1
|
Singh N, Vishwas S, Kaur A, Kaur H, Kakoty V, Khursheed R, Chaitanya MVNL, Babu MR, Awasthi A, Corrie L, Harish V, Yanadaiah P, Gupta S, Sayed AA, El-Sayed A, Ali I, Kensara OA, Ghaboura N, Gupta G, Dou AM, Algahtani M, El-Kott AF, Dua K, Singh SK, Abdel-Daim MM. Harnessing role of sesamol and its nanoformulations against neurodegenerative diseases. Biomed Pharmacother 2023; 167:115512. [PMID: 37725878 DOI: 10.1016/j.biopha.2023.115512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
Sesamol is a lignan of sesame seeds and a natural phenolic molecule that has emerged as a useful medical agent. Sesamol is a non-toxic phytoconstituent, which exerts certain valuable effects in the management of cancer, diabetes, cardiovascular diseases, neurodegenerative diseases (NDs), etc. Sesamol is known to depict its neuroprotective role by various mechanisms, such as metabolic regulators, action on oxidative stress, neuroinflammation, etc. However, its poor oral bioavailability, rapid excretion (as conjugates), and susceptibility to gastric irritation/toxicity (particularly in rats' forestomach) may restrict its effectiveness. To overcome the associated limitations, novel drug delivery system-based formulations of sesamol are emerging and being researched extensively. These can conjugate with sesamol and enhance the bioavailability and solubility of free sesamol, along with delivery at the target site. In this review, we have summarized various research works highlighting the role of sesamol on various NDs, including Alzheimer's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Parkinson's disease. Moreover, the formulation strategies and neuroprotective role of sesamol-based nano-formulations have also been discussed.
Collapse
Affiliation(s)
- Navneet Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Amandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Harmanpreet Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Department of pharmaceutics, ISF college of Pharmacy, Moga, Punjab 142001, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Palakurthi Yanadaiah
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of pharmacology, Khandwa Road, Village Umrikheda, Near Toll booth, Indore, Madhya Pradesh 452020, India
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Amr El-Sayed
- Department of Animal Infectious Diseases, Faculty of Veterinary medicine, Cairo University, Egypt
| | - Iftikhar Ali
- Department of Biochemistry and Cell Biology, State University of New York at Stonybrook, New York, USA
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah 21955, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P. O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India
| | - Ali M Dou
- Division of blood bank, Department of medical laboratories, Riyadh security forces hospital, Ministry of interior, Riyadh, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damanhour University, Egypt
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
2
|
Patel K, Mangu SR, Sukhdeo SV, Sharan K. Sesamol improves bone mass in ovary intact growing and adult rats but accelerates bone deterioration in the ovariectomized rats. J Nutr Biochem 2023:109384. [PMID: 37209954 DOI: 10.1016/j.jnutbio.2023.109384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Sesamol, an active component in sesame seeds, is known for its health benefits. However, its effect on bone metabolism remains unexplored. The present study aims to investigate the effect of sesamol on growing, adult and osteoporotic skeleton and its mechanism of action. Sesamol at various doses were administered orally to growing, ovariectomized, and ovary-intact rats. Alterations in bone parameters were examined using micro-CT and histological studies. Western blot and mRNA expression from long bones were performed. We further evaluated the effect of sesamol on osteoblast and osteoclast function and its mode of action in the cell culture system. These data showed that sesamol was able to promote peak bone mass in growing rats. However, sesamol had the opposite effect in ovariectomized rats, evident from gross deterioration of trabecular and cortical microarchitecture. Concurrently, it improved the bone mass in adult rats. In vitro results revealed that sesamol enhances the bone formation by stimulating osteoblast differentiation through MAPK, AKT, and BMP-2 signaling. In contrast, it enhances osteoclast differentiation and expression of osteoclast-specific genes in osteoclast differentiation medium. Interestingly, in presence of estrogen, the effect reversed and sesamol decreased osteoclast differentiation, in vitro. Sesamol improves bone microarchitecture in growing and ovary-intact rats, whereas it enhances the bone deterioration in ovariectomized rats. While sesamol promotes bone formation, its opposing effect on the skeleton can be attributed to its dual effect on osteoclastogenesis in presence and absence of estrogen. These findings in the preclinical context suggests a special attention towards the detrimental effect of sesamol in postmenopausal women.
Collapse
Affiliation(s)
- Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR- Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Nair AB, Dalal P, Kadian V, Kumar S, Garg M, Rao R, Almuqbil RM, Alnaim AS, Aldhubiab B, Alqattan F. Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive. PLANTS (BASEL, SWITZERLAND) 2023; 12:1168. [PMID: 36904028 PMCID: PMC10005287 DOI: 10.3390/plants12051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and sesamol; among these, sesamol represents a major constituent. This bioactive is responsible for preventing various diseases including cancer, hepatic disorders, cardiac ailments, and neurological diseases. In the last decade, the application of sesamol in the management of various disorders has attracted the increasing interest of the research community. Owing to its prominent pharmacological activities, such as antioxidant, antiinflammatory, antineoplastic, and antimicrobial, sesamol has been explored for the above-mentioned disorders. However, despite the above-mentioned therapeutic potential, its clinical utility is mainly hindered owing to low solubility, stability, bioavailability, and rapid clearance issues. In this regard, numerous strategies have been explored to surpass these restrictions with the formulation of novel carrier platforms. This review aims to describe the various reports and summarize the different pharmacological activities of sesamol. Furthermore, one part of this review is devoted to formulating strategies to improve sesamol's challenges. To resolve the issues such as the stability, low bioavailability, and high systemic clearance of sesamol, novel carrier systems have been developed to open a new avenue to utilize this bioactive as an efficient first-line treatment for various diseases.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Minakshi Garg
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatemah Alqattan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
4
|
The Impact of Za'atar Antioxidant Compounds on the Gut Microbiota and Gastrointestinal Disorders: Insights for Future Clinical Applications. Antioxidants (Basel) 2023; 12:antiox12020426. [PMID: 36829984 PMCID: PMC9952350 DOI: 10.3390/antiox12020426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Since the gut microbiota plays a pivotal role in host homeostasis and energy balance, changes in its composition can be associated with disease states through the promotion of immune-mediated inflammatory disorders and increasing intestinal permeability, ultimately leading to the impairment of intestinal barrier function. Za'atar is one of the most popular plant-based foods in the Eastern Mediterranean region. Za'atar is a mixture of different plant leaves, fruits, and seeds and contains hundreds of antioxidant compounds, especially polyphenols, and fiber, with pre-clinical and clinical evidence suggesting health-promoting effects in cardiovascular and metabolic disease. Za'atar compounds have also been studied from a gastrointestinal perspective, concerning both gut microbiota and gastrointestinal diseases. Antioxidants such as Za'atar polyphenols may provide beneficial effects in the complex interplay between the diet, gut microbiota, and intestinal permeability. To our knowledge, no studies have reported the effects of the whole Za'atar mixture, however, based on the pre-clinical studies published on components and single compounds found in Za'atar, we provide a clinical overview of the possible effects on the gastrointestinal tract, focusing mainly on carvacrol, rosmarinic acid, gallic acid, and other polyphenols. We also cover the potential clinical applications of Za'atar mixture as a possible nutraceutical in disorders involving the gastrointestinal tract.
Collapse
|
5
|
Li YH, Hsu DZ, Liu CT, Chandrasekaran VRM, Liu MY. The protective effect of muscimol against systemic inflammatory response in endotoxemic mice is independent of GABAergic and cholinergic receptors. Can J Physiol Pharmacol 2022; 100:665-678. [PMID: 35856422 DOI: 10.1139/cjpp-2021-0682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic inflammatory response syndrome plays an important role in the development of sepsis. GABAergic and cholinergic pathways activation are considered important for inflammatory response regulation. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-12, IL-10, as well as inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) are important inflammatory mediators involved in the pathogenesis of sepsis. Muscimol, an active compound from the mushroom Amanita muscaria (L.) Lam., is a potent GABAA agonist, inhibits inflammatory response via activating GABAA receptor and vagus nerve. However, the effect of muscimol on lipopolysaccharide (LPS)-induced systemic inflammatory response is still unclear. Therefore, we studied the effects of muscimol on systemic inflammatory response and survival rate in endotoxemic mice. Mice endotoxemia was induced by LPS. Muscimol was given to mice or RAW264.7 cells 30 min before LPS (10 mg/kg, i.p., or 10 ng/mL, respectively). Mice received GABAergic and cholinergic receptor antagonists 30 min before muscimol and LPS. Muscimol decreased TNF-α, IL-1β, IL-12, iNOS-derived NO, and increased IL-10 levels and survival rate after LPS treatment. Muscimol significantly decreased nuclear factor kappa B (NF-κB) activity, increased IκB expression, and decreased pIKK expression in LPS-treated RAW264.7 cells. GABAergic and cholinergic antagonists failed to reverse muscimol's protection in LPS-treated mice. In conclusion, muscimol protected against systemic inflammatory response in endotoxemic mice may be partially independent of GABAergic and cholinergic receptors.
