically significant (P<0.05) higher plasma levels of NO, and lower plasma levels of hyaluronic acid, TNF-α, IL-8, and LDH compared with those of the control group, at the 360 min time point. CONCLUSIONS NAC confers a protective role in small bowel transplantation associated, partly, with NO generation and hyaluronic acid, TNF-α and IL-8 amelioration.
Collapse
Affiliation(s)
- Georgia Kostopanagiotou
- 2nd Department of Anesthesiology, School of Medicine, Attikon Hospital, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ganter MT, Roux J, Su G, Lynch SV, Deutschman CS, Weiss YG, Christiaans SC, Myazawa B, Kipnis E, Wiener-Kronish JP, Howard M, Pittet JF. Role of small GTPases and alphavbeta5 integrin in Pseudomonas aeruginosa-induced increase in lung endothelial permeability. Am J Respir Cell Mol Biol 2008; 40:108-18. [PMID: 18703797 DOI: 10.1165/rcmb.2007-0454oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe pneumonia associated with airspace flooding with protein-rich edema in critically ill patients. The type III secretion system is a major virulence factor and contributes to dissemination of P. aeruginosa. However, it is still unknown which particular bacterial toxin and which cellular pathways are responsible for the increase in lung endothelial permeability induced by P. aeruginosa. Thus, the first objective of this study was to determine the mechanisms by which this species causes an increase in lung endothelial permeability. The results showed that ExoS and ExoT, two of the four known P. aeruginosa type III cytotoxins, were primarily responsible for bacterium-induced increases in protein permeability across the lung endothelium via an inhibition of Rac1 and an activation of the RhoA signaling pathway. In addition, inhibition of the alphavbeta5 integrin, a central regulator of lung vascular permeability, prevented these P. aeruginosa-mediated increases in albumin flux due to endothelial permeability. Finally, prior activation of the stress protein response or adenoviral gene transfer of the inducible heat shock protein Hsp72 also inhibited the damaging effects of P. aeruginosa on the barrier function of lung endothelium. Taken together, these results demonstrate the critical role of the RhoA/alphavbeta5 integrin pathway in mediating P. aeruginosa-induced lung vascular permeability. In addition, activation of the stress protein response with pharmacologic inhibitors of Hsp90 may protect lungs against P. aeruginosa-induced permeability changes.
Collapse
Affiliation(s)
- Michael T Ganter
- Department of Anesthesia and Surgery, University of California San Francisco, San Francisco, California 94110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu C, Wu Q, Li Q, Liu D, Su H, Shen N, Tai M, Lv Y. Mesenteric lymphatic ducts ligation decreases the degree of gut-induced lung injury in a portal vein occlusion and reperfusion canine model. J Surg Res 2008; 154:45-50. [PMID: 19201426 DOI: 10.1016/j.jss.2008.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/02/2008] [Accepted: 06/05/2008] [Indexed: 01/22/2023]
Abstract
BACKGROUND Whether the mesenteric lymphatic system could serve as a route of transport by which gut-derived inflammatory mediators contribute to the induction of remote organ injuries is uncertain. We therefore made a gut-induced lung injury canine model by portal vein occlusion and reperfusion (PV O/R) and studied the role of mesenteric lymphatic ducts ligation (ML) to gut-induced lung injury with this model. MATERIAL AND METHODS Eighteen mongrel dogs were divided into control, PV O/R, and PV O/R + ML groups. Cytokines and endotoxin levels in the portal vein and lymph from thoracic duct in different groups were tested. The permeability, myeloperoxidase activity, and histopathological investigation of intestine and lung were evaluated. RESULTS Cytokines and endotoxin levels in the portal vein were significantly increased in experimental groups compared with control group (P < 0.05), and that in the lymph from thoracic duct were significantly increased in PV O/R group compared with control and PV O/R + ML group (P < 0.05). Lung permeability and MPO activity in PV O/R group were significantly higher than those in control and PV O/R + ML group (P < 0.05); intestinal permeability in experimental groups were significantly higher with respect to control group. The lung injury score in PV O/R group was significantly higher than those in control and PV O/R + ML group (P < 0.05) and the intestinal injury scores in experimental groups were significantly higher than control group (P < 0.05). CONCLUSIONS The gut-induced lung injury canine model made by PV O/R is successful, and mesenteric lymphatic ducts ligation decreases the degree of gut-induced lung injury in this model.
