1
|
Slanina P, Stichova J, Bosakova V, Zambo IS, Kohoutkova MH, Laznickova P, Chovancova Z, Litzman J, Plucarova T, Fric J, Vlkova M. Phenotype and oxidative burst of low-density neutrophil subpopulations are altered in common variable immunodeficiency patients. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:99-112. [PMID: 37997558 DOI: 10.1002/cyto.b.22150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Common variable immunodeficiency disorder (CVID) is the most common form of primary antibody immunodeficiency. Due to low antibody levels, CVID patients receive intravenous or subcutaneous immunoglobulin replacement therapy as treatment. CVID is associated with the chronic activation of granulocytes, including an increased percentage of low-density neutrophils (LDNs). In this study, we examined changes in the percentage of LDNs and the expression of their surface markers in 25 patients with CVID and 27 healthy donors (HD) after in vitro stimulation of whole blood using IVIg. An oxidative burst assay was used to assess the functionality of LDNs. CVID patients had increased both relative and absolute LDN counts with a higher proportion of mLDNs compared to iLDNs, distinguished based on the expression of CD10 and CD16. Immature LDNs in the CVID and HD groups had significantly reduced oxidative burst capacity compared to mature LDNs. Interestingly we observed reduced oxidative burst capacity, reduced expression of CD10 after stimulation of WB, and higher expression of PD-L1 in mature LDNs in CVID patients compared to HD cells. Our data indicate that that the functional characteristics of LDNs are closely linked to their developmental stage. The observed reduction in oxidative burst capacity in mLDNs in CVID patients could contribute to an increased susceptibility to recurrent bacterial infections among CVID patients.
Collapse
Affiliation(s)
- Peter Slanina
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| | - Julie Stichova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| | - Veronika Bosakova
- Center for Translational Medicine, International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Iva Staniczkova Zambo
- 1st Department of Pathology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Hortova Kohoutkova
- Center for Translational Medicine, International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| | - Petra Laznickova
- Center for Translational Medicine, International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| | - Zita Chovancova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| | - Jiri Litzman
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| | - Terezie Plucarova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Fric
- Center for Translational Medicine, International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Marcela Vlkova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
2
|
Schofield CJ, Tirouvanziam R, Garratt LW. OMIP-100: A flow cytometry panel to investigate human neutrophil subsets. Cytometry A 2024; 105:81-87. [PMID: 38179854 DOI: 10.1002/cyto.a.24820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024]
Abstract
This 14-color, 13-antibody optimized multicolor immunofluorescence panel (OMIP) was designed for deep profiling of neutrophil subsets in various types of human samples to contextualize neutrophil plasticity in a range of healthy and diseased states. Markers present in the OMIP allow the profiling of neutrophil subsets associated with ontogeny, migration, phagocytosis capacity, granule release, and immune modulation. For panel design, we ensured that the commonly available fluorophores FITC/AF488, PE, and APC were assigned to the intracellular subset marker Olfactomedin 4, the maturity and activation marker CD10, and whole blood subset marker CD177, respectively. These markers can be easily replaced without affecting the core identification of neutrophils, enabling antibodies to new neutrophil antigens of interest or for fluorescent substrates to assess different neutrophil functions to be easily explored. Panel optimization was performed on whole blood and purified neutrophils. We demonstrate applications on clinical samples (whole blood and saliva) and experimental endpoints (purified neutrophils stimulated through an in vitro transmigration assay). We hope that providing a uniform platform to analyze neutrophil plasticity in various sample types will facilitate the future understanding of neutrophil subsets in health and disease.
