1
|
Zhang LL, Jia BW, Zhuo ZP, Wang HY, Yang Q, Gao W, Ju YN. Ac2-26 Reduced Lung Injury After Cardiopulmonary Bypass via the AKT1/GSK3β/eNOS Pathway. J Surg Res 2024; 301:324-335. [PMID: 39013279 DOI: 10.1016/j.jss.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/16/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Cardiopulmonary bypass (CPB) leads to severe inflammation and lung injury. Our previous study showed that Ac2-26 (an active n-terminal peptide of Annexin A1) can reduce acute lung injury. The aim of this study was to evaluate the effect of Ac2-26 on lung injury in CPB rats. METHODS Forty rats were randomly divided into the sham, CPB, Ac, Ac/serine/threonine kinase 1 (AKT1), and Ac/ glycogen synthase kinase (GSK)-3β groups. The rats in the sham group only received anesthesia, intubation, and cannulation. The rats in the other 4 groups received the standard CPB procedure. The rats in the CPB, Ac, Ac/AKT1, and Ac/GSK3β groups were immediately injected with saline, Ac2-26 (1 mg/kg), Ac2-26 combined with short hairpin RNA (AKT1), or Ac2-26 combined with a GSK3β inhibitor after CPB. At 12 h after the end of CPB, the PaO2/ fraction of inspired oxygen ratio, wet/dry weight ratio and protein content in the bronchoalveolar lavage fluid (BALF) were recorded. The numbers of macrophages and neutrophils in the BALF and blood were determined. Cytokine levels in the blood and BALF were investigated. Lung tissue histology and apoptosis were estimated. The expression of nuclear factor kappa- B, AKT1, GSK3β, endothelial nitric oxide synthase and apoptosis-related proteins was analyzed. The survival of all the rats was recorded. RESULTS Compared with the rats in the sham group, all the parameters examined worsened in the rats that received CPB. Compared with those in the CPB group, Ac2-26 significantly improved pulmonary capillary permeability, reduced cytokine levels, and decreased histological scores and apoptosis. The protective effect of Ac2-26 on lung injury was significantly reversed by AKT1 short hairpin RNA or a GSK3β inhibitor. CONCLUSIONS Ac2-26 significantly reduced lung injury and inflammation after CPB. The protective effect of Ac2-26 mainly depended on the AKT1/GSK3β/endothelial nitric oxide synthase pathway.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bao-Wei Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zi-Peng Zhuo
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong-Ying Wang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qing Yang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Ying-Nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Liu MY, Ju YN, Jia BW, Sun XK, Qiu L, Liu HY, Xu GX, Tai QH, Tan J, Gao W. Inhibition of DNA methylation attenuates lung ischemia-reperfusion injury after lung transplantation. J Int Med Res 2023; 51:3000605231153587. [PMID: 36756846 PMCID: PMC9912569 DOI: 10.1177/03000605231153587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVE DNA methylation plays an important role in inflammation and oxidative stress. This study aimed to investigate the effect of inhibiting DNA methylation on lung ischemia-reperfusion injury (LIRI). METHODS We adopted a completely random design for our study. Thirty-two rats were randomized into the sham, LIRI, azathioprine (AZA), and pluripotin (SC1) groups. The rats in the LIRI, AZA, and SC1 groups received left lung transplantation and intravenous injection of saline, AZA, and SC1, respectively. After 24 hours of reperfusion, histological injury, the arterial oxygen partial pressure to fractional inspired oxygen ratio, the wet/dry weight ratio, protein and cytokine concentrations in lung tissue, and DNA methylation in lung tissue were evaluated. The pulmonary endothelium that underwent hypoxemia and reoxygenation was treated with AZA or SC1. Endothelial apoptosis, chemokines, reactive oxygen species, nuclear factor-κB, and apoptotic proteins in the endothelium were studied. RESULTS Inhibition of DNA methylation by AZA attenuated lung injury, inflammation, and the oxidative stress response, but SC1 aggravated LIRI injury. AZA significantly improved endothelial function, suppressed apoptosis and necrosis, reduced chemokines, and inhibited nuclear factor-κB. CONCLUSIONS Inhibition of DNA methylation ameliorates LIRI and apoptosis and improves pulmonary function via the regulation of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Ming-yuan Liu
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying-nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital
of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bao-wei Jia
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Xi-kun Sun
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Heng-yu Liu
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Guang-xiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Qi-hang Tai
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Tan
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of
Harbin Medical University, Harbin, Heilongjiang, China,Wei Gao, Department of Anesthesiology, The
Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin,
Heilongjiang 150081, China.
| |
Collapse
|
3
|
Zhang L, Tai Q, Xu G, Gao W. Lipoxin A4 attenuates the lung ischaemia reperfusion injury in rats after lung transplantation. Ann Med 2021; 53:1142-1151. [PMID: 34259112 PMCID: PMC8281088 DOI: 10.1080/07853890.2021.1949488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Lung ischaemia reperfusion injury (LIRI) is the major cause of primary lung dysfunction after lung transplantation. Lipoxin A4 inhibits the oxidative stress and inflammation. This study aimed to evaluate the potential protective effect of lipoxin A4 on LIRI in rats. METHODS SD (Sprague-Dawley) rats were randomised into the sham, LIRI and LA4 groups. Rats in the sham group received anaesthesia, thoracotomy and intravenous injection of saline, while those in the LIRI or LA4 group received left lung transplantation and intravenous injection of saline or lipoxin A4, respectively. After 24 h of reperfusion, the PaO2/FiO2 (Partial pressure of O2 to fraction inspiratory O2), wet/dry weight ratios and protein levels in lungs were measured to assess the alveolar capillary permeability. The oxidative stress response and inflammation were examined. The histological and apoptosis analyses of lung tissues were performed via HE staining (Haematoxylin-eosin staining) and TUNEL assay, respectively. The effects of lipoxin A4 on the endothelial viability and tube formation of hypoxaemia and reoxygenation-challenged rat pulmonary microvascular endothelium cells were determined. RESULTS Lipoxin A4 significantly ameliorated the alveolar capillary permeability, reduced the oxidative stress and inflammation in transplanted lungs. The histological injury and apoptosis of lung tissues were also alleviated by lipoxin A4. In vitro lipoxin A4 treatment promoted the endothelial tube formation and improved the endothelial viability. CONCLUSION Lipoxin A4 protects LIRI after lung transplantation in rats, and its therapeutic effect is associated with the properties of anti-inflammation, anti-oxidation, and endothelium protection.Key messages:Lung transplantation is a treatment approach for the patients with lung disease.LIRI is the major cause of postoperative primary lung dysfunction.Lipoxins A4 exhibits strong anti-inflammatory properties.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qihang Tai
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangxiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Yang C, Yang W, He Z, Guo J, Yang X, Wang R, Li H. Kaempferol Alleviates Oxidative Stress and Apoptosis Through Mitochondria-dependent Pathway During Lung Ischemia-Reperfusion Injury. Front Pharmacol 2021; 12:624402. [PMID: 33746757 PMCID: PMC7969663 DOI: 10.3389/fphar.2021.624402] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
In previous study, we reported that kaempferol ameliorates significantly lung ischemia-reperfusion injury (LIRI), and may be achieved by targeting the SIRT 1 pathway. This study further explored the anti-LIRI mechanism of kaempferol. In vitro, the rat alveolar epithelial cells L2 was cultured and subjected to anoxia/reoxygenation (A/R) insult. In vivo, SD rats were operated to establish LIRI model. The related indicators of oxidative stress and apoptosis in L2 cells and rats lung tissues were detected. Results showed that kaempferol pre-treatment significantly increased the cell viability, improved mitochondrial membrane potential, inhibited the opening of mitochondrial permeability transition pores, reduced the levels of oxidative stress and apoptosis, increased the expressions of Bcl-2 and mitochondrial cytochrome c, and decreased the expressions of Bax and cytoplasmic cytochrome c in L2 cells after A/R insult. In vivo, kaempferol improved the pathological injury, inhibited the levels of oxidative stress and apoptosis, increased the expressions of Bcl-2 and mitochondrial cytochrome c, and decreased the expressions of Bax and cytoplasmic cytochrome c in rats lung tissues after I/R. However, the aforementioned effects of kaempferol were significantly attenuated by the SIRT 1 inhibitor EX527 or the PGC-1α inhibitor SR-18292. What's more, SR-18292 has not reversed the effect of kaempferol on increasing the protein activity of SIRT 1. Above results suggest that kaempferol ameliorates LIRI by improving mitochondrial function, reducing oxidative stress and inhibiting cell apoptosis. Its molecular mechanism of action includes the SIRT 1/PGC-1α/mitochondria signaling pathway.