Collapse
Affiliation(s)
- Chang Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiao Tong University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hsu JT, Kan WH, Hsieh CH, Choudhry MA, Schwacha MG, Bland KI, Chaudry IH. Mechanism of estrogen-mediated intestinal protection following trauma-hemorrhage: p38 MAPK-dependent upregulation of HO-1. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1825-31. [DOI: 10.1152/ajpregu.00112.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
p38 MAPK has been reported to regulate the inflammatory response in various cell types via extracellular stimuli. p38 MAPK activation also results in the induction of heme oxygenase (HO)-1, which exerts potent anti-inflammatory effects. Although studies have shown that 17β-estradiol (E2) prevented organ dysfunction following trauma-hemorrhage, it remains unknown whether p38 MAPK/HO-1 plays any role in E2-mediated attenuation of intestinal injury under those conditions. To study this, male rats underwent trauma-hemorrhage (mean blood pressure ∼40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 mg/kg body wt), the p38 MAPK inhibitor SB-203580 (2 mg/kg body wt) or E2 plus SB-203580. Two hours thereafter, intestinal myeloperoxidase (MPO) activity and lactate, TNF-α, IL-6, ICAM-1, cytokine-induced neutrophil chemoattractant (CINC)-1, and macrophage inflammatory protein (MIP)-2 levels were measured. Intestinal p38 MAPK and HO-1 protein levels were also determined. Trauma-hemorrhage led to an increase in intestinal MPO activity and lactate, TNF-α, IL-6, ICAM-1, CINC-1, and MIP-2 levels. This was accompanied with a decrease in intestinal p38 MAPK activity and increase in HO-1 expression. Administration of E2 normalized all the above parameters except HO-1, which was further increased following trauma-hemorrhage. Administration of SB-203580 with E2 abolished the E2-mediated restoration of the above parameters as well as the increase in intestinal HO-1 expression following trauma-hemorrhage. These results suggest that the p38 MAPK/HO-1 pathway plays a critical role in mediating the salutary effects of E2 on shock-induced intestinal injury.
Collapse
|
21
|
Gao C, Sun X, Zhang G, Zhang H, Zhao H, Yang Y, Han L, Xu L, Chai W. Hyperoxygenated Solution Preconditioning Attenuates Lung Injury Induced by Intestinal Ischemia Reperfusion in Rabbits. J Surg Res 2008; 146:24-31. [DOI: 10.1016/j.jss.2007.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 07/02/2007] [Accepted: 07/17/2007] [Indexed: 11/24/2022]
|
22
|
Protective effects of pretreatment with Radix Paeoniae Rubra on acute lung injury induced by intestinal ischemia/reperfusion in rats. Chin J Traumatol 2008; 11:37-41. [PMID: 18230290 DOI: 10.1016/s1008-1275(08)60008-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To investigate the effect of pretreatment with Radix Paeoniae Rubra (RPR) on acute lung injury induced by intestinal ischemia/reperfusion in rats and its protective mechanism. METHODS Thirty-two Wistar rats were randomly divided into four groups: Sham-operation group, ischemia/reperfusion group (I/R group), RPR-pretreatment group and hemin group. The model of intestinal ischemia/reperfusion was established by clamping the superior mesenteric artery for 1 hour followed by 2-hour reperfusion. The effect of RPR on the expression of heme oxygenase-1 (HO-1) in lung tissues was detected by immunohistochemistry and morphometry computer image analysis. Arterial blood gas analysis, lung permeability index, malondialdehyde (MDA) and superoxide dismutase (SOD) contents in lungs were measured. The histological changes of lung tissue were observed under light microscope. RESULTS The expression of HO-1 in RPR-pretreatment group and hemin group was obviously higher than that in sham-operation group and I/R group (P < 0.01). The level of MDA and lung permeability index in RPR-pretreatment and hemin group were significantly lower than those in I/R group (P < 0.01 or P < 0.05), while the activity of SOD in RPR-pretreatment and hemin group was obviously higher than that in I/R group (P < 0.01). Under light microscope, the pathologic changes induced by I/R were significantly attenuated by RPR. CONCLUSION Intestinal ischemia/reperfusion may result in acute lung injury and pretreatment with RPR injection can attenuate the injury. The protective effect of RPR on the acute lung injury is related to its property of inducing HO-1 expression and inhibiting lipid peroxidation.