Collapse
Affiliation(s)
- Ya-Hui Li
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Chuan-Teng Liu
- Research Center for Traditional Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Victor Raj Mohan Chandrasekaran
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
6
|
Xiao K, Zhang DC, Hu Y, Song LC, Xu JQ, He WX, Pan P, Wang YW, Xie LX. Potential roles of vitamin D binding protein in attenuating liver injury in sepsis. Mil Med Res 2022; 9:4. [PMID: 35057868 PMCID: PMC8772176 DOI: 10.1186/s40779-022-00365-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In sepsis, vitamin D binding protein (VDBP) has been shown to be low-expressed. The current study examined the relationship between serum VDBP level and liver injury in sepsis patients, as well as in a mouse model for sepsis and in cultured liver epithelial cell line exposed to lipopolysaccharide (LPS). METHODS The human study included 78 sepsis patients and 50 healthy volunteers. Sepsis patients were categorized into sepsis survivor group (n = 43) and sepsis non-survivor group (n = 35) based on 28-day mortality for data analysis. Adult male C57BL/6 mice were subjected to cecal ligation and puncture (CLP). Serum samples were collected on day 1, 3, 5 and 7 to determine the levels of VDBP, 25-hydroxyvitamin D [25(OH)D3], 1,25-dihydroxyvitamin D [1,25(OH)2D3], interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Potential protective effects of VDBP overexpression against LPS-induced liver damage were examined in cultured THLE2 cells. RESULTS Serum levels of VDBP, 25(OH)D3, and 1,25(OH)2D3 were significantly lower in sepsis patients vs. the healthy control (P < 0.001), as well as in the sepsis non-survivor group vs. the sepsis survivor group (P < 0.001, P = 0.0338, or P = 0.0013, respectively). Lower serum VDBP level was associated with higher Acute Physiology and Chronic Health Evaluation (APACHE) II score (r = - 0.2565, P = 0.0234) and Sequential Organ Failure Assessment score (r = - 0.3522, P = 0.0016), but lower serum albumin (ALB, r = 0.4628, P < 0.001) and total protein (TP, r = 0.263, P = 0.02). In CLP mice, there was a 5-day period of serum VDBP reduction, followed by return towards the baseline on day 7. VDBP was also decreased in LPS-treated THLE2 cells (P < 0.001). VDBP overexpression reduced LPS-induced THLE2 damage. Reduced damage was associated with decreased oxidative stress and inactivation of the c-Jun N-terminal kinase signaling pathway. CONCLUSION VDBP may be protective against sepsis-induced liver injury.
Collapse
Affiliation(s)
- Kun Xiao
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China
| | - Du-Chao Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Beijing, 100071, China
| | - Ye Hu
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China
| | - Li-Cheng Song
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China
| | - Jian-Qiao Xu
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China
| | - Wan-Xue He
- Medical School of Chinese People's Liberation Army (PLA), Chinese PLA General Hospital, Beijing, 100853, China
| | - Pan Pan
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China
| | - Yu-Wei Wang
- Department of Geriatric Comprehensive Surgery, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China.
| | - Li-Xin Xie
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China.
| |
Collapse
|
7
|
Sharma T, Airao V, Buch P, Vaishnav D, Parmar S. Sesamol protects hippocampal CA1 neurons and reduces neuronal infarction in global model of cerebral ischemia in rats. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Bosebabu B, Cheruku SP, Chamallamudi MR, Nampoothiri M, Shenoy RR, Nandakumar K, Parihar VK, Kumar N. An Appraisal of Current Pharmacological Perspectives of Sesamol: A Review. Mini Rev Med Chem 2020; 20:988-1000. [DOI: 10.2174/1389557520666200313120419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
Sesame (Sesamum indicum L.) seeds have been authenticated for its medicinal value in both
Chinese and Indian systems of medicine. Its numerous potential nutritional benefits are attributed to its
main bioactive constituents, sesamol. As a result of those studies, several molecular mechanisms are
emerging describing the pleiotropic biological effects of sesamol. This review summarized the most
interesting in vitro and in vivo studies on the biological effects of sesamol. The present work summarises
data available from Pubmed and Scopus database. Several molecular mechanisms have been elucidated
describing the pleiotropic biological effects of sesamol. Its major therapeutic effects have been
elicited in managing oxidative and inflammatory conditions, metabolic syndrome and mood disorders.
Further, compelling evidence reflected the ability of sesamol in inhibiting proliferation of the inflammatory
cell, prevention of invasion and angiogenesis via affecting multiple molecular targets and
downstream mechanisms. Sesamol is a safe, non‐toxic chemical that mediates anti‐inflammatory
effects by down‐regulating the transcription of inflammatory markers such as cytokines, redox status,
protein kinases, and enzymes that promote inflammation. In addition, sesamol also induces apoptosis
in cancer cells via mitochondrial and receptor‐mediated pathways, as well as activation of caspase cascades.
In the present review, several pharmacological effects of sesamol are summarised namely, antioxidant,
anti-cancer, neuroprotective, cardioprotective, anti-inflammatory, hypolipidemic, radioprotective,
anti-aging, anti-ulcer, anti-dementia, anti-depressant, antiplatelet, anticonvulsant, anti-anxiolytic,
wound healing, cosmetic (skin whitening), anti-microbial, matrix metalloproteinase (MMPs) inhibition,
hepatoprotective activity and other biological effects. Here we have summarized the proposed
mechanism behind these pharmacological effects.
Collapse
Affiliation(s)
- Bellamkonda Bosebabu
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Rekha R. Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Vipan K. Parihar
- Department of Radiation Oncology, University of California, Irvine, CA 92697- 2695, United States
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
9
|
Majdaeen M, Banaei A, Abedi-Firouzjah R, Ebrahimnejad Gorji K, Ataei G, Momeni F, Zamani H. Investigating the radioprotective effect of sesamol oral consumption against gamma irradiation in mice by micronucleus and alkaline comet assays. Appl Radiat Isot 2020; 159:109091. [DOI: 10.1016/j.apradiso.2020.109091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
|
10
|
Puglia C, Pignatello R, Fuochi V, Furneri PM, Lauro MR, Santonocito D, Cortesi R, Esposito E. Lipid Nanoparticles and Active Natural Compounds: A Perfect Combination for Pharmaceutical Applications. Curr Med Chem 2019; 26:4681-4696. [PMID: 31203795 DOI: 10.2174/0929867326666190614123835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Phytochemicals represent an important class of bioactive compounds characterized by significant health benefits. Notwithstanding these important features, their potential therapeutic properties suffer from poor water solubility and membrane permeability limiting their approach to nutraceutical and pharmaceutical applications. Lipid nanoparticles are well known carrier systems endowed with high biodegradation and an extraordinary biocompatible chemical nature, successfully used as platform for advanced delivery of many active compounds, including the oral, topical and systemic routes. This article is aimed at reviewing the last ten years of studies about the application of lipid nanoparticles in active natural compounds reporting examples and advantages of these colloidal carrier systems.
Collapse
Affiliation(s)
- Carmelo Puglia
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | - Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | | - Rita Cortesi
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Elisabetta Esposito
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Majdalawieh AF, Mansour ZR. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action. Eur J Pharmacol 2019; 855:75-89. [PMID: 31063773 DOI: 10.1016/j.ejphar.2019.05.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
Sesamol is a natural phenolic compound and a major lignan isolated from sesame seeds (Sesamum indicum) and sesame oil. The therapeutic potential of sesamol was investigated intensively, and there is compelling evidence that sesamol acts as a metabolic regulator that possesses antioxidant, anti-mutagenic, anti-hepatotoxic, anti-inflammatory, anti-aging, and chemopreventive properties. Various studies have reported that sesamol exerts potent anti-cancer effects. Herein, we provide a comprehensive review that summarizes the in vitro and in vivo anti-cancer activity of sesamol in several cancer cell lines and animal models. The protective role that sesamol plays against oxidative stress through its radical scavenging ability and lipid peroxidation lowering potential is analyzed. The ability of sesamol to regulate apoptosis and various stages of the cell cycle is also outlined. Moreover, the signaling pathways that sesamol seems to target to execute its antioxidant, anti-inflammatory, and pro-apoptotic/anti-proliferative roles are discussed. The signaling pathways that sesamol targets include the p53, MAPK, JNK, PI3K/AKT, TNFα, NF-κB, PPARγ, caspase-3, Nrf2, eNOS, and LOX pathways. The mechanisms of action that sesamol executes to deliver its anti-cancer effects are delineated. In sum, there is ample evidence suggesting that sesamol possesses potent anti-cancer properties in vitro and in vivo. A thorough understanding of the molecular targets of sesamol and the mechanisms of action underlying its anti-cancer effects is necessary for possible employment of sesamol as a chemotherapeutic agent in cancer prevention and therapy.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Zeenah R Mansour
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
12
|
Jung TD, Choi SI, Choi SH, Cho BY, Sim WS, Xionggao H, Lee SJ, Park SJ, Kim DB, Kim YC, Lee JH, Lee OH. Changes in the Anti-Allergic Activities of Sesame by Bioconversion. Nutrients 2018; 10:E210. [PMID: 29443928 PMCID: PMC5852786 DOI: 10.3390/nu10020210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/02/2023] Open
Abstract
Sesame is an important oilseed crop, which has been used as a traditional health food to ameliorate the prevention of various diseases. We evaluated the changes in the anti-allergic activities of sesame by bioconversion. SDS-PAGE of non-fermented sesame proteins showed major allergen bands, while that of fermented sesame showed only a few protein bands. Additionally, we investigated the effectiveness of fermented sesame by bioconversion in tumor necrosis factor-α (TNF-α)- and interferon-γ (IFN-γ)-induced HaCaT cells. In HaCaT cells, fermented sesame inhibited the mRNA expression of interleukin-6 (IL-6) and interleukin-1β (IL-1β), thymus and macrophage-derived chemokine (MDC/CCL22), activation-regulated chemokine (TARC/CCL17), and intercellular adhesion molecule-1 (ICAM-1). Moreover, fermented sesame inhibited the activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 1 (STAT1). Fermented sesame exerts anti-allergic effects by suppressing the expression of chemokines and cytokines via blockade of NF-κB and STAT1 activation.