Collapse
Affiliation(s)
- Chunli Yang
- Department of Intensive Care, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Wenkai Yang
- Department of Cardiovascular Surgery, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Zhaohui He
- Department of Intensive Care, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Jinghua Guo
- Department of Intensive Care, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Xiaogang Yang
- Department of Intensive Care, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Rongsheng Wang
- Department of Intensive Care, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Hongbo Li
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Impact of Adenosine A2 Receptor Ligands on BCL2 Expression in Skeletal Muscle Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Adenosine plays the role of regulating cell differentiation, proliferation, and apoptosis in various kinds of cells through the B-cell lymphoma 2 (BCL2) pathway. Objectives: Since anti-apoptotic (BCL2) expression plays a role in controlling apoptosis in some cell lines, this study was designed to investigate whether adenosine analogue, NECA (non-selective adenosine receptors agonist), selective adenosine A2B receptor antagonist, PSB 603, and a selective adenosine A2A receptor agonist, CG21680, affect BCL2-gene expression in the skeletal muscle cells of rats. The purpose of this investigation was to test the hypothesis that CG21680 treatment would significantly intensify BCL2 gene expression in rat skeletal muscle. Methods: Flasks measuring 25 cm2 were employed in culturing the rat L6 skeletal muscle cells. After treating these differential cells, the relative mRNA expression level for the BCL2 gene, at varying conditions of treatment, was measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: From the qRT-PCR analysis results, it was concluded that BCL2 expression was markedly amplified after selective adenosine A2A receptor agonist, CGS21680 (p < 0.01) treatment. More prospective validation for the adenosine receptors’ contribution in modulating apoptosis by NECA was delivered by the outcomes from the combined pre-treatment of the cells with NECA and PSB 603. These outcomes show that when starved skeletal muscle cells are treated with a combination of NECA and 100 nM PSB 603, there was a substantial decrease in comparison to either treatment used on its own. Conclusions: This study’s results showed, for the first time, an increase in BCL2 gene expression within skeletal muscle after CGS21680 treatment. Hence, the prospective escalation in BCL2 protein expression might have a protective role to play against apoptosis and avert damage to the skeletal muscle.
Collapse
|
6
|
Sun H, Zhao X, Tai Q, Xu G, Ju Y, Gao W. Endothelial colony-forming cells reduced the lung injury induced by cardiopulmonary bypass in rats. Stem Cell Res Ther 2020; 11:246. [PMID: 32586365 PMCID: PMC7318475 DOI: 10.1186/s13287-020-01722-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/03/2022] Open
Abstract
Background Cardiopulmonary bypass (CPB) results in severe lung injury via inflammation and endothelial injury. The aim of this study was to evaluate the effect of endothelial colony-forming cells (ECFCs) on lung injury in rats subjected to CPB. Methods Thirty-two rats were randomized into the sham, CPB, CPB/ECFC and CPB/ECFC/L-NIO groups. The rats in the sham group received anaesthesia, and the rats in the other groups received CPB. The rats also received PBS, ECFCs and L-NIO-pre-treated ECFCs. After 24 h of CPB, pulmonary capillary permeability, including the PaO2/FiO2 ratio, protein levels in bronchoalveolar lavage fluid (BALF) and lung tissue wet/dry weight were evaluated. The cell numbers and cytokines in BALF and peripheral blood were tested. Endothelial injury, lung histological injury and apoptosis were assessed. The oxidative stress response and apoptosis-related proteins were analysed. Results After CPB, all the data deteriorated compared with those obtained in the S group (sham vs CPB vs CPB/ECFC vs CPB/ECFC/L-NIO: histological score 1.62 ± 0.51 vs 5.37 ± 0.91 vs 3.37 ± 0.89 vs 4.37 ± 0.74; PaO2/FiO2 389 ± 12 vs 233 ± 36 vs 338 ± 28 vs 287 ± 30; wet/dry weight 3.11 ± 0.32 vs 6.71 ± 0.73 vs 4.66 ± 0.55 vs 5.52 ± 0.57; protein levels in BALF: 134 ± 22 vs 442 ± 99 vs 225 ± 41 vs 337 ± 53, all P < 0.05). Compared to the CPB treatment, ECFCs significantly improved pulmonary capillary permeability and PaO2/FiO2. Similarly, ECFCs also decreased the inflammatory cell number and pro-inflammatory factors in BALF and peripheral blood, as well as the oxidative stress response in the lung tissue. ECFCs reduced the lung histological injury score and apoptosis and regulated apoptosis-related proteins in the lung tissue. Compared with the CPB/ECFC group, all the indicators were partly reversed by the L-NIO. Conclusions ECFCs significantly reduced lung injury induced by inflammation after CPB.
Collapse
Affiliation(s)
- Haibin Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqing Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qihang Tai
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangxiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingnan Ju
- Department of ICU, Tumor Hospital of Harbin Medical University, Harbin, China.
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Ko J, Rounds S, Lu Q. Sustained adenosine exposure causes endothelial mitochondrial dysfunction via equilibrative nucleoside transporters. Pulm Circ 2020; 10:2045894020924994. [PMID: 32523687 PMCID: PMC7235668 DOI: 10.1177/2045894020924994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a potent signaling molecule that has paradoxical effects on lung diseases. We have previously demonstrated that sustained adenosine exposure by inhibition of adenosine degradation impairs lung endothelial barrier integrity and causes intrinsic apoptosis through equilibrative nucleoside transporter1/2-mediated intracellular adenosine signaling. In this study, we further demonstrated that sustained adenosine exposure increased mitochondrial reactive oxygen species and reduced mitochondrial respiration via equilibrative nucleoside transporter1/2, but not via adenosine receptor-mediated signaling. We have previously shown that sustained adenosine exposure activates p38 and c-Jun N-terminal kinases in mitochondria. Here, we show that activation of p38 and JNK partially contributed to sustained adenosine-induced mitochondrial reactive oxygen species production. We also found that sustained adenosine exposure promoted mitochondrial fission and increased mitophagy. Finally, mitochondria-targeted antioxidants prevented sustained adenosine exposure-induced mitochondrial fission and improved cell survival. Our results suggest that inhibition of equilibrative nucleoside transporter1/2 and mitochondria-targeted antioxidants may be potential therapeutic approaches for lung diseases associated with sustained elevated adenosine.
Collapse
Affiliation(s)
- Junsuk Ko
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA.,MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, USA.,Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, USA
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
8
|
Lau CL, Beller JP, Boys JA, Zhao Y, Phillips J, Cosner M, Conaway MR, Petroni G, Charles EJ, Mehaffey JH, Mannem HC, Kron IL, Krupnick AS, Linden J. Adenosine A2A receptor agonist (regadenoson) in human lung transplantation. J Heart Lung Transplant 2020; 39:563-570. [PMID: 32503727 DOI: 10.1016/j.healun.2020.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Currently, there are no clinically approved treatments for ischemia-reperfusion injury after lung transplantation. Pre-clinical animal models have demonstrated a promising efficacy of adenosine 2A receptor (A2AR) agonists as a treatment option for reducing ischemia-reperfusion injury. The purpose of this human study, is to conduct a Phase I clinical trial for evaluating the safety of continuous infusion of an A2AR agonist in lung transplant recipients. METHODS An adaptive, two-stage continual reassessment trial was designed to evaluate the safety of regadenoson (A2AR agonist) in the setting of lung transplantation. Continuous infusion of regadenoson was administered to lung transplant recipients that was started at the time of skin incision. Adverse events and dose-limiting toxicities, as pre-determined by a study team and assessed by a clinical team and an independent safety monitor, were the primary end-points for safety in this trial. RESULTS Between January 2018 and March 2019, 14 recipients were enrolled in the trial. Of these, 10 received the maximum infused dose of 1.44 µg/kg/min for 12 hours. No dose-limiting toxicities were observed. The steady-state plasma regadenoson levels sampled before the reperfusion of the first lung were 0.98 ± 0.46 ng/ml. There were no mortalities within 30 days. CONCLUSIONS Regadenoson, an A2AR agonist, can be safely infused in the setting of lung transplantation with no dose-limiting toxicities or drug-related mortality. Although not powered for the evaluation of secondary end-points, the results of this trial and the outcome of pre-clinical studies warrant further investigation with a Phase II randomized controlled trial.