Collapse
Affiliation(s)
- Craig J Schofield
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Luke W Garratt
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Medical School, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
3
|
Daix T, Guérin E, Tavernier E, Marsaud J, Hacan A, Gauthier F, Piccardo A, Vignon P, Feuillard J, François B. Immature Granulocytes: A Risk Factor of Infection after Cardiac Surgery. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 94:887-894. [DOI: 10.1002/cyto.b.21739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Thomas Daix
- Inserm CIC1435Dupuytren Teaching Hospital Limoges France
- Réanimation PolyvalenteDupuytren Teaching Hospital Limoges France
| | - Estelle Guérin
- Hematology LaboratoryDupuytren Teaching Hospital Limoges France
- Medicine University UMR CNRS 7276 Limoges France
| | - Elsa Tavernier
- Inserm CIC1415, Tours Teaching HospitalFrançois Rabelais University Tours France
| | | | - Adélaïde Hacan
- Hematology LaboratoryDupuytren Teaching Hospital Limoges France
| | | | - Alessandro Piccardo
- Cardiothoracic and Vascular Surgery UnitDupuytren Teaching Hospital Limoges France
| | - Philippe Vignon
- Inserm CIC1435Dupuytren Teaching Hospital Limoges France
- Réanimation PolyvalenteDupuytren Teaching Hospital Limoges France
- UMR 1092Medicine University Limoges France
| | - Jean Feuillard
- Hematology LaboratoryDupuytren Teaching Hospital Limoges France
- Medicine University UMR CNRS 7276 Limoges France
| | - Bruno François
- Inserm CIC1435Dupuytren Teaching Hospital Limoges France
- Réanimation PolyvalenteDupuytren Teaching Hospital Limoges France
- UMR 1092Medicine University Limoges France
| |
Collapse
|
4
|
Schlabritz-Loutsevitch N, Carrillo M, Li C, Nathanielsz P, Maguire C, Maher J, Dick E, Hubbard G, Stanek J. A first case of hepatocellular carcinoma in the baboon (Papio spp.) placenta. J Med Primatol 2018; 48:68-73. [PMID: 30246873 DOI: 10.1111/jmp.12382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/17/2018] [Accepted: 08/22/2018] [Indexed: 12/01/2022]
Abstract
We present a case of hepatocellular carcinoma (HCC) in the placenta of healthy baboon (Papio spp.). Grossly, the fetal, maternal, and placental tissues were unremarkable. Histologically, the placenta contained an unencapsulated, poorly demarcated, infiltrative, solidly cellular neoplasm composed of cells that resembled hepatocytes. The neoplastic cells were diffusely positive for vimentin and focally positive for Ae1/Ae3, Arginase -1, glutamine synthetase, and CD10, and negative for ER, vascular markers (CD31 and D240), S100, glypican, C-reactive protein, FABP, desmin, and beta-catenin; INI1 positivity was similar to non-neoplastic tissues. The case likely represents a unique subtype of HCC.
Collapse
Affiliation(s)
| | - Maira Carrillo
- Texas Tech University Health Sciences Center at the Permian Basin, Odessa, Texas
| | - Cun Li
- University of Wyoming, Laramie, Wyoming.,Texas Biomedical Research Institute, San Antonio, Texas
| | - Peter Nathanielsz
- University of Wyoming, Laramie, Wyoming.,Texas Biomedical Research Institute, San Antonio, Texas
| | - Christopher Maguire
- Texas Tech University Health Sciences Center at the Permian Basin, Odessa, Texas
| | - James Maher
- Texas Tech University Health Sciences Center at the Permian Basin, Odessa, Texas
| | - Edward Dick
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Gene Hubbard
- University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | | |
Collapse
|
5
|
Yizengaw E, Getahun M, Tajebe F, Cruz Cervera E, Adem E, Mesfin G, Hailu A, Van der Auwera G, Yardley V, Lemma M, Skhedy Z, Diro E, Yeshanew A, Melkamu R, Mengesha B, Modolell M, Munder M, Müller I, Takele Y, Kropf P. Visceral Leishmaniasis Patients Display Altered Composition and Maturity of Neutrophils as well as Impaired Neutrophil Effector Functions. Front Immunol 2016; 7:517. [PMID: 27965662 PMCID: PMC5126105 DOI: 10.3389/fimmu.2016.00517] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
Immunologically, active visceral leishmaniasis (VL) is characterized by profound immunosuppression, severe systemic inflammatory responses, and an impaired capacity to control parasite replication. Neutrophils are highly versatile cells, which play a crucial role in the induction as well as the resolution of inflammation, the control of pathogen replication, and the regulation of immune responses. Neutrophil functions have been investigated in human cutaneous leishmaniasis; however, their role in human VL is poorly understood. In the present study we evaluated the activation status and effector functions of neutrophils in patients with active VL and after successful anti-leishmanial treatment. Our results show that neutrophils are highly activated and have degranulated; high levels of arginase, myeloperoxidase, and elastase, all contained in neutrophils' granules, were found in the plasma of VL patients. In addition, we show that a large proportion of these cells are immature. We also analyzed effector functions of neutrophils that are essential for pathogen clearance and show that neutrophils have an impaired capacity to release neutrophil extracellular traps, produce reactive oxygen species, and phagocytose bacterial particles, but not Leishmania parasites. Our results suggest that impaired effector functions, increased activation, and immaturity of neutrophils play a key role in the pathogenesis of VL.