Collapse
MESH Headings
- Agaricales
- Allergens/adverse effects
- Allergens/analysis
- Allergens/metabolism
- Cell Line
- Chemokines/antagonists & inhibitors
- Chemokines/genetics
- Chemokines/metabolism
- Crops, Agricultural/adverse effects
- Crops, Agricultural/chemistry
- Crops, Agricultural/growth & development
- Crops, Agricultural/microbiology
- Cytokines/antagonists & inhibitors
- Cytokines/genetics
- Cytokines/metabolism
- Dermatitis, Atopic/etiology
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/prevention & control
- Fermentation
- Fermented Foods/adverse effects
- Fermented Foods/analysis
- Fermented Foods/microbiology
- Food Handling
- Food Hypersensitivity/etiology
- Food Hypersensitivity/immunology
- Food Hypersensitivity/prevention & control
- Fruiting Bodies, Fungal
- Gene Expression Regulation, Neoplastic
- Humans
- Keratinocytes/immunology
- Keratinocytes/metabolism
- Plant Proteins, Dietary/adverse effects
- Plant Proteins, Dietary/analysis
- Plant Proteins, Dietary/metabolism
- Republic of Korea
- Seeds/adverse effects
- Seeds/chemistry
- Seeds/growth & development
- Seeds/microbiology
- Sesamum/adverse effects
- Sesamum/chemistry
- Sesamum/growth & development
- Sesamum/microbiology
- Shiitake Mushrooms/isolation & purification
- Shiitake Mushrooms/metabolism
Collapse
Affiliation(s)
- Tae-Dong Jung
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Sun-Il Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Seung-Hyun Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Bong-Yeon Cho
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Wan-Sup Sim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Han- Xionggao
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Sang Jong Lee
- STR Biotech Company, LTD., Chuncheon 24232, Korea; or l (S.J.L.); (S.J.P.)
| | - Seon Ju Park
- STR Biotech Company, LTD., Chuncheon 24232, Korea; or l (S.J.L.); (S.J.P.)
| | - Dan-Bi Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Young-Cheul Kim
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Jin-Ha Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| |
Collapse
|
13
|
Effects of water extracts of Davallia formosana on ovariectomized mice. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Turgut B, Ergen İ, İlhan N. The Protective Effect of Sesamol in the Selenite-induced Experimental Cataract Model. Turk J Ophthalmol 2017; 47:309-314. [PMID: 29326846 PMCID: PMC5758764 DOI: 10.4274/tjo.42385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/07/2017] [Indexed: 12/01/2022] Open
Abstract
Objectives: To investigate the potential protective effects of sesamol in an experimental cataract model. Materials and Methods: Twenty-one Spraque Dawley rat pups were randomly assigned into three groups, seven rats in each. All the rats except for those in the control group were injected subcutaneously with a single dose of sodium selenite on postpartum day 9. On days 10-14, rats in the sham group were intraperitoneally administered 50 mg/kg/day saline solution, while rats in the sesamol group were given 50 mg/kg/day sesamol by the same route. Following cataract grading, the lenses and capsules were extracted and the mean levels of reduced glutathione (GSH), malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS) in lens supernatants were biochemically analyzed. Results: The control group did not show any development of cataract. It was found that the mean cataract grade in the sesamol group was significantly lower than that of the sham group (p<0.05). The mean GSH level and TAS in the sesamol group were significantly higher than those of the sham group while the mean TOS and MDA level in the sesamol group were significantly lower than those of the sham group (p<0.05). Conclusion: Our study shows that sesamol reduces TOS and MDA level and increases TAS and GSH level in the lens and inhibits cataract formation.
Collapse
Affiliation(s)
- Burak Turgut
- Yüksek İhtisas University Faculty of Medicine, Department of Ophthalmology, Ankara, Turkey
| | - İrfan Ergen
- University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Department of Ophthalmology, Ankara, Turkey
| | - Nevin İlhan
- Fırat University Faculty of Medicine, Department of Biochemistry, Elazığ, Turkey
| |
Collapse
|
15
|
Gao XJ, Xie GN, Liu L, Fu ZJ, Zhang ZW, Teng LZ. Sesamol attenuates oxidative stress, apoptosis and inflammation in focal cerebral ischemia/reperfusion injury. Exp Ther Med 2017; 14:841-847. [PMID: 28673008 DOI: 10.3892/etm.2017.4550] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/21/2016] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to evaluate the therapeutic potential of sesamol treatment on focal ischemia/reperfusion (I/R) injury in the rat brain. The results demonstrated that pretreatment with sesamol seven days prior to focal cerebral I/R injury had significant positive effects, including improvements in neurological deficits (P<0.05), and a reduction in malondialdehyde content and elevation of antioxidant levels (superoxide dismutase, glutathione and glutatione peroxidase; both P<0.05). Furthermore, levels of B cell lymphoma-2 (Bcl-2)-associated X protein and caspase-3 were significantly downregulated, whereas the level of Bcl-2 was effectively increased. Conversely, the mRNA expression of proinflammatory cytokines were significantly reduced in focal cerebral I/R injury rats upon sesamol intervention. Therefore, the beneficial effects of sesamol on cerebral I/R injury may be due to the reduction of oxidative stress, inhibition of apoptosis and inflammation. The findings of the present study suggest that sesamol supplementation may serve as potent adjuvant in the treatment of focal cerebral ischemia/reperfusion injury due to its neuroprotective effects.
Collapse
Affiliation(s)
- Xiu-Juan Gao
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Guan-Nan Xie
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Lei Liu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Zhi-Jian Fu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zong-Wang Zhang
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Liang-Zhu Teng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
16
|
Eugenio-Pérez D, Montes de Oca-Solano HA, Pedraza-Chaverri J. Role of food-derived antioxidant agents against acetaminophen-induced hepatotoxicity. PHARMACEUTICAL BIOLOGY 2016; 54:2340-2352. [PMID: 26955890 DOI: 10.3109/13880209.2016.1150302] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Acetaminophen (APAP), also known as paracetamol and N-acetyl p-aminophenol, is one of the most frequently used drugs for analgesic and antipyretic purposes on a worldwide basis. It is safe and effective at recommended doses but has the potential for causing hepatotoxicity and acute liver failure (ALF) with overdose. To solve this problem, different strategies have been developed, including the use of compounds isolated from food, which have been studied to characterize their efficacy as natural dietary antioxidants. Objective The objective of this study is to show the beneficial effects of a variety of natural compounds and their use against acetaminophen-induced hepatotoxicity. Methods PubMed database was reviewed to compile data about natural compounds with hepatoprotective effects against APAP toxicity. Results and conclusion As a result, the health-promoting properties of 13 different food-derived compounds with protective effect against APAP-induced hepatotoxicity were described as well as the mechanisms involved in hepatoprotection.