Collapse
Affiliation(s)
- Christine L Lau
- Department of Surgery, University of Maryland, Baltimore, Maryland.
| | - Jared P Beller
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Joshua A Boys
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, University of California, San Diego, California
| | - Yunge Zhao
- Department of Surgery, University of Maryland, Baltimore, Maryland
| | - Jennifer Phillips
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Michael Cosner
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Mark R Conaway
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Gina Petroni
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Eric J Charles
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - J H Mehaffey
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Hannah C Mannem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, Virginia; Department of Surgery, University of Arizona Health Sciences, Tucson, Arizona
| | | | - Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Immunology and Department of Pharmacology, University of California, San Diego, California
| |
Collapse
|
9
|
Gong J, Ju YN, Wang XT, Zhu JL, Jin ZH, Gao W. Ac2-26 ameliorates lung ischemia-reperfusion injury via the eNOS pathway. Biomed Pharmacother 2019; 117:109194. [PMID: 31387174 DOI: 10.1016/j.biopha.2019.109194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Lung ischemia-reperfusion injury (LIRI) is a major complication after lung transplantation. Annexin A1 (AnxA1) ameliorates inflammation in various injured organs. This study aimed to determine the effects and mechanism of AnxA1 on LIRI after lung transplantation. METHODS Thirty-two rats were randomized into sham, saline, Ac2-26 and Ac2-26/L groups. Rats in the saline, Ac2-26 and Ac2-26/L groups underwent left lung transplantation and received saline, Ac2-26, and Ac2-26/L-NIO, respectively. After 24 h of reperfusion, serum and transplanted lung tissues were examined. RESULTS The partial pressure of oxygen (PaO2) was increased in the Ac2-26 group compared to that in the saline group but was decreased by L-NIO treatment. In the Ac2-26 group, the wet-to-dry (W/D) weight ratios, total protein concentrations, proinflammatory factors and inducible nitric oxide synthase levels were notably decreased, but the concentrations of anti-inflammatory factors and endothelial nitric oxide synthase levels were significantly increased. Ac2-26 attenuated histological injury and cell apoptosis, and this improvement was reversed by L-NIO. CONCLUSIONS Ac2-26 reduced LIRI and improved alveoli-capillary permeability by inhibiting oxygen stress, inflammation and apoptosis. The protective effect of Ac2-26 on LIRI largely depended on the endothelial nitric oxide synthase pathway.
Collapse
Affiliation(s)
- Jing Gong
- Anesthesiology Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150000, China.
| | - Ying-Nan Ju
- Department of ICU, The Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin 150081, China.
| | - Xue-Ting Wang
- Anesthesiology Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150000, China.
| | - Jing-Li Zhu
- Anesthesiology Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150000, China.
| | - Zhe-Hao Jin
- Anesthesiology Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150000, China.
| | - Wei Gao
- Anesthesiology Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150000, China.
| |
Collapse
|
10
|
Mehaffey JH, Money D, Charles EJ, Schubert S, Piñeros AF, Wu D, Bontha SV, Hawkins R, Teman NR, Laubach VE, Mas VR, Tribble CG, Maluf DG, Sharma AK, Yang Z, Kron IL, Roeser ME. Adenosine 2A Receptor Activation Attenuates Ischemia Reperfusion Injury During Extracorporeal Cardiopulmonary Resuscitation. Ann Surg 2019; 269:1176-1183. [PMID: 31082918 PMCID: PMC6757347 DOI: 10.1097/sla.0000000000002685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We tested the hypothesis that systemic administration of an A2AR agonist will reduce multiorgan IRI in a porcine model of ECPR. SUMMARY BACKGROUND DATA Advances in ECPR have decreased mortality after cardiac arrest; however, subsequent IRI contributes to late multisystem organ failure. Attenuation of IRI has been reported with the use of an A2AR agonist. METHODS Adult swine underwent 20 minutes of circulatory arrest, induced by ventricular fibrillation, followed by 6 hours of reperfusion with ECPR. Animals were randomized to vehicle control, low-dose A2AR agonist, or high-dose A2AR agonist. A perfusion specialist using a goal-directed resuscitation protocol managed all the animals during the reperfusion period. Hourly blood, urine, and tissue samples were collected. Biochemical and microarray analyses were performed to identify differential inflammatory markers and gene expression between groups. RESULTS Both the treatment groups demonstrated significantly higher percent reduction from peak lactate after reperfusion compared with vehicle controls. Control animals required significantly more fluid, epinephrine, and higher final pump flow while having lower urine output than both the treatment groups. The treatment groups had lower urine NGAL, an early marker of kidney injury (P = 0.01), lower plasma aspartate aminotransferase, and reduced rate of troponin rise (P = 0.01). Pro-inflammatory cytokines were lower while anti-inflammatory cytokines were significantly higher in the treatment groups. CONCLUSIONS Using a novel and clinically relevant porcine model of circulatory arrest and ECPR, we demonstrated that a selective A2AR agonist significantly attenuated systemic IRI and warrants clinical investigation.
Collapse
Affiliation(s)
- James H Mehaffey
- Department of Surgery, University of Virginia, Charlottesville, VA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu WC, Chen SB, Liu S, Ling X, Xu QR, Yu BT, Tang J. Inhibition of mitochondrial autophagy protects donor lungs for lung transplantation against ischaemia-reperfusion injury in rats via the mTOR pathway. J Cell Mol Med 2019; 23:3190-3201. [PMID: 30887674 PMCID: PMC6484325 DOI: 10.1111/jcmm.14177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/05/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Impaired mitochondrial function is a key factor attributing to lung ischaemia‐reperfusion (IR) injury, which contributes to major post‐transplant complications. Thus, the current study was performed to investigate the role of mitochondrial autophagy in lung I/R injury and the involvement of the mTOR pathway. We established rat models of orthotopic left lung transplantation to investigate the role of mitochondrial autophagy in I/R injury following lung transplantation. Next, we treated the donor lungs with 3‐MA and Rapamycin to evaluate mitochondrial autophagy, lung function and cell apoptosis with different time intervals of cold ischaemia preservation and reperfusion. In addition, mitochondrial autophagy, and cell proliferation and apoptosis of pulmonary microvascular endothelial cells (PMVECs) exposed to hypoxia‐reoxygenation (H/R) were monitored after 3‐MA administration or Rapamycin treatment. The cell apoptosis could be inhibited by mitochondrial autophagy at the beginning of lung ischaemia, but was rendered out of control when mitochondrial autophagy reached normal levels. After I/R of donor lung, the mitochondrial autophagy was increased until 6 hours after reperfusion and then gradually decreased. The elevation of mitochondrial autophagy was accompanied by promoted apoptosis, aggravated lung injury and deteriorated lung function. Moreover, the suppression of mitochondrial autophagy by 3‐MA inhibited cell apoptosis of donor lung to alleviate I/R‐induced lung injury as well as inhibited H/R‐induced PMVEC apoptosis, and enhanced its proliferation. Finally, mTOR pathway participated in I/R‐ and H/R‐mediated mitochondrial autophagy in regulation of cell apoptosis. Inhibition of I/R‐induced mitochondrial autophagy alleviated lung injury via the mTOR pathway, suggesting a potential therapeutic strategy for lung I/R injury.