Collapse
Affiliation(s)
- Endalew Yizengaw
- Department of Immunology, University of Gondar , Gondar , Ethiopia
| | - Mulusew Getahun
- Department of Immunology, University of Gondar , Gondar , Ethiopia
| | | | | | - Emebet Adem
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Getnet Mesfin
- Department of Immunology, University of Gondar , Gondar , Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University , Addis Ababa , Ethiopia
| | - Gert Van der Auwera
- Department of Biomedical Sciences, Institute of Tropical Medicine , Antwerp , Belgium
| | - Vanessa Yardley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Mulualem Lemma
- Department of Internal Medicine, University of Gondar , Gondar , Ethiopia
| | - Ziv Skhedy
- Department of Mathematics and Statistics, University of Hasselt , Hasselt , Belgium
| | - Ermias Diro
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Arega Yeshanew
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Roma Melkamu
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Bewketu Mengesha
- Leishmaniasis Research and Treatment Centre, Gondar University , Gondar , Ethiopia
| | - Manuel Modolell
- Department of Cellular Immunology, Max-Planck-Institute for Immunobiology and Epigenetics , Freiburg , Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz , Mainz , Germany
| | - Ingrid Müller
- Department of Medicine, Imperial College London , London , UK
| | - Yegnasew Takele
- Department of Medicine, Imperial College London, London, UK; Leishmaniasis Research and Treatment Centre, Gondar University, Gondar, Ethiopia
| | - Pascale Kropf
- Department of Medicine, Imperial College London , London , UK
| |
Collapse
|
6
|
Johansson ÅC, Ohlsson S, Pettersson Å, Bengtsson AA, Selga D, Hansson M, Hellmark T. Impaired phagocytosis and reactive oxygen species production in phagocytes is associated with systemic vasculitis. Arthritis Res Ther 2016; 18:92. [PMID: 27102815 PMCID: PMC4840900 DOI: 10.1186/s13075-016-0994-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background Anti-neutrophil cytoplasmic antibodies associated vasculitides (AAV) is a group of autoimmune diseases, characterized by small vessel inflammation. Phagocytes such as neutrophils and monocytes are the main effector cells found around the inflamed vessel wall. Therefore, we wanted to investigate aspects of function and activation of these cells in patients with AAV. Methods Flow cytometry was used to evaluate: the expression of activation markers (CD11c, CD62L, CD177 and C5aR); the number of recently released neutrophils from bone marrow, defined as CD10-D16low cells in peripheral blood; and the capacity of peripheral blood monocytes and polymorphonuclear leukocytes (PMN) to produce reactive oxygen species and to phagocytose opsonized bacteria. Results AAV patients (n = 104) showed an increase of CD10-CD16low neutrophils and total PMN in peripheral blood, suggesting a combination of increased bone marrow release and prolonged survival. An increased percentage of AAV PMN expressed CD177 but no other signs of activation were seen. A decreased production of reactive oxygen species was observed in AAV phagocytes, which was associated with disease activity. Moreover, granulocytes from patients with microscopic polyangiitis showed lower oxidative burst capacity compared to patients with granulomatosis with polyangiitis or eosinophilic granulomatosis with polyangiitis. In addition, decreased phagocytosis capacity was seen in PMN and monocytes. Conclusion Our results indicate that phagocytes from AAV patients have impaired function, are easily mobilized from bone marrow but are not particularly activated. The association between low reactive oxygen species formation in PMN and disease severity is consistent with findings in other autoimmune diseases and might be considered as a risk factor. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0994-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Åsa Cm Johansson
- Department of Haematology, Lund University and Skåne University Hospital, BMC B13, 221 84, Lund, Sweden. .,University and Regional Laboratories Region Skåne, Clinical Immunology and Transfusion Medicine, Skåne, 221 85, Lund, Sweden.
| | - Sophie Ohlsson
- Department of Clinical Sciences Lund, Nephrology, Lund University, Skane University Hospital, Lund, Sweden
| | - Åsa Pettersson
- Department of Clinical Sciences Lund, Nephrology, Lund University, Skane University Hospital, Lund, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences, Lund, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Daina Selga
- Department of Clinical Sciences Lund, Nephrology, Lund University, Skane University Hospital, Lund, Sweden
| | - Markus Hansson
- Department of Haematology, Lund University and Skåne University Hospital, BMC B13, 221 84, Lund, Sweden
| | - Thomas Hellmark
- Department of Clinical Sciences Lund, Nephrology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
7
|
Bae MH, Park SH, Park CJ, Cho EJ, Lee BR, Kim YJ, Park SH, Cho YU, Jang S, Song DK, Hong SB. Flow cytometric measurement of respiratory burst activity and surface expression of neutrophils for septic patient prognosis. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015. [DOI: 10.1002/cyto.b.21274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mi Hyun Bae
- Department of Laboratory Medicine; University of Ulsan College of Medicine and Asan Medical Center; Seoul Korea
| | - So Hee Park
- Department of Internal Medicine; University of Ulsan College of Medicine and Asan Medical Center; Seoul Korea
| | - Chan-Jeoung Park
- Department of Laboratory Medicine; University of Ulsan College of Medicine and Asan Medical Center; Seoul Korea
| | - Eun-Jung Cho