Collapse
Affiliation(s)
- Dianelena Eugenio-Pérez
- a Department of Biology, Faculty of Chemistry , National Autonomous University of Mexico (UNAM) , University City , Mexico City , DF , Mexico
| | - Héctor Adolfo Montes de Oca-Solano
- a Department of Biology, Faculty of Chemistry , National Autonomous University of Mexico (UNAM) , University City , Mexico City , DF , Mexico
| | - José Pedraza-Chaverri
- a Department of Biology, Faculty of Chemistry , National Autonomous University of Mexico (UNAM) , University City , Mexico City , DF , Mexico
| |
Collapse
|
17
|
Singh N, Khullar N, Kakkar V, Kaur IP. Hepatoprotective effects of sesamol loaded solid lipid nanoparticles in carbon tetrachloride induced sub-chronic hepatotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:520-532. [PMID: 25410024 DOI: 10.1002/tox.22064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
Sesamol is a phenolic component of sesame seed oil, which has been established as an antioxidant and also possesses potential for hepatoprotection. However, its protective role in carbon tetrachloride (CCl4 ) induced sub-chronic hepatotoxicity has not been studied. Limited oral bioavailability (BA) and rapid elimination (as conjugates) in rats is reported for sesamol. Considering its significant antioxidant potential and compromised BA, we packaged sesamol into solid lipid nanoparticles (S-SLNs) to enhance its hepatoprotective bioactivity. S-SLNs prepared by microemulsification method were nearly spherical in shape with an average particle size of 120.30 nm and their oral administration at 8 mg/kg body weight (BW) showed significantly (p < 0.001) better hepatoprotection than free sesamol (FS) and a well established hepatoprotective antioxidant silymarin [SILY (25 mg/kg BW); p < 0.05) in CCl4 induced sub-chronic liver injury in rats. Evaluations were done in terms of histological changes in the liver tissue, liver injury markers (serum alanine aminotransferase, serum aspartate aminotransferase, and serum lactate dehydrogenase); oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and proinflammatory response marker (tumor necrosis factor-alpha).
Collapse
Affiliation(s)
- Neha Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Neeraj Khullar
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Indu Pal Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
18
|
Periasamy S, Chu PY, Li YH, Hsu DZ, Liu MY. Sesamol ameliorates hypotension by modulating cytokines and PPAR-gamma in systemic inflammatory response. EXCLI JOURNAL 2016; 14:948-57. [PMID: 26839527 PMCID: PMC4732502 DOI: 10.17179/excli2015-367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/10/2015] [Indexed: 01/24/2023]
Abstract
Sepsis is one of the major causes of death reported in intensive care units. Acute kidney injury (AKI) and hypotension are important in the pathogenesis and mortality of systemic inflammatory response (SIR). Sesamol delays mortality in sepsis; however, its effects on AKI and hypotension and the role of peroxisome proliferator-activated receptor-ɣ (PPAR-γ) activation have not been established. We investigated the effect of sesamol on SIR in cecal ligation and puncture (CLP)-induced acute kidney injury and lipopolysaccharide (LPS)-induced hypotension in rats. Sesamol was subcutaneously injected 1 h after SIR. Renal function (BUN and CRE) and proinflammatory mediators interleukin (IL)-1β and IL-6 were increased after CLP. Tumor necrosis factor (TNF)-α, IL-1β, IL-10, and nitrite production were significantly increased 6 h after LPS-induced hypotension (mean arterial pressure was significantly decreased). Sesamol significantly inhibited BUN, CRE, IL-1β, IL-6, and nitrite after CLP-induced acute renal injury. In addition, sesamol increased mean arterial pressure and IL-10, inhibited TNF-α and IL-1β, but did not affect nitrite production in LPS-induced hypotension. Sesamol increased PPAR-γ in the leucocytes and peritoneal macrophages in LPS-induced SIR. We conclude that sesamol regulates leucocyte and macrophage PPAR-γ-associated systemic cytokines expression, thereby ameliorates acute kidney injury and hypotension in rats.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yi Chu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Hui Li
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
19
|
Zhou HX, Han B, Hou LM, An TT, Jia G, Cheng ZX, Ma Y, Zhou YN, Kong R, Wang SJ, Wang YW, Sun XJ, Pan SH, Sun B. Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis. PLoS One 2016; 11:e0154483. [PMID: 27115738 PMCID: PMC4845997 DOI: 10.1371/journal.pone.0154483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/14/2016] [Indexed: 12/24/2022] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease mediated by damage to acinar cells and pancreatic inflammation. In patients with AP, subsequent systemic inflammatory responses and multiple organs dysfunction commonly occur. Interactions between cytokines and oxidative stress greatly contribute to the amplification of uncontrolled inflammatory responses. Molecular hydrogen (H2) is a potent free radical scavenger that not only ameliorates oxidative stress but also lowers cytokine levels. The aim of the present study was to investigate the protective effects of H2 gas on AP both in vitro and in vivo. For the in vitro assessment, AR42J cells were treated with cerulein and then incubated in H2-rich or normal medium for 24 h, and for the in vivo experiment, AP was induced through a retrograde infusion of 5% sodium taurocholate into the pancreatobiliary duct (0.1 mL/100 g body weight). Wistar rats were treated with inhaled air or 2% H2 gas and sacrificed 12 h following the induction of pancreatitis. Specimens were collected and processed to measure the amylase and lipase activity levels; the myeloperoxidase activity and production levels; the cytokine mRNA expression levels; the 8-hydroxydeoxyguanosine, malondialdehyde, and glutathione levels; and the cell survival rate. Histological examinations and immunohistochemical analyses were then conducted. The results revealed significant reductions in inflammation and oxidative stress both in vitro and in vivo. Furthermore, the beneficial effects of H2 gas were associated with reductions in AR42J cell and pancreatic tissue damage. In conclusion, our results suggest that H2 gas is capable of ameliorating damage to the pancreas and AR42J cells and that H2 exerts protective effects both in vitro and in vivo on subjects with AP. Thus, the results obtained indicate that this gas may represent a novel therapy agent in the management of AP.
Collapse
Affiliation(s)
- Hao-xin Zhou
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Bing Han
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Li-Min Hou
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ting-Ting An
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Guang Jia
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zhuo-Xin Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yong Ma
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yi-Nan Zhou
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Shuang-Jia Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yong-Wei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xue-Jun Sun
- Department of Diving Medicine, Second Military Medical University, Shanghai, People’s Republic of China
| | - Shang-Ha Pan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- * E-mail:
| |
Collapse
|
20
|
Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015; 89:209-26. [PMID: 26315960 DOI: 10.1016/j.neuint.2015.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/08/2015] [Accepted: 08/15/2015] [Indexed: 02/08/2023]
Abstract
Oxidative stress has for long been linked to the neuronal cell death in many neurodegenerative conditions. Conventional antioxidant therapies have been less effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Nanoparticle antioxidants constitute a new wave of antioxidant therapies for prevention and treatment of diseases involving oxidative stress. It is believed that nanoparticle antioxidants have strong and persistent interactions with biomolecules and would be more effective against free radical induced damage. Nanoantioxidants include inorganic nanoparticles possessing intrinsic antioxidant properties, nanoparticles functionalized with antioxidants or antioxidant enzymes to function as an antioxidant delivery system. Nanoparticles containing antioxidants have shown promise as high-performance therapeutic nanomedicine in attenuating oxidative stress with potential applications in treating and preventing neurodegenerative conditions. However, to realize the full potential of nanoantioxidants, negative aspects associated with the use of nanoparticles need to be overcome to validate their long term applications.
Collapse
|
21
|
Khan S, Kumar A, Adhikari JS, Rizvi MA, Chaudhury NK. Protective effect of sesamol against60Co γ-ray-induced hematopoietic and gastrointestinal injury in C57BL/6 male mice. Free Radic Res 2015; 49:1344-61. [DOI: 10.3109/10715762.2015.1071485] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Singh N, Khullar N, Kakkar V, Kaur IP. Sesamol loaded solid lipid nanoparticles: a promising intervention for control of carbon tetrachloride induced hepatotoxicity. Altern Ther Health Med 2015; 15:142. [PMID: 25935744 PMCID: PMC4456697 DOI: 10.1186/s12906-015-0655-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/17/2015] [Indexed: 02/08/2023]
Abstract
Background Sesamol, a component of sesame seed oil, exhibited significant antioxidant activity in a battery of in vitro and ex vivo tests including lipid peroxidation induced in rat liver homogenates. Latter established its potential for hepatoprotection. However, limited oral bioavailability, fast elimination (as conjugates) and tendency towards gastric irritation/toxicity (especially forestomach of rodents) may limit its usefulness. Presently, we packaged sesamol into solid lipid nanoparticles (S-SLNs) to enhance its biopharmaceutical performance and compared the efficacy with that of free sesamol and silymarin, a well established hepatoprotectant, against carbon tetrachloride induced hepatic injury in rats, post induction. A self recovery group in which no treatment was given was used to observe the self-healing capacity of liver. Methods S-SLNs prepared by microemulsification method were administered to rats post-treatment with CCl4 (1 ml/kg body weight (BW) twice weekly for 2 weeks, followed by 1.5 ml/kg BW twice weekly for the subsequent 2 weeks). Liver damage and recovery on treatment was assessed in terms of histopathology, serum injury markers (alanine aminotransferase, aspartate aminotransferase), oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and a pro-inflammatory response marker (tumor necrosis factor alpha). Result S-SLNs (120.30 nm) at a dose of 8 mg/kg BW showed significantly better hepatoprotection than corresponding dose of free sesamol (FS; p < 0.001). Effects achieved with S-SLNs were comparable with silymarin (SILY), administered at a dose of 25 mg/kg BW. Self recovery group confirmed absence of regenerative capacity of hepatic tissue, post injury. Conclusion Use of lipidic nanocarrier system for sesamol improved its efficiency to control hepatic injury. Enhanced effect is probably due to: a) improved oral bioavailability, b) controlled and prolonged effect of entrapped sesamol and iii) reduction in irritation and toxicity, if any, upon oral administration. S-SLNs may be considered as a therapeutic option for hepatic ailments as effectiveness post induction of liver injury, is demonstrated presently.