Collapse
|
23
|
Luh SP, Kuo PH, Kuo TF, Tsai TP, Tsao TCY, Chen JY, Tsai CH, Yang PC. Effects of thermal preconditioning on the ischemia-reperfusion-induced acute lung injury in minipigs. Shock 2007; 28:615-22. [PMID: 17589383 DOI: 10.1097/shk.0b013e318050c694] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lung ischemia-reperfusion (I/R) injury plays an important role in many clinical issues. A series of mechanisms after I/R has been uncovered after numerous related studies. Organ preconditioning (PC) is a process whereby a brief antecedent event, such as transient ischemia, oxidative stress, temperature change, or drug administration, bestows on an organ an early or delayed tolerance to further insults by the same or different stressors. In this study, we want to uncover the optimal thermal PC patterns that cause maximal early or delayed protective effect on the subsequent pulmonary I/R with the use of miniature pig model. Twenty-eight 15- to 20-kg weight Lanyu miniature pigs are used and divided into four groups (seven sham operation control [NC], seven PC only [PC], seven I/R [I/R], and seven PC followed by I/R [PC + I/R]). The PC was performed with the animals being anesthetized and, using an alternative hyperthermic (40 degrees C) and normothermic moist air to ventilate their lungs for 15 min, respectively, for 2 cycles, followed by I/R, which consists of 90 min of blocking the perfusion and ventilation of the left lung followed by 240 min of reperfusion. Control animals had a thoracotomy with hilar dissection only. Indicators of lung injury included hemodynamic parameters, blood gas analysis, histopathological (lung pathology, wet/dry weight ratio, myeloperoxidase assay), and molecular biological profiles (interleukin-1beta [IL-1beta], IL-6, tumor necrosis factor-alpha by enzyme-linked immunosorbent assay analysis). Lung tissue heat shock protein 70 (HSP-70) expression was also detected by Western blotting. This model of lung I/R induced significant lung injury with pulmonary hypertension, increased pulmonary vascular resistance, and pulmonary venous hypoxemia at the ischemia side, increased pulmonary tissue injury score and neutrophil infiltration, increased wet/dry ratio, myeloperoxidase assay, tumor necrosis factor-alpha, IL-1beta, and IL-6 assay. This type of thermal PC would not injure the lung parenchyma or tracheal epithelium. Moreover, it could attenuate the I/R-related lung injury, with some of these parameters improved significantly. Increased expression of HSP-70 was also found in the group of PC plus I/R than the I/R only. Less prominent and transient increase in expression of HSP-70 was found in the PC group. We concluded that the intratracheal thermal PC can effectively attenuate I/R-induced lung injury through various mechanisms, including the decrease of various proinflammatory cytokines. The mechanism of its protective effect might be related to the increased expression of HSP-70.
Collapse
Affiliation(s)
- Shi-Ping Luh
- Department of Surgery, Chia-Yi Christian Hospital and Chung-Shan Medical University Hospital, Taichung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yu HP, Yang S, Hsieh YC, Choudhry MA, Bland KI, Chaudry IH. Maintenance of lung myeloperoxidase activity in proestrus females after trauma-hemorrhage: upregulation of heme oxygenase-1. Am J Physiol Lung Cell Mol Physiol 2006; 291:L400-6. [PMID: 16556724 DOI: 10.1152/ajplung.00537.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies showed that females in the proestrus stage of the reproductive cycle maintain organ functions after trauma-hemorrhage. However, it remains unknown whether the female reproductive cycle is an important variable in the regulation of lung injury after trauma-hemorrhage and, if so, whether the effect is mediated via upregulation of heme oxygenase (HO)-1. To examine this, female Sprague-Dawley rats during diestrus, proestrus, estrus, and metestrus phases of the reproductive cycle or 14 days after ovariectomy underwent soft tissue trauma and then hemorrhage (mean blood pressure 40 mmHg for 90 min followed by fluid resuscitation). At 2 h after trauma-hemorrhage or sham operation, lung myeloperoxidase (MPO) activity and intercellular adhesion molecule (ICAM)-1, cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-3, and HO-1 protein levels were measured. Plasma 17β-estradiol concentration was also determined. The results indicated that trauma-hemorrhage increased lung MPO activity and ICAM-1, CINC-1, and CINC-3 levels in ovariectomized females. These parameters were found to be similar to sham-operated animals in proestrus female rats subjected to trauma-hemorrhage. Lung HO-1 protein level in proestrus females was increased significantly compared with female rats subjected to trauma-hemorrhage during diestrus, estrus, and metestrus phases of the reproductive cycle and ovariectomized rats. Furthermore, plasma 17β-estradiol level was highest in proestrus females. Administration of the HO inhibitor chromium mesoporphyrin prevented the attenuation of shock-induced lung damage in proestrus females. Thus these findings suggest that the female reproductive cycle is an important variable in the regulation of lung injury following trauma-hemorrhage and that the protective effect in proestrus females is likely mediated via upregulation of HO-1.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | |
Collapse
|
25
|
Godzich M, Hodnett M, Frank JA, Su G, Pespeni M, Angel A, Howard MB, Matthay MA, Pittet JF. Activation of the stress protein response prevents the development of pulmonary edema by inhibiting VEGF cell signaling in a model of lung ischemia-reperfusion injury in rats. FASEB J 2006; 20:1519-21. [PMID: 16793871 DOI: 10.1096/fj.05-4708fje] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lung endothelial damage is a characteristic morphological feature of ischemia-reperfusion (I/R) injury, although the molecular steps involved in the loss of endothelial integrity are still poorly understood. We tested the hypothesis that the activation of vascular endothelial growth factor (VEGF) cell signaling would be responsible for the increase in lung vascular permeability seen early after the onset of I/R in rats. Furthermore, we hypothesized that the I/R-induced pulmonary edema would be significantly attenuated in rats by the activation of the stress protein response. Pretreatment with Ad Flk-1, an adenovirus encoding for the soluble VEGF receptor type II, prevented I/R-mediated increase in lung vascular permeability in rats. Furthermore, the I/R-induced lung injury was significantly decreased by prior activation of the stress protein response with geldanamycin or pyrrolidine dithiocarbamate. In vitro studies demonstrated that VEGF caused an increase in protein permeability across primary cultures of bovine macro- and microvascular lung endothelial cell monolayers that were associated with a phosphorylation of VE- and E-cadherin and the formation of actin stress fibers. Activation of the stress protein response prevented the VEGF-mediated changes in protein permeability across these cell monolayers and reduced the phosphorylation of VE-and E-cadherins, as well as the formation of actin stress fibers in these cells.