- Department of Laboratory Medicine; University of Ulsan College of Medicine and Asan Medical Center; Seoul Korea
| | - Bo-Ra Lee
- Department of Laboratory Medicine; University of Ulsan College of Medicine and Asan Medical Center; Seoul Korea
| | - Young Jin Kim
- Department of Laboratory Medicine; University of Ulsan College of Medicine and Asan Medical Center; Seoul Korea
| | - Sang Hyuk Park
- Department of Laboratory Medicine; Pusan National University School of Medicine, Pusan National University Hospital; Busan Korea
| | - Young-Uk Cho
- Department of Laboratory Medicine; University of Ulsan College of Medicine and Asan Medical Center; Seoul Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine; University of Ulsan College of Medicine and Asan Medical Center; Seoul Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine; Hallym University; Chooncheon Korea
| | - Sang-Bum Hong
- Department of Internal Medicine; University of Ulsan College of Medicine and Asan Medical Center; Seoul Korea
| |
Collapse
|
8
|
Wynn JL, Guthrie SO, Wong HR, Lahni P, Ungaro R, Lopez MC, Baker HV, Moldawer LL. Postnatal Age Is a Critical Determinant of the Neonatal Host Response to Sepsis. Mol Med 2015; 21:496-504. [PMID: 26052715 DOI: 10.2119/molmed.2015.00064] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/01/2015] [Indexed: 11/06/2022] Open
Abstract
Neonates manifest a unique host response to sepsis even among other children. Preterm neonates may experience sepsis soon after birth or during often-protracted birth hospitalizations as they attain physiologic maturity. We examined the transcriptome using genome-wide expression profiling on prospectively collected peripheral blood samples from infants evaluated for sepsis within 24 h after clinical presentation. Simultaneous plasma samples were examined for alterations in inflammatory mediators. Group designation (sepsis or uninfected) was determined retrospectively on the basis of clinical exam and laboratory results over the next 72 h from the time of evaluation. Unsupervised analysis showed the major node of separation between groups was timing of sepsis episode relative to birth (early, <3 d, or late, ≥3 d). Principal component analyses revealed significant differences between patients with early or late sepsis despite the presence of similar key immunologic pathway aberrations in both groups. Unique to neonates, the uninfected state and host response to sepsis is significantly affected by timing relative to birth. Future therapeutic approaches may need to be tailored to the timing of the infectious event based on postnatal age.
Collapse
Affiliation(s)
- James L Wynn
- Department of Pediatrics, Division of Neonatology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Scott O Guthrie
- Department of Pediatrics, Division of Neonatology, Vanderbilt University, Nashville, Tennessee, United States of America.,Ayers Children's Medical Center, Jackson-Madison County General Hospital, Jackson, Tennessee, United States of America
| | - Hector R Wong
- Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Patrick Lahni
- Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Ricardo Ungaro
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - M Cecilia Lopez
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Henry V Baker
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, United States of America
| |
Collapse
|
9
|
Bengtsson AA, Pettersson Å, Wichert S, Gullstrand B, Hansson M, Hellmark T, Johansson ÅCM. Low production of reactive oxygen species in granulocytes is associated with organ damage in systemic lupus erythematosus. Arthritis Res Ther 2014; 16:R120. [PMID: 24902963 PMCID: PMC4075132 DOI: 10.1186/ar4575] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/29/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Polymorphonuclear leukocytes (PMN) are main effector cells in the acute immune response. While the specific role of PMN in systemic lupus erythematosus (SLE) and autoimmunity is still unclear, their importance in chronic inflammation is gaining more attention. Here we investigate aspects of function, bone marrow release and activation of PMN in patients with SLE. Methods The following PMN functions and subsets were evaluated using flow cytometry; (a) production of reactive oxygen species (ROS) after ex vivo stimulation with phorbol 12-myristate 13-acetate (PMA) or Escherichia coli (E. coli); (b) capacity to phagocytose antibody-coated necrotic cell material; (c) PMN recently released from bone marrow, defined as percentage of CD10−D16low in peripheral blood, and (d) PMN activation markers; CD11b, CD62L and C5aR. Results SLE patients (n = 92) showed lower ROS production compared with healthy controls (n = 38) after activation ex vivo. The ROS production was not associated with corticosteroid dose or other immunotherapies. PMA induced ROS production was significantly reduced in patients with severe disease. In contrast, neither ROS levels after E. coli activation, nor the capacity to phagocytose were associated with disease severity. This suggests that decreased ROS production after PMA activation is a sign of changed PMN behaviour rather than generally impaired functions. The CD10−CD16low phenotype constitute 2% of PMN in peripheral blood of SLE patients compared with 6.4% in controls, indicating a decreased release of PMN from the bone marrow in SLE. A decreased expression of C5aR on PMN was observed in SLE patients, pointing towards in vivo activation. Conclusions Our results indicate that PMN from SLE patients have altered function, are partly activated and are released abnormally from bone marrow. The association between low ROS formation in PMN and disease severity is consistent with findings in other autoimmune diseases and might be considered as a risk factor.