Collapse
Affiliation(s)
- Wei-Cheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Shi-Biao Chen
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Sheng Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xiang Ling
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Qi-Rong Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Jian Tang
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
12
|
Gao W, Jiang T, Liu YH, Ding WG, Guo CC, Cui XG. Endothelial progenitor cells attenuate the lung ischemia/reperfusion injury following lung transplantation via the endothelial nitric oxide synthase pathway. J Thorac Cardiovasc Surg 2019; 157:803-814. [PMID: 30391008 DOI: 10.1016/j.jtcvs.2018.08.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/28/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Endothelial progenitor cells (EPCs) can improve endothelial integrity. This study aimed to examine the effects and the mechanism of EPCs on lung ischemia-reperfusion injury (LIRI). METHODS Wistar rats were randomized into the sham or the left lung transplantation group. The recipients were randomized and treated with vehicle as the LIRI group, with EPC as the EPC group, or with N5-(1-iminoethyl)-l-ornithine-pretreated EPC as the EPC/L group (n = 8 per group). The ratios of arterial oxygen partial pressure to fractional inspiratory oxygen were measured. The lung wet-to-dry weight ratios, protein levels, and injury, as well as the levels of plasma cytokines, were examined. The levels of endothelin (ET)-1, endothelial nitric oxide synthase (eNOS), phosphorylated eNOS, inducible NOS, phosphorylated myosin light chain, nuclear factor-κBp65, Bax, Bcl-2, cleaved caspase-3, and myeloperoxidase in the graft lungs were detected. RESULTS Compared with the LIRI group, EPC treatment significantly increased the ratios of arterial oxygen partial pressure to fractional inspiratory oxygen and decreased the lung wet-to-dry weight ratios and protein levels in the grafts, accompanied by increasing eNOS expression and phosphorylation, but decreasing endothelin-1, inducible NOS, phosphorylated nuclear factor-kBp65, phosphorylated myosin light chain expression, and myeloperoxidase activity. EPCs reduced lung tissue damage and apoptosis associated with decreased levels of Bax and cleaved caspase-3 expression, but increased Bcl-2 expression. EPC treatment significantly reduced the levels of serum proinflammatory factors, but elevated levels of interleukin-10. In contrast, the protective effect of EPCs were mitigated and abrogated by N5-(1-iminoethyl)-l-ornithine pretreatment. CONCLUSIONS Data indicated that EPC ameliorated LIRI by increasing eNOS expression.
Collapse
Affiliation(s)
- Wei Gao
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tao Jiang
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yan-Hong Liu
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wen-Gang Ding
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chang-Chun Guo
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiao-Guang Cui
- Department of Anesthesiology, the Second Affiliated Hospital of the Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
13
|
Pao HP, Liao WI, Wu SY, Hung KY, Huang KL, Chu SJ. PG490-88, a derivative of triptolide, suppresses ischemia/reperfusion-induced lung damage by maintaining tight junction barriers and targeting multiple signaling pathways. Int Immunopharmacol 2018; 68:17-29. [PMID: 30599444 DOI: 10.1016/j.intimp.2018.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/08/2018] [Accepted: 12/25/2018] [Indexed: 12/27/2022]
Abstract
Previous studies demonstrated that triptolide (PG490) has many anti-inflammatory and immunosuppressive effects. However, little is known about the effect of PG490-88 (a water-soluble derivative of triptolide) on ischemia/reperfusion (I/R)-induced acute lung injury. We assessed the effects of PG490-88 on I/R-induced acute lung injury in rats and on hypoxia/reoxygenation (H/R) in a line of murine epithelial cells. Isolated perfused rat lungs were subjected to 40 min of ischemia, followed by 60 min of reperfusion to induce I/R injury. Induction of I/R led to lung edema, elevated pulmonary arterial pressure, histological evidence of lung inflammation, oxidative stress, and increased levels of TNF-α and CINC-1 in bronchoalveolar lavage fluid. PG490-88 significantly suppressed all of these responses. Additionally, induction of I/R reduced the expression of claudin-4, occludin, and ZO-1, and increased apoptosis in lung tissue. PG490-88 also significantly suppressed these effects. I/R reduced the levels of IκB-α and MKP-1, and increased the levels of nuclear NF-κB and mitogen-activated protein kinase in lung tissue, and PG490-88 suppressed these effects. In vitro studies using mouse lung alveolar epithelial cells indicated that H/R increased the levels of phosphorylated p65 and MIP-2, but decreased the level of IκB-α. PG490-88 also suppressed these effects. In I/R damaged lungs, PG490-88 suppresses the inflammatory response, disruption of tight junction structure, and apoptosis. PG490-88 has the potential as a prophylactic agent to prevent I/R-induced lung injury.
Collapse
Affiliation(s)
- Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Emergency Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kuei-Yi Hung
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
14
|
Functional Role of Milk Fat Globule-Epidermal Growth Factor VIII in Macrophage-Mediated Inflammatory Responses and Inflammatory/Autoimmune Diseases. Mediators Inflamm 2016; 2016:5628486. [PMID: 27429513 PMCID: PMC4939324 DOI: 10.1155/2016/5628486] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/25/2016] [Indexed: 01/14/2023] Open
Abstract
Inflammation involves a series of complex biological processes mediated by innate immunity for host defense against pathogen infection. Chronic inflammation is considered to be one of the major causes of serious diseases, including a number of autoimmune/inflammatory diseases, cancers, cardiovascular diseases, and neurological diseases. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a secreted protein found in vertebrates and was initially discovered as a critical component of the milk fat globule. Previously, a number of studies have reported that MFG-E8 contributes to various biological functions including the phagocytic removal of damaged and apoptotic cells from tissues, the induction of VEGF-mediated neovascularization, the maintenance of intestinal epithelial homeostasis, and the promotion of mucosal healing. Recently, emerging studies have reported that MFG-E8 plays a role in inflammatory responses and inflammatory/autoimmune diseases. This review describes the characteristics of MFG-E8-mediated signaling pathways, summarizes recent findings supporting the roles of MFG-E8 in inflammatory responses and inflammatory/autoimmune diseases, and discusses MFG-E8 targeting as a potential therapeutic strategy for the development of anti-inflammatory/autoimmune disease drugs.
Collapse
|
15
|
Motaghinejad M, Karimian SM, Motaghinejad O, Shabab B, Asadighaleni M, Fatima S. The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats. Fundam Clin Pharmacol 2015; 29:299-309. [PMID: 25846801 DOI: 10.1111/fcp.12121] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 01/16/2023]
Abstract
Chronic consumption of morphine induces physical dependency, anxiety, and neurodegeneration. In this study, morphine on its own has been used for the management of morphine-induced dependency, oxidative stress, and apoptosis. Forty-eight male rats were randomly divided into six groups. Rats in groups 1-5 were made morphine dependent by an increasing manner of morphine for 7 days (15-45 mg/kg). For the next 14 days, morphine was administered using the following regimen: (i) once daily 45 mg/kg (positive controls), (ii) the same dose at additional intervals (6 h longer than the previous intervals each time), (iii) 45 mg/kg of morphine at irregular intervals like of 12, 24, 36 h, (iv) decreasing dose once daily (every time 2.5 mg/kg less than the former dosage). Group 5 received 45 mg/kg of morphine and 10 mg/kg of SOD mimetic agent (M40401) injection per day. Group 6 (negative control) received saline solution only. On day 22, all animals received naloxone (3 mg/kg) and their Total Withdrawal Index (TWI) and blood cortisol levels were measured. After drug treatment, hippocampus cells were isolated, and oxidative, antioxidative, and apoptotic factors were evaluated. Various regimens of morphine reduced TWI, cortisol levels, Bax activity, caspase-3, caspase-9, TNF-α, and IL-1β and lipid peroxidation. In all treatment groups, GSH level, superoxide dismutase, glutathione peroxidase, and Bcl-2 activity were significantly increased. Furthermore, SOD mimetic agent c diminished morphine effect on SOD activity. Thus, varying the dosage regimen of morphine can reduce the severity of morphine-induced dependency and neurodegeneration.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Motaghinejad
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Shabab
- Solid Dosage Form Department, Iran Hormone Pharmaceuticals Company, Tehran, Iran
| | - Majid Asadighaleni
- Solid Dosage Form Department, Iran Hormone Pharmaceuticals Company, Tehran, Iran
| | - Sulail Fatima
- Department of Physiology, Tehran University of Medical Sciences- International Campus, Tehran, Iran
| |
Collapse
|
16
|
Lee DJ, Taylor AW. Both MC5r and A2Ar are required for protective regulatory immunity in the spleen of post-experimental autoimmune uveitis in mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:4103-11. [PMID: 24043903 DOI: 10.4049/jimmunol.1300182] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ocular microenvironment uses a poorly defined mela5 receptor (MC5r)-dependent pathway to recover immune tolerance following intraocular inflammation. This dependency is seen in experimental autoimmune uveoretinitis (EAU), a mouse model of endogenous human autoimmune uveitis, with the emergence of autoantigen-specific regulatory immunity in the spleen that protects the mice from recurrence of EAU. In this study, we found that the MC5r-dependent regulatory immunity increased CD11b(+)F4/80(+)Ly-6C(low)Ly-6G(+)CD39(+)CD73(+) APCs in the spleen of post-EAU mice. These MC5r-dependent APCs require adenosine 2A receptor expression on T cells to activate EAU-suppressing CD25(+)CD4(+)Foxp3(+) regulatory T cells. Therefore, in the recovery from autoimmune disease, the ocular microenvironment induces tolerance through a melanocortin-mediated expansion of Ly-6G(+) regulatory APCs in the spleen that use the adenosinergic pathway to promote activation of autoantigen-specific regulatory T cells.