Collapse
Affiliation(s)
- M Godzich
- Laboratory of Surgical Research, Department of Anesthesia and Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Luh SP, Yang PC. Organ preconditioning: the past, current status, and related lung studies. J Zhejiang Univ Sci B 2006; 7:331-41. [PMID: 16615162 PMCID: PMC1462933 DOI: 10.1631/jzus.2006.b0331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/23/2006] [Indexed: 12/13/2022]
Abstract
Preconditioning (PC) has emerged as a powerful method for experimentally and clinically attenuating various types of organ injuries. In this paper related clinical and basic research issues on organ preconditioning issues were systemically reviewed. Since lung injuries, including ischemia-reperfusion and others, play important roles in many clinical results, including thromboembolism, trauma, thermal injury, hypovolemic and endotoxin shock, reimplantation response after organ transplantation, and many respiratory diseases in critical care. It is of interest to uncover methods, including the PCs, to protect the lung from the above injuries. However, related studies on pulmonary PC are relatively rare and still being developed, so we will review previous literature on experimental and clinical studies on pulmonary PC in the following paragraphs.
Collapse
Affiliation(s)
- Shi-ping Luh
- Department of Cardiothoracic Surgery, Taipei Tzu-Chi Medical University Hospital, Taiwan 231, China.
| | | |
Collapse
|
27
|
Yu HP, Choudhry MA, Shimizu T, Hsieh YC, Schwacha MG, Yang S, Chaudry IH. Mechanism of the salutary effects of flutamide on intestinal myeloperoxidase activity following trauma-hemorrhage: up-regulation of estrogen receptor-{beta}-dependent HO-1. J Leukoc Biol 2005; 79:277-84. [PMID: 16330533 DOI: 10.1189/jlb.0705363] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hemeoxygenase (HO)-1 induction following adverse circulatory conditions is known to be protective, and precastrated males have less intestinal damage than sham-operated males following trauma-hemorrhage (T-H). Previous studies have also shown that administration of flutamide up-regulated estrogen receptor (ER) expression in males following T-H. We hypothesized that flutamide administration in males following T-H up-regulates HO-1 via an ER-dependent pathway and protects against intestinal injury. Male Sprague-Dawley rats underwent T-H [mean blood pressure (MBP) 40 mmHg for 90 min and then resuscitation]. A single dose of flutamide (25 mg/kg body weight), with or without an ER antagonist (ICI 182,780), a HO enzyme inhibitor [chromium-mesoporphyrin (CrMP)], or vehicle, was administered subcutaneously during resuscitation. At 2 h after T-H or sham operation, intestinal myeloperoxidase (MPO) activity, intercellular adhesion molecule (ICAM)-1, cytokine-induced neutrophil chemoattractant (CINC)-1, and CINC-3 levels were measured. Intestinal ER-alpha, ER-beta, androgen receptor, and HO-1 mRNA/protein levels were also determined. Results showed that T-H increased intestinal MPO activity, ICAM-1, CINC-1, and CINC-3 levels. These parameters were improved significantly in the flutamide-treated rats subjected to T-H. Flutamide treatment increased intestinal HO-1 and ER-beta mRNA/protein levels as compared with vehicle-treated T-H rats. Administration of the ER antagonist ICI 182,780 or the HO inhibitor CrMP prevented the flutamide-induced attenuation of shock-induced intestinal damage. Thus, the salutary effects of flutamide administration on attenuation of intestinal injury following T-H are mediated via up-regulation of ER-beta-dependent HO-1 expression.