Collapse
|
10
|
Plasma bacterial and mitochondrial DNA distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates. Shock 2013; 39:55-62. [PMID: 23247122 DOI: 10.1097/shk.0b013e318276f4ca] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic inflammatory response syndrome (SIRS) is a fundamental host response common to bacterial infection and sterile tissue injury. Systemic inflammatory response syndrome can cause organ dysfunction and death, but its mechanisms are incompletely understood. Moreover, SIRS can progress to organ failure or death despite being sterile or after control of the inciting infection. Biomarkers discriminating between sepsis, sterile SIRS, and postinfective SIRS would therefore help direct care. Circulating mitochondrial DNA (mtDNA) is a damage-associated molecular pattern reflecting cellular injury. Circulating bacterial 16S DNA (bDNA) is a pathogen-associated pattern (PAMP) reflecting ongoing infection. We developed quantitative polymerase chain reaction assays to quantify these markers, and predicting their plasma levels might help distinguish sterile injury from infection. To study these events in primates, we assayed banked serum from Papio baboons that had undergone a brief challenge of intravenous Bacillus anthracis delta Sterne (modified to remove toxins) followed by antibiotics (anthrax) that causes organ failure and death. To investigate the progression of sepsis to "severe" sepsis and death, we studied animals where anthrax was pretreated with drotrecogin alfa (activated protein C), which attenuates sepsis in baboons. We also contrasted lethal anthrax bacteremia against nonlethal E. coli bacteremia and against sterile tissue injury from Shiga-like toxin 1. Bacterial DNA and mtDNA levels in timed samples were correlated with blood culture results and assays of organ function. Sterile injury by Shiga-like toxin 1 increased mtDNA, but bDNA was undetectable: consistent with the absence of infection. The bacterial challenges caused parallel early bDNA and mtDNA increases, but bDNA detected pathogens even after bacteria were undetectable by culture. Sublethal E. coli challenge only caused transient rises in mtDNA consistent with a self-limited injury. In lethal anthrax challenge (n = 4), bDNA increased transiently, but mtDNA levels remained elevated until death, consistent with persistent septic tissue damage after bacterial clearance. Critically, activated protein C pretreatment (n = 4) allowed mtDNA levels to decay after bacterial clearance with sparing of organ function and survival. In summary, host tissue injury correlates with mtDNA whether infective or sterile. Mitochondrial DNA and bDNA polymerase chain reactions can quantify tissue injury incurred by septic or sterile mechanisms and suggest the source of SIRS of unknown origin.
Collapse
|
11
|
Yamamoto C, Muroi K, Okabe H, Uehara E, Hirano T, Sugiyama Y, Ozawa K. Adult-onset chronic granulomatous disease and CD10-negativity in neutrophils. J Clin Exp Hematop 2012; 52:219-21. [PMID: 23269083 DOI: 10.3960/jslrt.52.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
12
|
Hashimoto S, Amaya F, Oh-Hashi K, Kiuchi K, Hashimoto S. Expression of neutral endopeptidase activity during clinical and experimental acute lung injury. Respir Res 2010; 11:164. [PMID: 21114838 PMCID: PMC3009633 DOI: 10.1186/1465-9921-11-164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 11/29/2010] [Indexed: 01/11/2023] Open
Abstract
Background Neutral endopeptidase (NEP), an enzyme that cleaves inflammatory bioactive peptides, may play a protective role in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, its low extracellular activity hinders the precise measurement of changes that take place during ALI/ARDS. The main objective of this study was to clarify the regulation of NEP activity and its expression during ALI/ARDS. Methods In a clinical study, we measured plasma NEP activity in patients who developed postoperative ALI/ARDS, using a HPLC fluorometric system. In an experimental study, we induced ALI by intratracheal instillation of hydrochloric acid (HCl) or lipopolysaccharide (LPS) in mice, and similarly measured NEP activity in plasma, lung tissue, and broncho-alveolar lavage fluid (BALF). We also studied the distribution and measured the amounts of NEP protein, using immuno-histochemical and immunoblot analyses, and measured the levels of NEP mRNA, using real-time reverse transcription-polymerase chain reaction, in the lungs of mice with ALI. Results The plasma NEP activity was significantly lower in patients presenting with ALI/ARDS than in controls. Similarly, the NEP activity in plasma and lung tissue was markedly lower, and lung injuries more severe in LPS- than in HCl-treated mice. In contrast, the activity of NEP in the BALF of LPS-treated mice was increased. The intratracheal instillation of LPS decreased the gene expression of NEP in the lung. Immuno-histochemical and Western immunoblot studies in mice confirmed a) the presence of NEP in the alveolar wall, a critical target in ALI/ARDS, and b) a decrease in its expression in HCl- and LPS-induced ALI. Conclusion In this experimental and clinical study of ALI/ARDS, the activity of NEP was significantly decreased in plasma and increased in the alveolar air space.