Collapse
Affiliation(s)
- Darren J Lee
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118
| | | |
Collapse
|
17
|
Moghimpour Bijani F, Vallejo JG, Rezaei N. Toll-like receptor signaling pathways in cardiovascular diseases: challenges and opportunities. Int Rev Immunol 2013; 31:379-95. [PMID: 23083347 DOI: 10.3109/08830185.2012.706761] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLRs), a family of surface molecules, are involved in innate immune responses. Recent studies indicated that TLRs play a critical role in inflammatory responses to exogenous and endogenous triggers. This article focuses on probable effects of TLRs in the morbidity of cardiovascular events, e.g., ischemic reperfusion (I/R) injury and atherosclerosis. TLR2 and TLR4 have been shown to have the most fundamental role in promoting cytokine production and subsequent inflammatory damages in these states. Blockade of these receptors may be beneficial in both preventing the occurrence and decreasing the complications in cardiovascular events. However, controversies exist on the certainty of this beneficial effect; therefore, additional studies are needed.
Collapse
Affiliation(s)
- Faezeh Moghimpour Bijani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
18
|
Lu Q, Sakhatskyy P, Newton J, Shamirian P, Hsiao V, Curren S, Gabino Miranda GA, Pedroza M, Blackburn MR, Rounds S. Sustained adenosine exposure causes lung endothelial apoptosis: a possible contributor to cigarette smoke-induced endothelial apoptosis and lung injury. Am J Physiol Lung Cell Mol Physiol 2013; 304:L361-70. [PMID: 23316066 DOI: 10.1152/ajplung.00161.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pulmonary endothelial cell (EC) apoptosis has been implicated in the pathogenesis of emphysema. Cigarette smoke (CS) causes lung EC apoptosis and emphysema. In this study, we show that CS exposure increased lung tissue adenosine levels in mice, an effect associated with increased lung EC apoptosis and the development of emphysema. Adenosine has a protective effect against apoptosis via adenosine receptor-mediated signaling. However, sustained elevated adenosine increases alveolar cell apoptosis in adenosine deaminase-deficient mice. We established an in vitro model of sustained adenosine exposure by incubating lung EC with adenosine in the presence of an adenosine deaminase inhibitor, deoxycoformicin. We demonstrated that sustained adenosine exposure caused lung EC apoptosis via nucleoside transporter-facilitated intracellular adenosine uptake, subsequent activation of p38 and JNK in mitochondria, and ultimately mitochondrial defects and activation of the mitochondria-mediated intrinsic pathway of apoptosis. Our results suggest that sustained elevated adenosine may contribute to CS-induced lung EC apoptosis and emphysema. Our data also reconcile the paradoxical effects of adenosine on apoptosis, demonstrating that prolonged exposure causes apoptosis via nucleoside transporter-mediated intracellular adenosine signaling, whereas acute exposure protects against apoptosis via activation of adenosine receptors. Inhibition of adenosine uptake may become a new therapeutic target in treatment of CS-induced lung diseases.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Department of Medicine, Alpert Medical School of Brown University, Providence, RI 02908, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tsuchiya A, Kanno T, Saito M, Miyoshi Y, Gotoh A, Nakano T, Nishizaki T. Intracellularly transported adenosine induces apoptosis in [corrected] MCF-7 human breast cancer cells by accumulating AMID in the nucleus. Cancer Lett 2012; 321:65-72. [PMID: 22388174 DOI: 10.1016/j.canlet.2012.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 01/23/2023]
Abstract
Extracellular adenosine induced apoptosis of MCF-7 human breast cancer cells in a concentration (10μM-10mM)- and treatment time (24-72h)-dependent manner, and the effect was inhibited by the adenosine transporter inhibitor dipyridamole, but not an inhibitor of adenosine kinase, an inhibitor of AMP-activated protein kinase, or inhibitors for A(1), A(2a), A(2b), and A(3) adenosine receptors. No significant activation of caspase-7, -8, or -9 was obtained with adenosine. Adenosine promoted translocation of apoptosis-inducing factor (AIF)-homologous mitochondrion-associated inducer of death (AMID) from the cytosol into the nucleus, although the total amount of AMID was not affected. Adenosine-induced MCF-7 cell death was abrogated by knocking-down AMID. The results of the present study indicate that intracellularly transported adenosine induces MCF-7 cell apoptosis by accumulating AMID in the nucleus in a caspase-independent manner.
Collapse
Affiliation(s)
- Ayako Tsuchiya
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Mills JH, Kim DG, Krenz A, Chen JF, Bynoe MS. A2A adenosine receptor signaling in lymphocytes and the central nervous system regulates inflammation during experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:5713-22. [PMID: 22529293 PMCID: PMC3358473 DOI: 10.4049/jimmunol.1200545] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extracellular adenosine has an important role in regulating the severity of inflammation during an immune response. Although there are four adenosine receptor (AR) subtypes, the A2AAR is both highly expressed on lymphocytes and known as a prime mediator of adenosine's anti-inflammatory effects. To define the importance of A2AAR signaling during neuroinflammatory disease progression, we used the experimental autoimmune encephalomyelitis (EAE) animal model for multiple sclerosis. In EAE induction experiments, A2AAR antagonist treatment protected mice from disease development and its associated CNS lymphocyte infiltration. However, A2AAR(-/-) mice developed a more severe acute EAE phenotype characterized by more proinflammatory lymphocytes and activated microglia/macrophages. Interestingly, very high levels of A2AAR were expressed on the choroid plexus, a well-established CNS lymphocyte entry point. To determine the contribution of A2AAR signaling in lymphocytes and the CNS during EAE, we used bone marrow chimeric mice. Remarkably, A2AAR(-/-) donor hematopoietic cells potentiated severe EAE, whereas lack of A2AAR expression on nonhematopoietic cells protected against disease development. Although no defect in the suppressive ability of A2AAR(-/-) regulatory T cells was observed, A2AAR(-/-) lymphocytes were shown to proliferate more and produced more IFN-γ following stimulation. Despite this more proinflammatory phenotype, A2AAR antagonist treatment still protected against EAE when A2AAR(-/-) lymphocytes were adoptively transferred to T cell-deficient A2AAR(+/+) mice. These results indicate that A2AAR expression on nonimmune cells (likely in the CNS) is required for efficient EAE development, while A2AAR lymphocyte expression is essential for limiting the severity of the inflammatory response.