Collapse
Affiliation(s)
- Huang-Ping Yu
- University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall, Room G094, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Cavriani G, Domingos HV, Soares AL, Trezena AG, Ligeiro-Oliveira AP, Oliveira-Filho RM, Sudo-Hayashi LS, Tavares de Lima W. Lymphatic system as a path underlying the spread of lung and gut injury after intestinal ischemia/reperfusion in rats. Shock 2005; 23:330-6. [PMID: 15803056 DOI: 10.1097/01.shk.0000157303.76749.9b] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated in rats the influence of the lymphatic system and of tumor necrosis factor (TNF) on the lung inflammation resulting from intestinal ischemia/reperfusion (I/R) performed by 45-min occlusion of the superior mesenteric artery followed by 2 h of reperfusion. A group of rats had the thoracic lymph duct ligated before I/R. In lungs, intestinal I/R evoked a significant neutrophil recruitment, and enhanced microvascular permeability, in addition to generation of TNF in serum. In the gut, there was lowered lactate dehydrogenase (LDH) activity and increased microvascular permeability. Upon lymph duct ligation, I/R rats had a significant reduction of pulmonary neutrophil recruitment and plasma extravasation, in addition to high amounts of TNF in the lymph, contrasting with undetectable levels in the serum. In addition, LDH gut levels in these animals were close to basal values; there was also some (yet significant) reduction of microvascular permeability, suggesting that the ligation of the lymphatic duct exerted some degree of protection against the intestinal injury caused by I/R. In I/R rats, the treatment with pentoxifylline (PTX) reduced TNF in serum and blunted other lung alterations. The gut alterations caused by intestinal I/R were largely blocked by PTX. On the other hand, in I/R rats with lymph duct ligation, PTX exacerbated the reduction of pulmonary neutrophil recruitment, but did not affect pulmonary and intestinal microvascular permeabilities. Similarly, intestinal LDH activity and serum TNF levels were unaffected. Overall, our data show that the pulmonary and gut injuries induced by intestinal I/R are partially dependent on TNF, which is conceivably generated in the injured gut tissue due to intestinal I/R and carried by the lymphatic system. Thus, the mesenteric lymphatic drainage seems to play a role as a path modulator of the pulmonary and intestinal dysfunctions that follow a gut trauma.
Collapse
Affiliation(s)
- Gabriela Cavriani
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang XH, Wang K, Zhang F, Li XC, Qian XF, Cheng F, Li GQ, Fan Y. Alleviating ischemia-reperfusion injury in aged rat liver by induction of heme oxygenase-1. Transplant Proc 2005; 36:2917-23. [PMID: 15686660 DOI: 10.1016/j.transproceed.2004.10.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Heme oxygenase-1 (HO-1), a cytoprotective protein, may be important in ameliorating hepatic ischemia-reperfusion (I/R) injury, a critical factor in the dysfunction of the aged liver after transplantation. METHODS We used hemin to overexpress HO-1 and analyze its effects in a model of I/R in aged livers used for orthotopic transplantation. RESULTS The SGOT levels in the hemin group were significantly lower than those of the saline treatment group. Hemin liver grafts showed markedly fewer apoptotic (TUNEL+) liver cells after reperfusion compared with the controls. The plasma nitric oxide levels in the hemin group were significantly lower than those in the control group. Unlike untreated or hemin + Znpp-treated orthotopic liver transplant controls, iNOS expression in the hemin group was almost absent at 12 and 24 hours, after reperfusion. In contrast, eNOS was comparable in hemin and saline orthotopic liver transplants. The increased levels of Bcl-2 expression compared with saline controls were most pronounced at 12 hours after transplantation. In contrast, caspase 3 was lower at 24 hours among the hemin-pretreated group compared with saline-treated liver transplant controls. CONCLUSIONS HO-1 alleviated the I/R injury in the aged liver by suppressing local expression of inducible nitric oxide synthase and by modulating pro- and antiapoptotic pathways.
Collapse
Affiliation(s)
- X H Wang
- Department of Hepatic Surgery, Liver Transplantation Center of Jiangsu Province, Nanjing, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Szalay L, Shimizu T, Schwacha MG, Choudhry MA, Rue LW, Bland KI, Chaudry IH. Mechanism of salutary effects of estradiol on organ function after trauma-hemorrhage: upregulation of heme oxygenase. Am J Physiol Heart Circ Physiol 2005; 289:H92-8. [PMID: 15734876 DOI: 10.1152/ajpheart.01247.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A growing body of evidence indicates that heme degradation products may counteract the deleterious consequences of hypoxia and/or ischemia-reperfusion injury. Because heme oxygenase (HO)-1 induction after adverse circulatory conditions is known to be protective, and because females in the proestrus cycle (with high estrogen) have better hepatic function and less hepatic damage than males after trauma-hemorrhage, we hypothesized that estrogen administration in males after trauma-hemorrhage will upregulate HO activity and protect the organs against dysfunction and injury. To test this hypothesis, male Sprague-Dawley rats underwent 5-cm laparotomy and hemorrhagic shock (35–40 mmHg for 93 ± 2 min), followed by resuscitation with four times the shed blood volume in the form of Ringer lactate. 17β-Estradiol and/or the specific HO enzyme inhibitor chromium mesoporphyrin (CrMP) were administered at the end of resuscitation, and the animals were killed 24 h thereafter. Trauma-hemorrhage reduced cardiac output, myocardial contractility, and serum albumin levels. Portal pressure and serum alanine aminotransferase levels were markedly increased under those conditions. These parameters were significantly improved in the 17β-estradiol-treated rats. Estradiol treatment also induced increased HO-1 mRNA expression, HO-1 protein levels, and HO enzymatic activity in cardiac and hepatic tissue compared with vehicle-treated trauma-hemorrhage rats. Administration of the HO inhibitor CrMP prevented the estradiol-induced attenuation of shock-induced organ dysfunction and damage. Thus the salutary effects of estradiol administration on organ function after trauma-hemorrhage are mediated in part via upregulation of HO-1 expression and activity.