Collapse
|
23
|
John J, Nampoothiri M, Kumar N, Mudgal J, Nampurath GK, Chamallamudi MR. Sesamol, a lipid lowering agent, ameliorates aluminium chloride induced behavioral and biochemical alterations in rats. Pharmacogn Mag 2015; 11:327-36. [PMID: 25829772 PMCID: PMC4378131 DOI: 10.4103/0973-1296.153086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/10/2014] [Accepted: 03/12/2015] [Indexed: 01/01/2023] Open
Abstract
Background: Sesame oil from the seeds of Sesamum indicum Linn. (Pedaliaceae) has been used traditionally in Indian medical practice of Ayurveda in the treatment of central nervous system disorders and insomnia. A few published reports favor the anti-dementia effect of sesamol (SML), an active constituent of sesame oil. Objective: Thus, the present study was aimed to explore the anti-dementia effect and possible mechanism (s) of SML in aluminium chloride (AlCl3)-induced cognitive dysfunction model in rodents with special emphasis on memory centers viz., hippocampus and frontal cortex. Methods: Male Wistar rats were exposed to AlCl3 (175 mg/kg p.o.) for 60 days. SML (10 and 20 mg/kg) and rivastigmine (1 mg/kg) were administered orally 45 min before administration of AlCl3 for 60 days. Spatial memory was assessed using Morris water maze test. After 60 days of treatment animals were sacrificed, hippocampus and frontal cortex were collected and analyzed for acetylcholinesterase (AChE) activity, tumor necrosis factor (TNF-α) level, antioxidant enzymes (Glutathione, catalase), lipid peroxidation, and nitrite level. The circulating triglycerides, total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels were also analyzed. Results: SML significantly prevented behavioral impairments in aluminium-exposed rats. Treatment with SML reversed the increased cholesterol, triglycerides and LDL while raised the HDL levels. SML significantly corrected the effect of AlCl3 on AChE activity. Further, SML reversed the elevated nitric oxide, TNF-α and reduced antioxidant enzymes in hippocampus and frontal cortex. Conclusion: The present study suggests the neuro-protection by SML against cognitive dysfunction induced by environmental toxin (AlCl3) in hippocampus and frontal cortex.
Collapse
Affiliation(s)
- Jessy John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Gopalan Kutty Nampurath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
24
|
Liu H, Wu D, Liu Y, Zhang H, Ma T, Aidaerhan A, Wang J, Sun B. Application of an optosensing chip based on molecularly imprinted polymer coated quantum dots for the highly selective and sensitive determination of sesamol in sesame oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2545-2549. [PMID: 25706413 DOI: 10.1021/jf505790c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel optosensing chip was constructed by anchoring the fluorescence sensing material layer based on molecularly imprinted polymer (MIP) coated CdSe/ZnS quantum dots (QDs) on a chip for highly selective and sensitive optosensing of sesamol in sesame oil. Many factors that affected the performance of the optosensing chip based on MIP-coated QDs are discussed. Under optimized conditions, the relative fluorescence intensity of the optosensing chip decreased linearly (r(2) > 0.99) with increasing sesamol concentration in the range from 2.4 × 10(-6) to 1.2 × 10(-3) mol L(-1) with a detection limit of 7.2 × 10(-8) mol L(-1). The relative standard deviation for five replicate detections of 4.8 × 10(-4) mol L(-1) sesamol was 2.2%. Recoveries of 94.8-102.3% were achieved by direct detection when the optosensing chip was used for the selective detection of sesamol in sesame oil. Practically, the optosensing approach showed high sensitivity, good selectivity, and excellent reproducibility for the detection of sesamol in real oil samples.
Collapse
Affiliation(s)
- Huilin Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU) , 11 Fucheng Road, Beijing 100048, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in ICV-STZ-induced cognitive deficits: behavioral and biochemical evidence. Eur J Pharmacol 2014; 747:132-40. [PMID: 25449035 DOI: 10.1016/j.ejphar.2014.11.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 01/08/2023]
Abstract
Neuroinflammation is a prominent feature of Alzheimer disease (AD) and other chronic neurodegenerative disorders. Intracerebroventricular (ICV) streptozotocin (STZ) induced-cognitive impairment has been widely used as an experimental paradigm of Alzheimer׳s disease. Sesamol is a potent inhibitor of cytokine production as well as an antioxidant. The present study was designed to evaluate the effectiveness of sesamol in ICV-STZ-induced cognitive deficits in rats by incorporating it into solid lipid nanoparticles (SLNs). ICV-STZ administration produced significant cognitive deficits as assessed by both Morris water maze and elevated plus maze task which is accompanied by significantly enhanced nitrodative stress, altered acetylcholinesterase in rat brain along with significantly increased serum TNF-α levels. Chronic treatment with sesamol and sesamol loaded SLNs dose dependently restored cognitive deficits in ICV-STZ rats along with mitigation of nitrodative stress and cytokine release. Effectiveness of SLNs to deliver sesamol to the brain was shown by a significantly better alleviation of the oxidative stress parameters. Our findings demonstrate that loading of sesamol in SLNs is an effective strategy to mitigate ICV-STZ-induced neuronal dysfunction and memory deficits.
Collapse
|
26
|
Choudhary S, Kumar P, Malik J. Plants and phytochemicals for Huntington's disease. Pharmacogn Rev 2014; 7:81-91. [PMID: 24347915 PMCID: PMC3841999 DOI: 10.4103/0973-7847.120505] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/05/2013] [Accepted: 10/25/2013] [Indexed: 01/24/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive motor dysfunction, including chorea and dystonia, emotional disturbances, memory, and weight loss. The medium spiny neurons of striatum and cortex are mainly effected in HD. Various hypotheses, including molecular genetics, oxidative stress, excitotoxicity, metabolic dysfunction, and mitochondrial impairment have been proposed to explain the pathogenesis of neuronal dysfunction and cell death. Despite no treatment is available to fully stop the progression of the disease, there are treatments available to help control the chorea. The present review deals with brief pathophysiology of the disease, plants and phytochemicals that have shown beneficial effects against HD like symptoms. The literature for the current review was collected using various databases such as Science direct, Pubmed, Scopus, Sci-finder, Google Scholar, and Cochrane database with a defined search strategy.
Collapse
Affiliation(s)
- Sunayna Choudhary
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Jai Malik
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
27
|
Kondamudi PK, Kovelamudi H, Mathew G, Nayak PG, Rao CM, Shenoy RR. Modulatory effects of sesamol in dinitrochlorobenzene-induced inflammatory bowel disorder in albino rats. Pharmacol Rep 2014; 65:658-65. [PMID: 23950588 DOI: 10.1016/s1734-1140(13)71043-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/09/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory condition of gastrointestinal tract of immune, genetic and environmental origin. In the present study, we examined the effect of sesamol (SES), the main anti-oxidative constituent of Sesamum indicum (sesame seed) Linn. in the dinitrochlorobenzene (DNCB)-induced model for IBD in rats. METHODS The groups were divided into normal control, DNCB control, SES and sulfasalazine (SS). On day 24, the rats were killed, colon removed and the macroscopic, biochemical and histopathological evaluations were performed. RESULTS The levels of MPO, TBARS and nitrite increased significantly (p < 0.05) in the DNCB group, whereas reduced significantly in the SES, SS treated groups. Serum nitrite levels were found to be insignificant between the different groups. IL-6 and TNF-α levels were significantly high in the DNCB group. CONCLUSIONS We conclude the mucosal protective effect of SES on colon due to its potent antioxidant actions. Further investigation is required in a chronic model of different rodent strain for its role involved in the cytokine pathway.