Collapse
MESH Headings
- Animals
- Brain/immunology
- Brain/metabolism
- Brain/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Inflammation Mediators/physiology
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Lymphocytes/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptor, Adenosine A2A/deficiency
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A2A/physiology
- Severity of Illness Index
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Jeffrey H Mills
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
21
|
Field JJ, Nathan DG, Linden J. Targeting iNKT cells for the treatment of sickle cell disease. Clin Immunol 2011; 140:177-83. [PMID: 21429807 DOI: 10.1016/j.clim.2011.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/23/2011] [Accepted: 03/02/2011] [Indexed: 12/19/2022]
Abstract
Sickle cell disease (SCD) causes widely disseminated vaso-occlusive episodes. Building on evidence implicating invariant NKT (iNKT) cells in the pathogenesis of ischemia/reperfusion injury, recent studies demonstrate that blockade of iNKT cell activation in mice with SCD reduces pulmonary inflammation and injury. In patients with SCD, iNKT cells in blood are increased in absolute number and activated in comparison to healthy controls. iNKT cell activation is reduced by agonists of adenosine 2A receptors (A(2A)Rs) such as the clinically approved coronary vasodilator, regadenoson. An ongoing multi-center, dose-finding and safety trial of infused regadenoson, has been initiated and is providing preliminary data about its safety and efficacy to treat SCD. Very high accumulation of adenosine may have deleterious effects in SCD through activation of adenosine 2B receptors that are insensitive to regadenoson. Future possible therapeutic approaches for treating SCD include selective A(2B)R antagonists and antibodies that deplete iNKT cells.
Collapse
Affiliation(s)
- Joshua J Field
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
22
|
Linden J. Regulation of leukocyte function by adenosine receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:95-114. [PMID: 21586357 DOI: 10.1016/b978-0-12-385526-8.00004-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immune system responds to cues in the microenvironment to make acute and chronic adaptations in response to inflammation and injury. Locally produced purine nucleotides and adenosine provide receptor-mediated signaling to all bone-marrow derived cells of the immune system to modulate their responses. This review summarizes recent advances in our understanding of the effects of adenosine signaling through G protein-coupled adenosine receptors on cells of the immune system. Adenosine A(2A) receptors (A(2A)Rs) have a generally suppressive effect on the activation of immune cells. Moreover, their transcription is strongly induced by signals that activate macrophages or dendritic cells through toll-like receptors, or T cells through T cell receptors. A(2A)R induction is responsible for producing a gradual dissipation of inflammatory responses. A(2A)R activation is particularly effective in limiting the activation of invariant NKT (iNKT) cells that play a central role in acute reperfusion injury. A(2A) agonists have clinical promise for the treatment of vaso-occlusive tissue injury. Blockade of A(2A) receptors may be useful to enhance immune-mediated killing of cancer cells. A(2B)R expression also is transcriptionally regulated by hypoxia, cytokines, and oxygen radicals. Acute A(2B)R activation attenuates the production of proinflammatory cytokines from macrophages, but sustained activation facilitates macrophage and dendritic cell remodeling and the production of acute phase proteins and angiogenic factors that may participate in evoking insulin resistance and tissue fibrosis. A(2B)R activation also influences macrophage and neutrophil function by influencing expression of the anti-inflammatory netrin receptor, UNC5B. The therapeutic significance of adenosine-mediated effects on the immune system is discussed.
Collapse
Affiliation(s)
- Joel Linden
- Division of Inflammation Biology, La Jolla Institute of Allergy and Immunology, California, USA
| |
Collapse
|
23
|
Laubach VE, French BA, Okusa MD. Targeting of adenosine receptors in ischemia-reperfusion injury. Expert Opin Ther Targets 2010; 15:103-18. [PMID: 21110787 DOI: 10.1517/14728222.2011.541441] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE OF THE FIELD Ischemia-reperfusion (IR) injury is a common problem after transplantation as well as myocardial infarction and stroke. IR initiates an inflammatory response leading to rapid tissue damage. Adenosine, produced in response to IR, is generally considered a protective signaling molecule and elicits its physiological responses through four distinct adenosine receptors. The short half-life, lack of specificity and rapid metabolism limits the use of adenosine as a therapeutic agent. Thus, intense research efforts have focused on the synthesis and implementation of specific adenosine receptor agonists and antagonists as potential therapeutic agents for a variety of inflammatory conditions including IR injury. AREAS COVERED IN THIS REVIEW Current knowledge on IR injury with a focus on lung, heart and kidney and studies that have advanced our understanding of the role of adenosine receptors and the therapeutic potential of adenosine receptor agonists and antagonists for the prevention of IR injury. WHAT THE READER WILL GAIN Insight into the role of adenosine receptor signaling in IR injury. TAKE HOME MESSAGE No therapies are currently available that specifically target IR injury; however, targeting of specific adenosine receptors may offer therapeutic strategies in this regard.
Collapse
Affiliation(s)
- Victor E Laubach
- University of Virginia Health System, Charlottesville, 22908, USA.
| | | | | |
Collapse
|
24
|
Matsuda A, Jacob A, Wu R, Zhou M, Nicastro JM, Coppa GF, Wang P. Milk fat globule-EGF factor VIII in sepsis and ischemia-reperfusion injury. Mol Med 2010; 17:126-33. [PMID: 20882259 DOI: 10.2119/molmed.2010.00135] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/17/2010] [Indexed: 01/04/2023] Open
Abstract
Sepsis and ischemia-reperfusion (I/R) injury are among the leading causes of death in critically ill patients at the surgical intensive care unit setting. Both conditions are marked by the excessive inflammatory response which leads to a lethal disease complex such as acute lung injury, systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Despite the advances in the understanding of the pathophysiology of those conditions, very little progress has been made toward therapeutic interventions. One of the key aspects of these conditions is the accumulation of apoptotic cells that have the potential to release toxic and proinflammatory contents due to secondary necrosis without appropriate clearance by phagocytes. Along with the prevention of apoptosis, that is reported to be beneficial in sepsis and I/R injury, thwarting the development of secondary necrosis through the active removal of apoptotic cells via phagocytosis may offer a novel therapy. Milk fat globule-EGF factor VIII (MFG-E8), which is mainly produced by macrophages and dendritic cells, is an opsonin for apoptotic cells and acts as a bridging protein between apoptotic cells and phagocytes. Recently, we have shown that MFG-E8 expression is decreased in experimental sepsis and I/R injury models. Exogenous administration of MFG-E8 attenuated the inflammatory response as well as tissue injury and mortality through the promotion of phagocytosis of apoptotic cells. In this review, we describe novel information available about the involvement of MFG-E8 in the pathophysiology of sepsis and I/R injury, and the therapeutic potential of exogenous MFG-E8 treatment for those conditions.
Collapse
Affiliation(s)
- Akihisa Matsuda
- Laboratory of Surgical Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Lung epithelium is the primary site of lung damage in various lung diseases. Epithelial cell death has been considered to be the initial event in lung injury and is followed by remodeling processes. When the degree of lung injury is mild, damaged tissue will be repaired normally, whereas excess cell death may lead to irreparable lung damage and remodeling processes. The survival and recovery of epithelial and endothelial cells, and the resolution of inflammatory cells appear to be key for normal tissue repair. We review the recent advances in the understanding of mechanisms of cell death following lung injury in various lung diseases and discuss its regulation by novel strategies. Further understanding of mechanisms of cell death and its regulation may lead to the development of effective treatments against lung injury.
Collapse
Affiliation(s)
- Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | | | | |
Collapse
|
26
|
Gazoni LM, Walters DM, Unger EB, Linden J, Kron IL, Laubach VE. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2010; 140:440-6. [PMID: 20398911 DOI: 10.1016/j.jtcvs.2010.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 12/08/2009] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Adenosine and the activation of specific adenosine receptors are implicated in the attenuation of inflammation and organ ischemia-reperfusion injury. We hypothesized that activation of A(1), A(2A), or A(3) adenosine receptors would provide protection against lung ischemia-reperfusion injury. METHODS With the use of an isolated, ventilated, blood-perfused rabbit lung model, lungs underwent 18 hours of cold ischemia followed by 2 hours of reperfusion. Lungs were administered vehicle, adenosine, or selective A(1), A(2A), or A(3) receptor agonists (CCPA, ATL-313, or IB-MECA, respectively) alone or with their respective antagonists (DPCPX, ZM241385, or MRS1191) during reperfusion. RESULTS Compared with the vehicle-treated control group, treatment with A(1), A(2A), or A(3) agonists significantly improved function (increased lung compliance and oxygenation and decreased pulmonary artery pressure), decreased neutrophil infiltration by myeloperoxidase activity, decreased edema, and reduced tumor necrosis factor-alpha production. Adenosine treatment was also protective, but not to the level of the agonists. When each agonist was paired with its respective antagonist, all protective effects were blocked. The A(2A) agonist reduced pulmonary artery pressure and myeloperoxidase activity and increased oxygenation to a greater degree than the A(1) or A(3) agonists. CONCLUSION Selective activation of A(1), A(2A), or A(3) adenosine receptors provides significant protection against lung ischemia-reperfusion injury. The decreased elaboration of the potent proinflammatory cytokine tumor necrosis factor-alpha and decreased neutrophil sequestration likely contribute to the overall improvement in pulmonary function. These results provide evidence for the therapeutic potential of specific adenosine receptor agonists in lung transplant recipients.