Collapse
Affiliation(s)
- Soshi Hashimoto
- Department of Anesthesiology and Intensive Care, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
13
|
Selej M, Lahm T. Red card for white blood cells: leukocytapheresis in sepsis. J Surg Res 2010; 169:21-4. [PMID: 20888587 DOI: 10.1016/j.jss.2010.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Affiliation(s)
- Mona Selej
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
14
|
Hewitt M, Canning BJ. Coughing precipitated by Bordetella pertussis infection. Lung 2010; 188 Suppl 1:S73-9. [PMID: 19936982 DOI: 10.1007/s00408-009-9196-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 01/26/2023]
Abstract
Infections with the gram-negative bacteria Bordetella pertussis (B. pertussis) have long been recognized as a significant threat to children and are increasingly recognized as a cause of cough in adolescents and adults. Antibiotic therapy, when administered during the virulent stages of the disease, can reduce the duration and severity of symptoms. Unfortunately, there are no effective treatments for the persistent coughing that accompanies and follows the infection. The pathogenesis of B. pertussis infection is briefly reviewed. Also discussed is the evidence supporting the hypothesis that the inflammatory peptide bradykinin may be responsible for the persistent, paroxysmal coughing associated with B. pertussis-initiated illness.
Collapse
Affiliation(s)
- Matthew Hewitt
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | |
Collapse
|
15
|
Denny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M, Sandy AR, McCune WJ, Kaplan MJ. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. THE JOURNAL OF IMMUNOLOGY 2010; 184:3284-97. [PMID: 20164424 DOI: 10.4049/jimmunol.0902199] [Citation(s) in RCA: 518] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutrophil-specific genes are abundant in PBMC microarrays from lupus patients because of the presence of low-density granulocytes (LDGs) in mononuclear cell fractions. The functionality and pathogenicity of these LDGs have not been characterized. We developed a technique to purify LDGs from lupus PBMCs and assessed their phenotype, function, and potential role in disease pathogenesis. LDGs, their autologous lupus neutrophils, and healthy control neutrophils were compared with regard to their microbicidal and phagocytic capacities, generation of reactive oxygen species, activation status, inflammatory cytokine profile, and type I IFN expression and signatures. The capacity of LDGs to kill endothelial cells and their antiangiogenic potential were also assessed. LDGs display an activated phenotype, secrete increased levels of type I IFNs, TNF-alpha, and IFN-gamma, but show impaired phagocytic potential. LDGs induce significant endothelial cell cytotoxicity and synthesize sufficient levels of type I IFNs to disrupt the capacity of endothelial progenitor cells to differentiate into mature endothelial cells. LDG depletion restores the functional capacity of endothelial progenitor cells. We conclude that lupus LDGs are proinflammatory and display pathogenic features, including the capacity to synthesize type I IFNs. They may play an important dual role in premature cardiovascular disease development in systemic lupus erythematosus by simultaneously mediating enhanced vascular damage and inhibiting vascular repair.
Collapse
Affiliation(s)
- Michael F Denny
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pierrakos C, Vincent JL. Sepsis biomarkers: a review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R15. [PMID: 20144219 PMCID: PMC2875530 DOI: 10.1186/cc8872] [Citation(s) in RCA: 852] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 12/28/2009] [Accepted: 02/09/2010] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Biomarkers can be useful for identifying or ruling out sepsis, identifying patients who may benefit from specific therapies or assessing the response to therapy. METHODS We used an electronic search of the PubMed database using the key words "sepsis" and "biomarker" to identify clinical and experimental studies which evaluated a biomarker in sepsis. RESULTS The search retrieved 3370 references covering 178 different biomarkers. CONCLUSIONS Many biomarkers have been evaluated for use in sepsis. Most of the biomarkers had been tested clinically, primarily as prognostic markers in sepsis; relatively few have been used for diagnosis. None has sufficient specificity or sensitivity to be routinely employed in clinical practice. PCT and CRP have been most widely used, but even these have limited ability to distinguish sepsis from other inflammatory conditions or to predict outcome.
Collapse
Affiliation(s)
- Charalampos Pierrakos
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, route de Lennik 808, 1070 Brussels, Belgium.