Collapse
Affiliation(s)
- László Szalay
- Center for Surgical Research, Univ. of Alabama at Birmingham, 1670 University Blvd., Volker Hall, Rm. G094, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Kalia N, Brown NJ, Wood RFM, Pockley AG. Ketotifen abrogates local and systemic consequences of rat intestinal ischemia-reperfusion injury. J Gastroenterol Hepatol 2005; 20:1032-8. [PMID: 15955211 DOI: 10.1111/j.1440-1746.2005.03767.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mast cell-derived vasoactive and pro-inflammatory mediators, particularly histamine, might contribute to local tissue damage and multiorgan dysfunction induced by intestinal ischemia/reperfusion (I/R). The purpose of the present study was to evaluate the effects of the mast cell stabilizer, ketotifen, on leukocyte adhesion within, and tissue leakage from the mucosal villous microcirculation after intestinal I/R. METHODS Superior mesenteric arteries of untreated and ketotifen-pretreated (1 mg/kg orally twice daily for 3 days, and 90 min prior to ischemia) Piebald-Viral-Glaxo (PVG) rats were clamped for 30 min (n = 12 per group; sham operated controls n = 12). Mucosal surfaces of exteriorized ileal segments were visualized, and leukocyte adherence in, and macromolecular leakage (MML) from individual villi were followed for 2 h after clamp removal using in vivo microscopy. Blood pressure and heart rate were monitored, and lung tissue damage was assessed by histology. RESULTS Ten untreated animals subjected to intestinal I/R failed to survive the reperfusion period, leukocyte adhesion (P < 0.001) and MML (P < 0.001) were increased at all time-points and blood flow stasis eventually ensued. In contrast, all ketotifen-pretreated I/R animals survived the duration of the study. Ketotifen abrogated I/R-induced leukocyte adherence within the villus mucosal capillaries and supplying arterioles and largely prevented pulmonary injury, yet surprisingly had no effect on intestinal vascular leakage. CONCLUSIONS This is the first study to demonstrate that ketotifen is a powerful inhibitor of I/R-induced leukocyte adhesion and can prevent localized and reduce remote organ damage after intestinal I/R injury. However, its effects are manifested in the absence of any influence on intestinal I/R-induced vascular leakage.
Collapse
Affiliation(s)
- Neena Kalia
- Academic Unit of Surgical Oncology, Division of Clinical Sciences (South), Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | |
Collapse
|
32
|
Maeshima K, Takahashi T, Uehara K, Shimizu H, Omori E, Yokoyama M, Tani T, Akagi R, Morita K. Prevention of hemorrhagic shock-induced lung injury by heme arginate treatment in rats. Biochem Pharmacol 2005; 69:1667-80. [PMID: 15896346 DOI: 10.1016/j.bcp.2005.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 03/09/2005] [Indexed: 11/21/2022]
Abstract
Hemorrhagic shock followed by resuscitation (HSR) induces oxidative stress, which leads to acute lung injury. Heme oxygenase (HO)-1 (EC 1.14.99.3), the rate-limiting enzyme in heme catabolism, is inducible by oxidative stress and is thought to play an important role in the protection from oxidative tissue injuries. In this study, we examined expression of HO-1 as well as tissue injuries in the lung, liver, and kidney after HSR in rats. We also pretreated animals with heme arginate (HA), a strong inducer of HO-1, and examined its effect on the HSR-induced lung injury. HO-1 expression significantly increased in the liver and kidney following HSR, while its expression in the lung was very low and unchanged after HSR. In contrast to HO-1 expression, tissue injury and tumor necrosis factor-alpha (TNF-alpha) gene expression was more prominent in the lung compared with those in the liver and kidney. HA pretreatment markedly induced HO-1 in pulmonary epithelial cells, and ameliorated the lung injury induced by HSR as judged by the improvement of histological changes, while it decreased TNF-alpha and inducible nitric oxide synthase gene expression, lung wet weight to dry weight ratio, and myeloperoxidase activity. In contrast, inhibition of HO-1 by tin-mesoporphyrin administration abolished the beneficial effect of HA pretreatment. These findings suggest that tissues with higher HO-1 may be better protected than those with lower HO-1 from oxidative tissue injury induced by HSR. Our findings also indicate that HA pretreatment can significantly suppress the HSR-induced lung injury by virtue of its ability to induce HO-1.
Collapse
Affiliation(s)
- Kyoichiro Maeshima
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang XH, Wang K, Zhang F, Li XC, Li J, De W, Guo J, Qian XF, Fan Y. Heme oxygenase-1 alleviates ischemia/reperfusion injury in aged liver. World J Gastroenterol 2005; 11:690-4. [PMID: 15655823 PMCID: PMC4250740 DOI: 10.3748/wjg.v11.i5.690] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate if ischemia/reperfusion (I/R) injury in aged liver could be alleviated by heme oxygenase-1 (HO-1).