Collapse
Affiliation(s)
- Leo M Gazoni
- Department of Surgery, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
27
|
Dai W, Hale SL, Nayak R, Kloner RA. ATL 313, A Selective A(2A) Adenosine Receptor Agonist, Reduces Myocardial Infarct Size in a Rat Ischemia/Reperfusion Model. Open Cardiovasc Med J 2009; 3:166-72. [PMID: 20111666 PMCID: PMC2811859 DOI: 10.2174/1874192400903010166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 10/26/2009] [Accepted: 10/29/2009] [Indexed: 11/22/2022] Open
Abstract
Objective: The cardioprotective effects of activation of the A2A adenosine receptor (A2AAR) on ischemia/reperfusion injury in the heart remain controversial. We investigated whether ATL 313, a new selective A2AAR agonist, could reduce myocardial infarct size in a rat ischemia/reperfusion model. Methods: Sprague-Dawley rats were subjected to a 40 minute occlusion of the left coronary artery followed by 3 hours reperfusion. Hemodynamics were monitored during the procedure. The rats were divided into 3 groups: Group 1 received continuous intravenous infusion of saline given 10 min prior to ischemia and throughout reperfusion (n=8); Group 2 received continuous intravenous infusion of 10 ng/kg/min of ATL 313 given 10 min prior to ischemia, and throughout reperfusion (n=8); and group 3 received an intravenous bolus of ATL 313 (900 ng/Kg body weight) given 10 min prior to ischemia, and continuous intravenous infusion of 10 ng/kg/min of ATL 313 started at 20 min after ischemia and throughout reperfusion (n=8). After euthanasia of the rats, the hearts were harvested for the assessment of risk zone and zone of necrosis of the left ventricle. Results: The percentage of risk zone in the left ventricle was similar among group 1 (47 ± 3.7 %), group 2 (41.5 ± 4.2 %) and group 3 (42.4 ± 3.8 %). However, the infarct size, expressed as a percentage of the risk zone, was significantly decreased in group 3 (30.6 ± 5 %, P=0.01) compared with group 1 (53.8 ± 6.2 %) and group 2 (52.1 ± 4.8 %). In group 3, the bolus injection of ATL 313 caused a reduction in blood pressure during the procedure, and decreased heart rate and LV ±dp/dt before coronary artery occlusion; but increased LV +dp/dt at the end of reperfusion compared to the other 2 groups. Conclusion: A2AAR agonist ATL313 significantly reduced infarct size and improved LV contractility at the end of reperfusion assessed by LV dp/dt at a dose of 900 ng/Kg. The mechanisms for the observed cardioprotection effect of ATL313 remain to be determined.
Collapse
Affiliation(s)
- Wangde Dai
- The Heart Institute of Good Samaritan Hospital, And Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, California 90017-2395, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Ischemia-reperfusion (I/R) injuries are implicated in a large array of pathological conditions such as myocardial infarction, cerebral stroke, and hepatic, renal, and intestinal ischemia, as well as following cardiovascular and transplant surgeries. The hallmark of these pathologies is excessive inflammation. Toll-like receptors (TLRs) are recognized as one of the main contributors to pathogen-induced inflammation and, more recently, injury-induced inflammation. Endogenous ligands such as low-molecular hyaluronic acid, fibronectin, heat shock protein 70, and heparin sulfate were all found to be cleaved in the inflamed tissue and to activate TLR2 and TLR4, initiating an inflammatory response even in the absence of pathogens and infiltrating immune cells. In this review, we discuss the contribution of TLR activation in hepatic, renal, cerebral, intestinal, and myocardial I/R injuries. A greater understanding of the role of TLRs in I/R injuries may aid in the development of specific TLR-targeted therapeutics to treat these conditions.
Collapse
|
29
|
Protective effects of adenosine A2A receptor agonist in ventilator-induced lung injury in rats. Crit Care Med 2009; 37:2235-41. [PMID: 19487932 DOI: 10.1097/ccm.0b013e3181a55273] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Mechanical ventilation is associated with overwhelming inflammatory responses that are associated with ventilator-induced lung injury (VILI) in patients with acute respiratory distress syndrome. The activation of adenosine A2A receptors has been reported to attenuate inflammatory cascades. HYPOTHESIS The administration of A2A receptors agonist ameliorates VILI. METHODS Rats were subjected to hemorrhagic shock and resuscitation as a first hit to induce systemic inflammation. The animals randomly received the selective A2A receptor agonist CGS-21680 or a vehicle control in a blinded fashion at the onset of resuscitation phase. They were then randomized to receive mechanical ventilation as a second hit with a high tidal volume of 20 mL/kg and zero positive end-expiratory pressure, or a low tidal volume of 6 mL/kg with positive end-expiratory pressure of 5 cm H2O. RESULTS The administration of CGS-21680 attenuated lung injury as evidenced by a decrease in respiratory elastance, lung edema, lung injury scores, neutrophil recruitment in the lung, and production of inflammatory cytokines, compared with the vehicle-treated animals. CONCLUSIONS The selective A2A receptor agonist may have a place as a novel therapeutic approach in reducing VILI.
Collapse
|
30
|
Sharma AK, Linden J, Kron IL, Laubach VE. Protection from pulmonary ischemia-reperfusion injury by adenosine A2A receptor activation. Respir Res 2009; 10:58. [PMID: 19558673 PMCID: PMC2711962 DOI: 10.1186/1465-9921-10-58] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/26/2009] [Indexed: 11/29/2022] Open
Abstract
Background Lung ischemia-reperfusion (IR) injury leads to significant morbidity and mortality which remains a major obstacle after lung transplantation. However, the role of various subset(s) of lung cell populations in the pathogenesis of lung IR injury and the mechanisms of cellular protection remain to be elucidated. In the present study, we investigated the effects of adenosine A2A receptor (A2AAR) activation on resident lung cells after IR injury using an isolated, buffer-perfused murine lung model. Methods To assess the protective effects of A2AAR activation, three groups of C57BL/6J mice were studied: a sham group (perfused for 2 hr with no ischemia), an IR group (1 hr ischemia + 1 hr reperfusion) and an IR+ATL313 group where ATL313, a specific A2AAR agonist, was included in the reperfusion buffer after ischemia. Lung injury parameters and pulmonary function studies were also performed after IR injury in A2AAR knockout mice, with or without ATL313 pretreatment. Lung function was assessed using a buffer-perfused isolated lung system. Lung injury was measured by assessing lung edema, vascular permeability, cytokine/chemokine activation and myeloperoxidase levels in the bronchoalveolar fluid. Results After IR, lungs from C57BL/6J wild-type mice displayed significant dysfunction (increased airway resistance, pulmonary artery pressure and decreased pulmonary compliance) and significant injury (increased vascular permeability and edema). Lung injury and dysfunction after IR were significantly attenuated by ATL313 treatment. Significant induction of TNF-α, KC (CXCL1), MIP-2 (CXCL2) and RANTES (CCL5) occurred after IR which was also attenuated by ATL313 treatment. Lungs from A2AAR knockout mice also displayed significant dysfunction, injury and cytokine/chemokine production after IR, but ATL313 had no effect in these mice. Conclusion Specific activation of A2AARs provides potent protection against lung IR injury via attenuation of inflammation. This protection occurs in the absence of circulating blood thereby indicating a protective role of A2AAR activation on resident lung cells such as alveolar macrophages. Specific A2AAR activation may be a promising therapeutic target for the prevention or treatment of pulmonary graft dysfunction in transplant patients.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA.