| | | |
Collapse
|
17
|
Vagotomy enhances experimental metastases of 4THMpc breast cancer cells and alters substance P level. ACTA ACUST UNITED AC 2008; 151:35-42. [PMID: 18499282 DOI: 10.1016/j.regpep.2008.03.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/13/2008] [Accepted: 03/14/2008] [Indexed: 12/18/2022]
Abstract
We have previously demonstrated that inactivation of capsaicin-sensitive sensory neurons enhances lung and heart metastases of breast carcinoma. Because a significant part of sensory innervation of lung tissue is supplied by the vagus nerve, we here examined the effects of unilateral mid-cervical vagotomy in the metastases of 4THMpc breast carcinoma and tissue Substance P (SP) levels. Balb-c mice were injected orthotopically with 4THMpc cells 1 week after vagotomy. Animals were sacrificed 27-30 days after injection of 4THMpc cells and the extent of metastases was determined. Unilateral vagotomy, right or left significantly increased the lung, liver and kidney metastases without altering the growth rate of the primary tumor. Heart metastases were increased only following left vagotomy. The changes in SP levels were somewhat surprising such that vagotomy actually increased while sham-operation decreased SP levels in lung. The effect of sham-operation was reversed by unilateral vagotomy demonstrating that vagal activity decreases total SP levels in the lung. Increased SP levels might be due to decreased degradation of the peptide. Presence of the tumor markedly increased SP level in the lung, which was more prominent in vagotomized animals. These results provide evidence that vagal activity may protect against metastatic disease.
Collapse
|
18
|
Martins PS, Brunialti MKC, Martos LSW, Machado FR, Assunçao MS, Blecher S, Salomao R. Expression of cell surface receptors and oxidative metabolism modulation in the clinical continuum of sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:R25. [PMID: 18302745 PMCID: PMC2374621 DOI: 10.1186/cc6801] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 12/21/2007] [Accepted: 02/13/2008] [Indexed: 01/02/2023]
Abstract
Background Infection control depends on adequate microbe recognition and cell activation, yet inflammatory response may lead to organ dysfunction in sepsis. The aims of this study were to evaluate cell activation in the context of sepsis and its correlation with organ dysfunction. Methods A total of 41 patients were prospectively enrolled: 14 with sepsis, 12 with severe sepsis and 15 with septic shock. A total of 17 healthy volunteers were included as a control group. Patients were admitted to the Intensive Care Units and Emergency Rooms of Hospital Sao Paulo (Federal University of Sao Paulo) and Hospital Santa Marcelina, Sao Paulo, Brazil. Toll-like receptor (TLR)2, TLR4, CD11b, CD11c and CD66b expression on neutrophil surfaces and oxidative metabolism measured by non-fluorescent dichlorofluorescein (DCFH) oxidation in neutrophils and monocytes, using whole blood, were evaluated using flow cytometry. Organ dysfunction was measured using the sepsis-associated organ failure assessment (SOFA) score. Results TLR2 expression on neutrophils was found to be downregulated in septic shock patients compared to healthy volunteers (p = 0.05). No differences were found in CD11b and CD11c expression. CD66b expression was increased in the patient group compared to the control group (p = 0.01). Neutrophil and monocyte oxidative burst was increased in septic patients compared to the control group at baseline and after stimulation with phorbol myristate acetate (PMA), formyl-methionyl-leucyl-phenylalanine (fMLP), lipopolysaccharide (LPS) and Staphylococcus aureus (p < 0.001 and p < 0.01, respectively, for neutrophils and monocytes in all tested conditions). A strong correlation was observed between neutrophil and monocyte oxidative metabolism. A SOFA score of 7 discriminated patients between survivors and non-survivors (area under the curve for reactive oxygen species (ROS) was 0.78; p = 0.02). ROS generation in patients with sepsis and septic shock with SOFA scores > 7 was higher than in patients with SOFA scores < 7, both in neutrophils and monocytes. However, oxidative burst in patients with sepsis was as high as in septic shock. Conclusion Surface receptors expression on neutrophils may be modulated across the continuum of sepsis, and enhanced or decreased expression may be found depending on the receptor considered. ROS generation is upregulated both in neutrophils and monocytes in septic patients, and it is differently modulated depending on the stage of the disease and the stimuli used.
Collapse
Affiliation(s)
- Paulo S Martins
- Division of Infectious Diseases, Escola Paulista de Medicina, Federal University of Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
A few limited examples of large animal models are outlined, with the main emphasis on baboon models. The baboon offers all the advantages of a large animal and is comparable with humans in nearly all physiological and immunological aspects. In addition, cross-reactivity with human therapeutic and diagnostic reagents allows testing of new species-specific therapies such as antihuman antibodies, on the one hand, and monitoring with available human analytical procedures, on the other.
Collapse
Affiliation(s)
- Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, A-1200 Vienna, Austria.