Collapse
Affiliation(s)
- Phani Krishna Kondamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576104, Karnataka, India
| | | | | | | | | | | |
Collapse
|
28
|
Investigation of sesamol on myeloperoxidase and colon morphology in acetic acid-induced inflammatory bowel disorder in albino rats. ScientificWorldJournal 2014; 2014:802701. [PMID: 24616646 PMCID: PMC3926374 DOI: 10.1155/2014/802701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/20/2013] [Indexed: 12/14/2022] Open
Abstract
Background. Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of gastrointestinal tract of immune, genetic, and environmental origin. In the present study, we examined the effects of sesamol (SES), which is the active constituent of sesame oil in the acetic acid (AA) induced model for IBD in rats. Methods. The groups were divided into normal control, AA control, SES, and sulfasalazine (SS). On day 7, the rats were killed, colon was removed, and the macroscopic, biochemical, and histopathological evaluations were performed. Results. The levels of MPO, TBARS, and tissue nitrite increased significantly (P < 0.05) in the AA group whereas they reduced significantly in the SES and SS treated groups. Serum nitrite levels were found to be insignificant between the different groups. Conclusions. The mucosal protective effects of sesamol in IBD are due to its potential to reduce the myeloperoxidase and nitrite content.
Collapse
|
29
|
Sonia Angeline M, Sarkar A, Anand K, Ambasta R, Kumar P. Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience 2013; 254:379-94. [DOI: 10.1016/j.neuroscience.2013.09.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 01/05/2023]
|
30
|
Periasamy S, Chien SP, Chang PC, Hsu DZ, Liu MY. Sesame oil mitigates nutritional steatohepatitis via attenuation of oxidative stress and inflammation: a tale of two-hit hypothesis. J Nutr Biochem 2013; 25:232-40. [PMID: 24445049 DOI: 10.1016/j.jnutbio.2013.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease, the most common chronic liver disorder worldwide, comprises conditions from steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. NASH is associated with an increased risk of hepatocellular carcinoma. Sesame oil, a healthful food, increases resistance to oxidative stress, inflammation and protects against multiple organ injury in various animal models. We investigated the protective effect of sesame oil against nutritional steatohepatitis in mice. C57BL/6 J mice were fed with methionine-choline deficient (MCD) diet for 28 days to induce NASH. Sesame oil (1 and 2 ml/kg) was treated from 22nd to 28th day. Body weight, steatosis, triglycerides, aspartate transaminase, alanine transaminase, nitric oxide, malondialdehyde, tumor necrosis factor-α, interlukin-6, interleukin-1β, leptin, and transforming growth factor-β1 (TGF-β1) were assessed after 28 days. All tested parameters were higher in MCD-fed mice than in normal control mice. Mice fed with MCD diet for 4 weeks showed severe liver injury with steatosis, oxidative stress, and necrotic inflammation. In sesame-oil-treated mice, all tested parameters were significantly attenuated compared with MCD-alone mice. Sesame oil inhibited oxidative stress, inflammatory cytokines, leptin, and TGF-β1 in MCD-fed mice. In addition, histological analysis showed that sesame oil provided significant protection against fibrotic collagen. We conclude that sesame oil protects against steatohepatitic fibrosis by decreasing oxidative stress, inflammatory cytokines, leptin and TGF-β1.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health, National Cheng Kung University, College of Medicine, Tainan 70428, Taiwan
| | - Se-Ping Chien
- Department of Living Science, Tainan University of Technology, Tainan 71002, Taiwan
| | - Po-Cheng Chang
- Department of Environmental and Occupational Health, National Cheng Kung University, College of Medicine, Tainan 70428, Taiwan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, National Cheng Kung University, College of Medicine, Tainan 70428, Taiwan.
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, National Cheng Kung University, College of Medicine, Tainan 70428, Taiwan.
| |
Collapse
|
31
|
Protective effect of 3,4-methylenedioxyphenol (sesamol) on stress-related mucosal disease in rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:481827. [PMID: 23984371 PMCID: PMC3741923 DOI: 10.1155/2013/481827] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 12/13/2022]
Abstract
Stress-related mucosal disease (SRMD) causes considerable morbidity and mortality in critically ill patients. 3,4-Methylenedioxyphenol (sesamol) has been reported to have potent antioxidative and anti-inflammatory properties. The aim of this study was to investigate the effect of sesamol on water immersion restraint- (WIR-) induced SRMD in rats. Rat gastric ulcer and hemorrhage were induced by WIR. Rats were pretreated orally with various doses of sesamol (0.1, 0.3, and 1 mg/kg, resp.) 30 min before WIR. Gastric mucosal ulceration, hemoglobin, lipid peroxidation, mucus secretion, proinflammatory cytokines, and nuclear factor (NF)-κB levels were determined 4 h after WIR. In addition, the infiltration of neutrophil and macrophage into gastric mucosa was also determined after WIR. Water immersion restraint increased gastric mucosal ulcer and hemorrhage, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels but failed to affect mucosal lipid peroxidation and mucus secretion compared with non-WIR. Sesamol significantly decreased gastric ulceration and hemorrhage and inhibited mucosal TNF-α, IL-1β, and IL-6 production and NF-κB activity in WIR-treated rats. In addition, increased myeloperoxidase and CD68 levels in gastric mucosa were found in WIR-treated rats compared to non-WIR rats. Sesamol did not affect myeloperoxidase but decreased CD68 levels in mucosa in WIR-treated rats. Sesamol may protect against SRMD by inhibiting gastric mucosal proinflammatory cytokines in rats.
Collapse
|
32
|
Chang TC, Uen YH, Chou CH, Sheu JR, Chou DS. The role of cyclooxygenase-derived oxidative stress in surgically induced lymphedema in a mouse tail model. PHARMACEUTICAL BIOLOGY 2013; 51:573-580. [PMID: 23373707 DOI: 10.3109/13880209.2012.749923] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Oxidative stress may contribute to lymphedema and subsequent tissue damage. However, the causal role of oxidative stress in lymphedema remains unclear. OBJECTIVE We attempted to detect and identify the free radicals formed in lymphedema fluid and assessed the protective mechanisms and effects of specific enzyme inhibitors and natural antioxidants. MATERIALS AND METHODS To study the level of postsurgical oxidative stress with lymphedema in a mouse tail model, we used an electron spin resonance (ESR) method and an ascorbyl radical's ESR spectrum as an oxidative stress biomarker. The drug-treatment group received an i.p. injection with indomethacin (2 mg/kg), baicalein (15 mg/kg), MK-886 (3 mg/kg), zileuton (6.25 mg/kg), diphenyleneiodonium (DPI; 1 mg/kg), sulforaphane (30 mg/kg), oryzanol (30 mg/kg) or sesamol (30 mg/kg) once daily for 14 d from the day of operation. All animals were sacrificed on day 14. RESULTS Administration of indomethacin, sulforaphane, oryzanol and sesamol significantly suppressed both the tail volume (56.9%, 77.8%, 72.2% and 38.1% inhibition, respectively, p < 0.01) and ascorbyl radical signals (31.4%, 54.5%, 79.3% and 57.1% inhibition, respectively, p < 0.01), compared with the control mice. No significant differences were found between any of the baicalein, MK-886, or zileuton groups compared with the control. DPI suppressed the tail volume (25.9% inhibition, p < 0.01) but not the ascorbyl radical signals. CONCLUSION This study showed that COX-derived oxidative stress plays a major role in the pathological mechanisms of surgically induced lymphedema. Indomethacin, sulforaphane, oryzanol and sesamol exhibit potent protective properties against surgically induced lymphedema.
Collapse
Affiliation(s)
- Ting-Chen Chang
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
33
|
Nayak PG, Paul P, Bansal P, Kutty NG, Pai KSR. Sesamol prevents doxorubicin-induced oxidative damage and toxicity on H9c2 cardiomyoblasts. J Pharm Pharmacol 2013; 65:1083-93. [PMID: 23738736 DOI: 10.1111/jphp.12073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/18/2013] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Exposure to toxicants like doxorubicin (Dox) damages cellular components by generating reactive oxygen species (ROS). This can be attenuated using free radical scavengers and/or antioxidants.
Methods
Dox-exposed cardiac myoblasts (H9c2 cells) were treated with sesamol (12.5, 25 and 50 μm), a natural phenolic compound. Intracellular ROS inhibition, cell viability and analysis of antioxidant and biochemical markers such as superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, reduced/oxidized glutathione, lipid peroxidation and protein carbonyl content were performed. The effect of sesamol treatment on the cytotoxic and genotoxic parameters was studied by monitoring the signalling proteins involved in the apoptotic pathway.
Key findings
Dox triggered cellular and genetic damage by increasing levels of intracellular ROS, thereby decreasing cell viability and increasing apoptosis. Sesamol reversed the cytotoxic and genotoxic effects of Dox. In addition, sesamol attenuated the pro-apoptotic proteins and improved the anti-apoptotic status. Sesamol pre-treatment also alleviated the disturbed antioxidant milieu by preventing ROS production and improving endogenous enzyme levels.
Conclusions
Among the different doses tested, 50 μm of sesamol showed maximum protection against Dox-induced oxidative damage. This reflects the significance of sesamol in ameliorating the deleterious effects associated with cancer chemotherapy.