METHODS: Three groups of SD rats (16 mo old) were studied. Group 1: control donors received physiological saline 24 h before their livers were harvested; group 2: donors were pretreated with hemin 24 h before their livers were harvested; and group 3: donors received hemin 24 h before their livers were harvested and zinc protoporphyrin (ZnPP, HO-1 inhibitor) was given to recipients at reperfusion. The harvested livers were stored in University of Wisconsin solution (4 °C) for 6 h, and then transplanted to syngeneic rats. Serum glutamic oxaloacetic transaminase (SGOT), apoptotic cells, and apoptotic gene were measured 3, 6, 12, 24, 48 h after reperfusion. We measured the apoptotic index by TUNEL, determined the expression of antiapoptotic Bcl-2 and proapoptotic (caspase-3) gene products by Western blot.
RESULTS: After 3, 6, 12, 24, and 48 h of reperfusion, the SGOT levels (584.4±85.8 u/L, 999.2±125.2 u/L, 423.4±161.3 u/L, 257.8±95.8 u/L, and 122.4±26.4 u/L) in hemin group were significantly (all P<0.05) lower than those in saline group (1082.2±101.2 u/L, 1775.2±328.3 u/L, 840.4±137.8 u/L, 448.6±74.3 u/L, and 306.2±49.3 u/L). Liver HO-1 enzymatic activity correlated with beneficial effects of hemin and deleterious effects of adjunctive ZnPP treatment. Markedly less apoptotic (TUNEL+) liver cells 3, 6, 12, 24, and 48 h after reperfusion (5.16±0.73, 10.2±0.67, 9.28±0.78, 7.14±1.12, and 4.78±0.65) (P<0.05) could be detected in hemin liver grafts, as compared to controls (7.82±1.05, 15.94±1.82, 11.67±1.59, 8.28±1.09, and 6.36±0.67). We detected the increased levels of Bcl-2 (1.5-fold) expression and compared with saline controls. These differences were most pronounced at 12 h after transplantation. In contrast, an active form of proapoptotic caspase-3 (p20) protein was found to be 2.9-fold lower at 24 h in hemin-pretreated group, as compared to saline liver transplant controls.
CONCLUSION: HO-1 overexpression can provide potent protection against cold I/R injury. This effect depends, at least in part, on HO-1-mediated inhibition of antiapoptotic mechanism.
Collapse
Affiliation(s)
- Xue-Hao Wang
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kotake Y, Yamamoto M, Matsumoto M, Morisaki H, Takeda J. SIVELESTAT, A NEUTROPHIL ELASTASE INHIBITOR, ATTENUATES NEUTROPHIL PRIMING AFTER HEPATOENTERIC ISCHEMIA IN RABBITS. Shock 2005; 23:156-60. [PMID: 15665731 DOI: 10.1097/01.shk.0000148074.42060.f8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neutrophils play an important role in ischemia-reperfusion injury. The neutrophil elastase not only causes tissue damage, but also mediates neutrophil priming. In the present study, we use a rabbit model of hepatoenteric ischemia-reperfusion to test the hypothesis that neutrophil elastase inhibition ameliorates an ischemia-reperfusion injury by attenuating neutrophil priming and suppressing enzymatic activity. Twenty-four Japanese white rabbits underwent 30 min of supraceliac aortic cross-clamping and 180 min of reperfusion under isoflurane anesthesia. The rabbits randomly received the neutrophil elastase inhibitor, sivelestat (n = 10), or saline (n = 14). Neutrophil priming was then assayed with luminol-dependent neutrophil chemiluminescence. Hepatic, intestinal, renal, and pulmonary damages were assessed with serum transaminase, lactate dehydrogenase concentrations, urinary N-acetyl glucosaminidase activity, and protein concentration in post mortem bronchoalveolar lavage fluid. We discovered that neutrophil elastase inhibition suppressed plasma neutrophil elastase, and that lipid peroxide concentrations increased after reperfusion. It improved ischemia-reperfusion injuries in the liver, intestine, kidney, and lung. Furthermore, inhibition of neutrophil elastase with sivelestat significantly attenuated post-reperfusion neutrophil priming. The results of this study demonstrate that neutrophil elastase inhibition could effectively attenuate an ischemia-reperfusion injury caused by supraceliac aortic cross-clamping, most likely from the attenuation of neutrophil priming.