| | | |
Collapse
|
20
|
Orr Y, Wilson DP, Taylor JM, Bannon PG, Geczy C, Davenport MP, Kritharides L. A kinetic model of bone marrow neutrophil production that characterizes late phenotypic maturation. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1707-16. [PMID: 17185405 DOI: 10.1152/ajpregu.00627.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute inflammatory stimuli rapidly mobilize neutrophils from the bone marrow by shortening postmitotic maturation time and releasing younger neutrophils; however, the kinetics of this change in maturation time remains unknown. We propose a kinetic model that examines the rate of change in neutrophil average age at exit from the bone marrow during active mobilization to quantify this response and use this model to examine the temporal profile of late neutrophil phenotypic maturation. Total and CD10(-)/CD16(low) circulating neutrophils were quantified in cardiac surgery patients during extracorporeal circulation (ECC). Net growth in the circulating neutrophil pool occurred during the procedural (0.04 +/- 0.02 x 10(9) x l(-1) x min(-1)), warming (0.14 +/- 0.02 x 10(9) x l(-1) x min(-1)), and weaning (0.12 +/- 0.06 x 10(9) x l(-1) x min(-1)) phases of ECC. When applied to our differential equation mathematical model, these results predict that neutrophil average age at exit from the bone marrow decreased continually during ECC, resulting in average neutrophil release 8.44 +/- 2.20 h earlier during the weaning phase than at the beginning of ECC sampling. Modeling of concurrent changes in CD10(-)/CD16(low) neutrophil numbers indicates that CD10 expression is directly related to neutrophil mean age and predicts that the proportion of mobilizable postmitotic neutrophils that are CD10(+) increases from 64 to 81% during these sampled 8.4 h of maturation.
Collapse
Affiliation(s)
- Yishay Orr
- Department of Haematology, Prince of Wales Hospital, and Centre for Vascular Research, School of Medical Sciences, The University of New South Wales, Anzac Parade, Kensington, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Stearns-Kurosawa DJ, Lupu F, Taylor FB, Kinasewitz G, Kurosawa S. Sepsis and pathophysiology of anthrax in a nonhuman primate model. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:433-44. [PMID: 16877346 PMCID: PMC1698797 DOI: 10.2353/ajpath.2006.051330] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2006] [Indexed: 12/22/2022]
Abstract
Studies that define natural responses to bacterial sepsis assumed new relevance after the lethal bioterrorist attacks with Bacillus anthracis (anthrax), a spore-forming, toxigenic gram-positive bacillus. Considerable effort has focused on identifying adjunctive therapeutics and vaccines to prevent future deaths, but translation of promising compounds into the clinical setting necessitates an animal model that recapitulates responses observed in humans. Here we describe a nonhuman primate (Papio c. cynocephalus) model of B. anthracis infection using infusion of toxigenic B. anthracis Sterne 34F2 bacteria (5 x 10(5) to 6.5 x 10(9) CFU/kg). Similar to that seen in human patients, we observed changes in vascular permeability, disseminated intravascular coagulation, and systemic inflammation. The lung was a primary target organ with serosanguinous pleural effusions, intra-alveolar edema, and hemorrhagic lesions. This animal model reveals that a fatal outcome is dominated by the host septic response, thereby providing important insights into approaches for treatment and prevention of anthrax in humans.
Collapse
Affiliation(s)
- Deborah J Stearns-Kurosawa
- Department of Free Radical Biology and Aging Research, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
22
|
Orr Y, Taylor JM, Bannon PG, Geczy C, Kritharides L. Circulating CD10-/CD16low neutrophils provide a quantitative index of active bone marrow neutrophil release. Br J Haematol 2006; 131:508-19. [PMID: 16281943 DOI: 10.1111/j.1365-2141.2005.05794.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Circulating neutrophil phenotype and function are altered during neutrophilia associated with acute inflammatory states, however, the contribution of bone marrow neutrophil release to these changes has been difficult to quantify in humans. Accelerated release of neutrophils, with potentially distinct attributes, from the bone marrow and their dilution within the circulating pool may produce these apparent changes. Unfortunately selective analysis of these newly emergent neutrophils is difficult given their morphologic similarity to those already in the circulation and the coincident effect of soluble inflammatory mediators on circulating neutrophil phenotype and function. Using whole blood flow cytometry and cardiac surgery as an inflammatory stimulus, we demonstrate the emergence of a unique subpopulation of circulating neutrophils characterised as CD10(-)/CD16(low), indicative of active bone marrow neutrophil release peri-operatively. CD10(-)/CD16(low) neutrophils emerge at the same operative stages as band forms and a left shift, yet represent over 40% of circulating neutrophils postoperatively, and generate a greater stimulus-induced [Ca(2+)](i) flux than their CD10(+) counterparts. We conclude that CD10(-)/CD16(low) neutrophils represent a significant proportion of the circulating pool after cardiac surgery and that bone marrow release, a major contributor to neutrophilia, influences the phenotype and functional activity of circulating neutrophils following this acute inflammatory stimulus.
Collapse
Affiliation(s)
- Y Orr
- Centre for Vascular Research, The University of New South Wales, Anzac Parade, Kensington, Australia
| | | | | | | | | |
Collapse
|
23
|
Sayeed MM. Delay of neutrophil apoptosis can exacerbate inflammation in sepsis patients: cellular mechanisms. Crit Care Med 2004; 32:1604-6. [PMID: 15241110 DOI: 10.1097/01.ccm.0000130997.85379.0f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|