Collapse
Affiliation(s)
- Pawan G Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Piya Paul
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Punit Bansal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Nampurath Gopalan Kutty
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | | |
Collapse
|
34
|
Hsu DZ, Chu PY, Li YH, Chandrasekaran VRM, Liu MY. Role of flavin-containing-monooxygenase-dependent neutrophil activation in thioacetamide-induced hepatic inflammation in rats. Toxicology 2012; 298:52-8. [DOI: 10.1016/j.tox.2012.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/26/2012] [Accepted: 04/28/2012] [Indexed: 01/02/2023]
|
35
|
Karatzi K, Stamatelopoulos K, Lykka M, Mantzouratou P, Skalidi S, Manios E, Georgiopoulos G, Zakopoulos N, Papamichael C, Sidossis LS. Acute and long-term hemodynamic effects of sesame oil consumption in hypertensive men. J Clin Hypertens (Greenwich) 2012; 14:630-6. [PMID: 22947362 DOI: 10.1111/j.1751-7176.2012.00649.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The possible effects of sesame oil on hemodynamics are unknown. The aim of the study was to investigate the acute and long-term effects of sesame oil on hemodynamic responses in hypertensive men. The authors enrolled 30 hypertensive men in a two-phase study. In the first phase, patients consumed 35 g of either sesame oil or control oil. Central and peripheral blood pressure, pulse wave velocity, augmentation index (AI), C-reactive protein, tumor necrosis factor α, malonydealdehyde, and total antioxidant capacity (TAC) were assessed at fast and 2 hours postprandially. In the second phase, patients consumed 35 g of either sesame oil or control oil daily for 2 months. The above-mentioned parameters were assessed before and following 15, 30, and 60 days of oil consumption. Sesame oil decreased central and peripheral diastolic pressures 1 hour postprandially (P=.006). Fifteen days of sesame oil intake decreased peripheral systolic blood pressure (P=.016) and heart rate-corrected AI75 (P=.017) and increased TAC (P=.007). This is the first study to demonstrate a favorable acute and long-term effect of sesame oil on hemodynamics in hypertensive men. Further research is warranted to establish the potential protective role of sesame oil.
Collapse
Affiliation(s)
- Kalliopi Karatzi
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Periasamy S, Hsu DZ, Chen SY, Yang SS, Chandrasekaran VRM, Liu MY. Therapeutic sesamol attenuates monocrotaline-induced sinusoidal obstruction syndrome in rats by inhibiting matrix metalloproteinase-9. Cell Biochem Biophys 2012; 61:327-36. [PMID: 21681587 DOI: 10.1007/s12013-011-9215-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We investigated the therapeutic effect of sesamol against monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats. Male Sprague-Dawley rats were gavaged with a single dose of monocrotaline (90 mg/kg) to induce SOS. Sesamol (5, 10, 20, and 40 mg/kg) was subcutaneously injected 24 h after monocrotaline treatment. Control rats were given saline only. Aspartate transaminase, alanine transaminase, mast cells, CD 68(+) Kupffer cells, neutrophils, myeloperoxidase, matrix metalloproteinase-9 (MMP-9), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), laminin, and collagen were assessed 48 h after monocrotaline treatment. All tested parameters, except for TIMP-1, laminin, and collagen, were significantly higher in monocrotaline-treated rats than in control rats, and, except for TIMP-1, laminin, and collagen, significantly lower in sesamol-treated rats than in monocrotaline-treated rats. In addition, liver pathology revealed that sesamol offered significant protection against SOS. We conclude that a single dose of sesamol therapeutically attenuated SOS by decreasing the recruitment of inflammatory cells, downregulating MMP-9, and upregulating TIMP-1 expression.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Chu PY, Srinivasan P, Deng JF, Liu MY. Sesamol attenuates oxidative stress–mediated experimental acute pancreatitis in rats. Hum Exp Toxicol 2011; 31:397-404. [DOI: 10.1177/0960327111426583] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute pancreatitis is a potentially fatal disease with no known cure. The initial events in acute pancreatitis may occur within the acinar cells. We examined the effect of sesamol on (i) a cerulein-induced pancreatic acinar cancer cell line, AR42J, and (ii) cerulein-induced experimental acute pancreatitis in rats. Sesamol inhibited amylase activity and increased cell survival. It also inhibited medium lipid peroxidation and 8-hydroxydeoxyguanosine in AR42J cells compared with the cerulein-alone groups. In addition, in cerulein-treated rats, sesamol inhibited serum amylase and lipase levels, pancreatic edema, and lipid peroxidation, but it increased pancreatic glutathione and nitric oxide levels. Thus, we hypothesize that sesamol attenuates cerulein-induced experimental acute pancreatitis by inhibiting the pancreatic acinar cell death associated with oxidative stress in rats.
Collapse
Affiliation(s)
- P-Y Chu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - P Srinivasan
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - J-F Deng
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Pharmacy, Master Program of Drug Safety, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - M-Y Liu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| |
Collapse
|
38
|
Mishra K, Srivastava PS, Chaudhury NK. Sesamol as a Potential Radioprotective Agent:In VitroStudies. Radiat Res 2011; 176:613-23. [DOI: 10.1667/rr2661.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Li YH, Chien SP, Chu PY, Liu MY. Prophylactic and Therapeutic Effects of a Subcutaneous Injection of Sesame Oil Against Iron-Induced Acute Renal Injury in Mice. JPEN J Parenter Enteral Nutr 2011; 36:344-8. [DOI: 10.1177/0148607111415530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ya-Hui Li
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Se-Ping Chien
- Institute of Living Sciences, Tainan University of Technology, Tainan, Taiwan
| | - Pei-Yi Chu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
- Sustainable Environment Research Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
40
|
Misra S, Tiwari V, Kuhad A, Chopra K. Modulation of nitrergic pathway by sesamol prevents cognitive deficits and associated biochemical alterations in intracerebroventricular streptozotocin administered rats. Eur J Pharmacol 2011; 659:177-86. [DOI: 10.1016/j.ejphar.2011.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 02/25/2011] [Accepted: 03/21/2011] [Indexed: 11/26/2022]
|
41
|
Lu YC, Jayakumar T, Duann YF, Chou YC, Hsieh CY, Yu SY, Sheu JR, Hsiao G. Chondroprotective role of sesamol by inhibiting MMPs expression via retaining NF-κB signaling in activated SW1353 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4969-4978. [PMID: 21428299 DOI: 10.1021/jf1046738] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Overexpression of matrix metalloproteinases (MMPs) is a major pathological factor causing cartilage destruction in osteoarthritis (OA). This study aimed to investigate the effects and mechanisms of sesamol on expression of MMPs in activated chondrosarcoma cells. Sesamol significantly attenuated TNF-α- and IL-1β-induced gelatinolysis and expression of MMP-9 in a concentration-dependent manner in SW1353 cells. Additionally, both MMP-1 and -13 stimulated by PMA were inhibited by sesamol. On the other hand, the NF-κB signaling activation through IκB-α degradation was restored by sesamol under TNF-α or PMA stimulation. Furthermore, this bioactive compound exerted the reduction on phosphorylation of ERK1/2 or p38 MAPKs after either PMA or IL-1β stimulation. This study also evaluated whether sesamol down-regulates MMP expression in the joint cartilage of monosodium iodoacetate (MIA)-induced OA in rats. Sesamol prevented the expression of MMP-1 and -9 in the cartilage of MIA-induced OA in rats. The results of this study demonstrate that sesamol inhibits cytokine- or PMA-induced MMPs expression through the signal pathways of either NF-κB or ERK/p38 MAPKs down-regulation. This study also showed that sesamol attenuates destructive factor expression in vivo, providing a potential strategy for the chondroprotective therapy in OA.
Collapse
Affiliation(s)
- Yung-Chang Lu
- Department of Orthopaedic Surgery, Mackay Memorial Hospital, Department of Leisure Sports and Health Management, College of Humanities and Sciences, St. John's University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kumar B, Kuhad A, Chopra K. Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: behavioral and biochemical evidences. Psychopharmacology (Berl) 2011; 214:819-28. [PMID: 21103863 DOI: 10.1007/s00213-010-2094-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/01/2010] [Indexed: 11/24/2022]
Abstract
RATIONALE A complex relationship exists among stressful situations, body's reaction to stress, and the onset of clinical depression. Chronic unpredictable stressors can produce a situation similar to clinical depression, and such animal models can be used for the preclinical evaluation of antidepressants. Many findings have shown that the levels of proinflammatory cytokines (e.g., TNF-α) and oxidative stress (increased lipid peroxidation, decreased glutathione levels, and endogenous antioxidant enzyme activities) are increased in patients with depression. Sesamol, a phenolic derivative with a methylenedioxy group, is a potent inhibitor of cytokine production as well as an antioxidant. OBJECTIVES The present study was designed to investigate the effect of sesamol on unpredictable chronic stress-induced behavioral and biochemical alterations in mice. METHODS Animals were subjected to different stress paradigms daily for a period of 21 days to induce depressive-like behavior. The sucrose preference, immobility period, locomotor activity, memory acquisition, and retention were evaluated. RESULTS Chronic treatment with sesamol significantly reversed the unpredictable chronic stress-induced behavioral (increased immobility period, reduced sucrose preference), biochemical (increased lipid peroxidation and nitrite levels; decreased glutathione levels, superoxide dismutase and catalase activities), and inflammation surge (serum TNF-α) in stressed mice. CONCLUSION The study revealed that sesamol exerted antidepressant-like effects in behavioral despair paradigm in chronically stressed mice, specifically by modulating central oxidative-nitrosative stress and inflammation.