Collapse
Affiliation(s)
- Yoshifumi Kotake
- Department of Anesthesiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| | | | | | | | | |
Collapse
|
35
|
Ito K, Ozasa H, Horikawa S. Edaravone protects against lung injury induced by intestinal ischemia/reperfusion in rat. Free Radic Biol Med 2005; 38:369-74. [PMID: 15629865 DOI: 10.1016/j.freeradbiomed.2004.10.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 10/07/2004] [Accepted: 10/22/2004] [Indexed: 11/18/2022]
Abstract
Intestinal ischemia/reperfusion (I/R) is a critical and triggering event in the development of distal organ dysfunction, frequently involving the lungs. Respiratory failure is a common cause of death and complications after intestinal I/R. In this study we investigated the effects of edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) on the prevention of lung injury induced by intestinal I/R in rats. Edaravone has been used for protection against I/R injury in patients with cerebral infarction. When rats were subjected to 180 min of intestinal ischemia, a high incidence of mortality was observed within 24 h. In this situation, intravenous administration of edaravone just before the start of reperfusion reduced the mortality in a dose-dependent manner. To examine the efficacy of edaravone on the lung injury induced by intestinal I/R in more detail, we performed 120 min of intestinal ischemia followed by 120 min of reperfusion. Edaravone treatment decreased the neutrophil infiltration, the lipid membrane peroxidation, and the expression of proinflammatory cytokine interleukin-6 mRNA in the lungs after intestinal I/R compared to the I/R-treated rat lungs without edaravone treatment. Histopathological analysis also indicated the effectiveness of edaravone. In conclusion, edaravone ameliorated the lung injury induced by intestinal I/R, resulting in a reduction in mortality.
Collapse
Affiliation(s)
- Koji Ito
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | |
Collapse
|
36
|
Wang X, Wei M, Laurikka J, Kuukasjärvi P, Rinne T, Honkonen EL, Nieminen R, Moilanen E, Tarkka M. THE ANTI-INFLAMMATORY EFFECT OF DIAZOXIDE IN CORONARY ARTERY BYPASS GRAFTING. Shock 2004; 22:23-8. [PMID: 15201697 DOI: 10.1097/01.shk.0000129200.30965.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many therapeutic strategies have been designed to suppress the inflammatory response in patients undergoing coronary artery bypass grafting (CABG). Pharmacological preconditioning with diazoxide is an alternative in effective cardioprotective strategies, but more evidence is required to show its effect on the inflammatory response. Forty patients with stable angina who were scheduled for isolated elective CABG operations were randomized into control and diazoxide (DZX) groups. In the DZX group, 1.5 mg/kg diazoxide was infused intravenously in 5 min followed by a 5-min washout before commencing the cardiopulmonary bypass. In the control group, placebo infusion was given similarly. Blood samples for cytokine measurement were collected from the radial artery and coronary sinus perioperatively, and hemodynamic data were recorded. Thirty-six patients fulfilled the data collection. Cardiac index (CI) increased in both groups over time as compared with baseline. In the DZX group, the increase of CI was greater than that in the control group (P = 0.002). Systemic and coronary sinus plasma levels of IL-6, IL-8, and IL-10 increased significantly after reperfusion in both groups as compared with baseline (P < 0.05). IL-6 and IL-8 both reached the peak value at 6 h after cardiopulmonary bypass. IL-10 reached peak level at 20 min after reperfusion in both groups. There was significantly higher IL-10 in DZX groups (P = 0.015). The ratios of IL-6 to IL-10 and IL-8 to IL-10 were significantly lower in DZX groups than in controls (P = 0.025 and P = 0.041 for each, respectively). Pharmacological preconditioning with DZX in CABG patients shifts the circulating inflammatory cytokine balance toward the anti-inflammatory direction.
Collapse
Affiliation(s)
- Xin Wang
- Division of Cardiothoracic Surgery and Anaesthesia, Heart Center, Tampere University Hospital, Fin-33521 Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cavriani G, Oliveira-Filho RM, Trezena AG, da Silva ZL, Domingos HV, de Arruda MJC, Jancar S, Tavares de Lima W. Lung microvascular permeability and neutrophil recruitment are differently regulated by nitric oxide in a rat model of intestinal ischemia–reperfusion. Eur J Pharmacol 2004; 494:241-9. [PMID: 15212981 DOI: 10.1016/j.ejphar.2004.04.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 04/07/2004] [Accepted: 04/30/2004] [Indexed: 02/04/2023]
Abstract
We investigated the effect of two inhibitors of nitric oxide (NO) synthesis, N(w)-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine, on lung inflammation caused by intestinal ischemia/reperfusion in rats. Relative to the sham-operated rats, intestinal ischemia/reperfusion (ischemia: 45 min; reperfusion: 30 min, 2 and 4 h) induced neutrophil recruitment (increased myeloperoxidase activity) and increased microvascular permeability (Evans blue dye extravasation) in the lungs and increased tumor necrosis factor (TNF) levels in the serum (L-929 cytotoxicity assay). L-NAME given before the ischemia exacerbated neutrophil accumulation, plasma extravasation, serum TNF and caused death of the animals, which was prevented by concomitant injection of L-arginine. Lung and systemic effects of intestinal ischemia/reperfusion were not modified when L-NAME was given just before reperfusion. Treatment with aminoguanidine inhibited plasma extravasation without affecting the other parameters evaluated. Dexamethasone reduced all the parameters. Our results indicate that during intestinal ischemia/reperfusion both constitutive and inducible NO synthases are called to exert a differential modulatory effect on lung inflammation and that maintenance of adequate levels of NO during ischemia is essential for the animals survival.
Collapse
Affiliation(s)
- Gabriela Cavriani
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, Cidade Universitária, São Paulo 05508-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|