Collapse
Affiliation(s)
- Baldeep Kumar
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, 160014, India
| | | | | |
Collapse
|
43
|
Sesame oil prevents acute kidney injury induced by the synergistic action of aminoglycoside and iodinated contrast in rats. Antimicrob Agents Chemother 2011; 55:2532-6. [PMID: 21402854 DOI: 10.1128/aac.01597-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the study was to investigate the effect of sesame oil on acute kidney injury induced by the synergistic action of aminoglycoside and iodinated contrast in rats. Acute kidney injury was induced by a 5-day course of daily gentamicin injections (100 mg/kg of body weight, subcutaneously) and then iodinated contrast (4 ml/kg, intravenously) in male specific-pathogen-free Sprague-Dawley rats. Sesame oil (0.5 ml/kg, orally) was given 1 h before iodinated contrast. Renal function and oxidative stress were assessed 6 h after iodinated contrast injection. Renal function was evaluated by measuring serum blood urea nitrogen and creatinine levels. Renal oxidative stress was assessed by determining renal lipid peroxidation, myeloperoxidase, hydroxyl radical, superoxide anion, nitrite/nitrate, and inducible nitric oxide synthase levels. Sesame oil significantly prevented the rise of serum blood urea nitrogen and creatinine levels. Furthermore, there was a parallel inhibition of the rise in levels of expression of renal lipid peroxidation, myeloperoxidase, hydroxyl radicals, superoxide anion, nitrite/nitrate, and inducible nitric oxide synthase in rats with gentamicin-plus-iodinated contrast-induced acute kidney injury. We conclude that sesame oil may attenuate aminoglycoside-plus-iodinated contrast-induced acute kidney injury by inhibiting renal oxidative stress in rats.
Collapse
|
44
|
Chopra K, Tiwari V, Arora V, Kuhad A. Sesamol Suppresses Neuro-Inflammatory Cascade in Experimental Model of Diabetic Neuropathy. THE JOURNAL OF PAIN 2010; 11:950-7. [DOI: 10.1016/j.jpain.2010.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 12/16/2009] [Accepted: 01/01/2010] [Indexed: 01/19/2023]
|
45
|
Protective effect of sesamol on the pulmonary inflammatory response and lung injury in endotoxemic rats. Food Chem Toxicol 2010; 48:1821-6. [PMID: 20398721 DOI: 10.1016/j.fct.2010.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 03/27/2010] [Accepted: 04/11/2010] [Indexed: 01/19/2023]
Abstract
We investigated the effect of sesamol on systemic lipopolysaccharide (LPS)-induced lung inflammation in rats. Sesamol decreased lung edema and injury, significantly decreased LPS-induced cell counts, protein concentration, tumor necrosis factor (TNF)-alpha, and nitrite levels in bronchoalveolar lavage fluid, and decreased the TNF-alpha, nitrite, and inducible nitric oxide synthase protein expression in lung tissue. Further, sesamol significantly inhibited LPS-induced TNF-alpha, nitrite, inducible nitric oxide synthase expression, and nuclear factor-kappaB activation levels in primary alveolar macrophages. We hypothesize that sesamol attenuates systemic LPS-induced lung inflammation by inhibiting the alveolar macrophage inflammatory response in rats.
Collapse
|
46
|
Abstract
Gentamicin, an aminoglycoside antibiotic, is widely used in the treatment of Gram-negative infections; however, dose-limiting nephrotoxicity restricts its optimal use. We investigated the effect of a daily sesame oil supplement on oxidative-stress-associated renal injury induced by a single daily dose of gentamicin in rats. Renal injury was induced by a single subcutaneous daily dose of gentamicin (100 mg kg(-1) d(-1) for 7 days), and then the effects of oral sesame oil (0.25, 0.5, and 1 mL kg(-1) d(-1) for 7 days) on renal injury, oxidative stress, hydroxyl radical, superoxide anion, and NO were assessed after treatment. Sesame oil inhibited gentamicin-induced renal injury, lipid peroxidation, hydroxyl radical, and superoxide anion, as well as NO production. In addition, sesame oil inhibited xanthine oxidase activity and inducible NOS expression in gentamicin-challenged rats. We hypothesize that a daily sesame oil supplement attenuates oxidative-stress-associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats.
Collapse
|
47
|
Is damage control orthopedics essential for the management of bilateral femoral fractures associated or complicated with shock? An animal study. ACTA ACUST UNITED AC 2010; 67:1402-11. [PMID: 20009694 DOI: 10.1097/ta.0b013e3181a7462d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The maximum score of a single anatomic system, the Injury Severity Score, may not reflect the overall damage inflicted by bilateral femoral fractures and justify the strategy of damage control orthopedics (DCO). It is necessary to investigate effects of various therapeutic procedures on such fractures with or without shock to facilitate correct decision making on DCO. METHODS A model of bilateral femoral fractures was made in 36 of 48 male New Zealand White rabbits. A model of bilateral femoral shaft fractures associated with shock was made. After resuscitation, a reamed intramedullary nailing fixation was performed in the first group (IM group), and an external fixation device applied in the second group (EF group), and the fractures in the third group (control group) were supported with splints only. They were divided into four groups: shock with IM nailing (shock-IM), shock with external fixation (shock-EF), shock with conservative method (shock-Cons), and intramedullary nailing without shock (nonshock-IM). Vital signs and inflammatory reactions were recorded. Thirty-six hours after the therapeutic procedures in four groups, the animals were killed for histologic evaluation. RESULTS The changes of vital signs were most significant in shock-IM group (p < 0.05). The exaggerated levels of interleukin-6, Interleukin-10, and tumor necrosis factor alpha concentrations demonstrated a significant difference between all the groups-shock-IM and other groups (p < 0.05). As to histologic appearances, the statistical difference varies from organ to organ. There is highly significant difference when the IM group is compared with the other two groups as far as lungs are concerned. As to the liver, there is only significant difference between the IM group and the control group. In terms of kidney and heart, there is no significant difference cross the groups. As to histologic appearances, there is highly significant difference in lungs between shock-IM group and other three groups. There is significant difference in liver between the shock-IM group and the shock-Cons group (p < 0.05). Kidneys and heart were less affected cross the groups. CONCLUSIONS In this study, an early reamed intramedullary nailing fixation procedure resulted in more adverse effects on system stress, inflammatory response, and multiple organs. The injuries also cause histologic damages to lungs and liver. Therefore, early reamed intramedullary nailing fixation may pose a potential risk of developing complications and adopting the DCO strategy may be more preferable. Shock and IM combined cause most severe damages, followed by IM without shock, shock plus EF, and shock plus conservative procedure in that order. If IM must be used for some reasons, it is desirable be delayed until shock has been fully controlled and vasculorespiratory stability restored.
Collapse
|
48
|
Kumar P, Kalonia H, Kumar A. Protective Effect of Sesamol against 3-Nitropropionic Acid-Induced Cognitive Dysfunction and Altered Glutathione Redox Balance in Rats. Basic Clin Pharmacol Toxicol 2010; 107:577-82. [DOI: 10.1111/j.1742-7843.2010.00537.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Chu PY, Hsu DZ, Hsu PY, Liu MY. Sesamol down-regulates the lipopolysaccharide-induced inflammatory response by inhibiting nuclear factor-kappa B activation. Innate Immun 2009; 16:333-9. [PMID: 19939906 DOI: 10.1177/1753425909351880] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We examined the effects of sesamol on the lipopolysaccharide (LPS)-induced inflammatory response. Sesamol inhibited serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β and nitrite production in LPS-treated mice, and inhibited LPS-induced inducible nitric oxide synthase expression in mouse leukocytes. Sesamol also down-regulated TNF-α, IL-1β, and nitrite production as well as inducible nitric oxide synthase expression in LPS-treated RAW 264.7 cells. Further, sesamol inhibited LPS-induced nuclear factor (NF)-κB translocation and inhibitor (I)κB-α phosphorylation in RAW 264.7 cells. By inhibiting TNF-α, IL-1β, and nitrite levels, and interfering with the NFκB pathway, sesamol down-regulated the LPS-initiated inflammatory response.
Collapse
Affiliation(s)
- Pei-Yi Chu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | |
Collapse
|
50
|
Sesame lignan sesamol protects against aspirin-induced gastric mucosal damage in rats. J Funct Foods 2009. [DOI: 10.1016/j.jff.2009.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|