| | | | | | | |
Collapse
|
31
|
|
32
|
Lin CL, Dumont AS, Tsai YJ, Huang JH, Chang KP, Kwan AL, Hong YR, Howng SL. 17Beta-estradiol activates adenosine A(2a) receptor after subarachnoid hemorrhage. J Surg Res 2008; 157:208-15. [PMID: 19181336 DOI: 10.1016/j.jss.2008.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/15/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Our previous study showed that 17beta-estradiol (E2) and an adenosine A(2A) receptor (AR-A(2A)) agonist could attenuate subarachnoid hemorrhage (SAH)-induced cerebral vasospasm via preventing the augmentation of iNOS expression and preserving the normal eNOS expression. This study tests the hypothesis that E2 attenuates SAH-induced vasospasm and apoptosis by activating adenosine AR-A(2A) and extracellular signal-regulated kinase 1 and 2 (ERK1/2), and by altering antiapoptotic and proapoptotic protein expression (Bcl-2 and Bax, respectively). MATERIALS AND METHODS The two-hemorrhage SAH model in rat was used. Animals were treated with E2 with or without a nonselective estrogen receptor (ER) antagonist (ICI182,780). The cross sectional areas of the basilar artery and terminal dUTP nick-end labeling (TUNEL) were used to determine the degree of vasospasm and apoptosis, respectively. The expressions of Bcl-2, Bax, AR-A(2A), and ERK1/2 in the cerebral cortex, hippocampus, and dentate gyrus were investigated. RESULTS E2 significantly attenuated vasospasm. Seven days after the first SAH, TUNEL scores were significantly increased, and protein levels of AR-A(2A), ERK1/2, and Bcl-2 were significantly decreased in the dentate gyrus only but not in the cortex and hippocampus. These changes were reversed by E2 while ICI182,780 abrogated the antiapoptotic and anti-spastic effects of E2. The expression of Bax did not change in the dentate gyrus after SAH with or without treatment. CONCLUSIONS The down-regulated AR-A(2A) and ERK may play a role in vasospasm and apoptosis after SAH. The beneficial effect of E2 in the attenuating SAH-induced vasospasm and apoptosis may be due to an increased expression of AR-A(2A) and ERK via ER-dependent mechanisms. These data may support further investigation of E2 in the treatment of SAH in humans.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Song SW, Liu YF. Effect of adenosine A2 receptor agonist on oxygen free radicals and apoptosis during ischemia reperfusion injury in rat pancreas. Shijie Huaren Xiaohua Zazhi 2008; 16:3099-3102. [DOI: 10.11569/wcjd.v16.i27.3099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of adenosine A2 receptor agonist in protection from production of oxygeon free radicals and induction of apoptosis during ischemia and reperfusion injury in rat pancreas.
METHODS: The rats were divided randomly into sham, control and experimental groups. After 30 min clamping of subsplenic artery, normal saline (2 mL/kg body weight) or A2 receptor agonist CGS21680 (300 µg/kg body weight) was injected via dorsal penis vein, and at 15 min, 30 min and 60 min reperfusion, the changes of lipoperoxides (LPO), apoptosis and morphology in pancreas tissues were examined.
RESULTS: After 15, 30 and 60 min reperfusion, LPO increased significantly in control group compared with the sham operation group (8.25 ± 1.15 vs 1.63 ± 0.46, 10.67 ± 2.04 vs 1.85 ± 0.62, 15.31 ± 3.02 vs 2.02 ± 0.86, all P < 0.05) and experimental group (8.25 ± 1.15 vs 6.51 ± 1.38, 10.67 ± 2.04 vs 6.84 ± 1.74, 15.31 ± 3.02 vs 10.22 ± 2.91 µmol/L, all P < 0.05). Apoptosis increased significantly in control group compared with the sham operation group (0.55 ± 0.08 vs 0.18 ± 0.04, 1.21 ± 0.15 vs 0.20 ± 0.06, 2.63 ± 0.52 vs 0.23 ± 0.06, P < 0.05 or 0.01) and experimental group (0.55 ± 0.08 vs 0.32 ± 0.16 P < 0.05; 1.21 ± 0.15 vs 0.44 ± 0.20, 2.63 ± 0.52 vs 0.50 ± 0.43, all P < 0.05 or 0.01). In the control group, compared with 15 min reperfusion, LPO and apoptosis increased significantly at 30 min or 60 min reperfusion (P < 0.05 or 0.01). In sham operation group and experimental group, no remarked damage of pancreas was detected, but in control group, the pancreas damage became more serious with the prolonging of reperfusion.
CONCLUSION: Adenosine A2 receptor agonist attenuates postischemic production of oxygen free radicals and induction of apoptosis in pancreas tissues, thereby minimizes the ischemia reperfusion injury.
Collapse
|
34
|
Ellman PI, Reece TB, Law MG, Gazoni LM, Singh R, Laubach VE, Linden J, Tribble CG, Kron IL. Adenosine A2A Activation Attenuates Nontransplantation Lung Reperfusion Injury. J Surg Res 2008; 149:3-8. [DOI: 10.1016/j.jss.2007.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/01/2007] [Accepted: 08/14/2007] [Indexed: 11/17/2022]
|
35
|
Lisle TC, Gazoni LM, Fernandez LG, Sharma AK, Bellizzi AM, Shifflett GD, Schifflett GD, Laubach VE, Kron IL. Inflammatory lung injury after cardiopulmonary bypass is attenuated by adenosine A(2A) receptor activation. J Thorac Cardiovasc Surg 2008; 136:1280-7; discussion 1287-8. [PMID: 19026816 DOI: 10.1016/j.jtcvs.2008.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/06/2008] [Accepted: 07/05/2008] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cardiopulmonary bypass has been shown to exert an inflammatory response within the lung, often resulting in postoperative pulmonary dysfunction. Several studies have shown that adenosine A(2A) receptor activation attenuates lung ischemia-reperfusion injury; however, the effect of adenosine A(2A) receptor activation on cardiopulmonary bypass-induced lung injury has not been studied. We hypothesized that specific adenosine A(2A) receptor activation by ATL313 would attenuate inflammatory lung injury after cardiopulmonary bypass. METHODS Adult male Sprague-Dawley rats were randomly divided into 3 groups: 1) SHAM group (underwent cannulation + heparinization only); 2) CONTROL group (underwent 90 minutes of normothermic cardiopulmonary bypass with normal whole-blood priming solution; and 3) ATL group (underwent 90 minutes of normothermic cardiopulmonary bypass with ATL313 added to the normal priming solution). RESULTS There was significantly less pulmonary edema and lung injury in the ATL group compared with the CONTROL group. The ATL group had significant reductions in bronchoalveolar lavage interleukin-1, interleukin-6, interferon-gamma, and myeloperoxidase levels compared with the CONTROL group. Similarly, lung tissue interleukin-6, tumor necrosis factor-alpha, and interferon-gamma were significantly decreased in the ATL group compared with the CONTROL group. There was no significant difference between the SHAM and ATL groups in the amount of pulmonary edema, lung injury, or levels of proinflammatory cytokines. CONCLUSION The addition of a potent adenosine A(2A) receptor agonist to the normal priming solution before the initiation of cardiopulmonary bypass significantly protects the lung from the inflammatory effects of cardiopulmonary bypass and reduces the amount of lung injury. Adenosine A(2A) receptor agonists could represent a new therapeutic strategy for reducing the potentially devastating consequences of the inflammatory response associated with cardiopulmonary bypass.
Collapse
Affiliation(s)
- Turner C Lisle
- Department of Thoracic and Cardiovascular Surgery, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
BACKGROUND Although short-term findings after lung reperfusion have been extensively reported, in vivo animal studies have not described outcome beyond the immediate time period. Therefore, the authors evaluated lung injury 27 h after reperfusion. They also investigated whether attenuation of lung injury with the A3 adenosine receptor agonist MRS3558 was sustained beyond the immediate time period. METHODS In intact-chest, spontaneously breathing cats in which the left lower lung lobe was isolated and subjected to 2 h of ischemia and 3 h of reperfusion, MRS3558 was administered before reperfusion. Animals were killed 3 or 27 h after reperfusion. RESULTS When compared with 3 h of reperfusion, at 27 h the left lower lobe showed reduced apoptosis and no change in inflammation, but increased edema. Increased edema of the nonischemic right lung and hypoxemia were observed at 27 h after left lower lobe reperfusion. Increases in phosphorylated p38 levels were found at 3 h of reperfusion compared with control lung, with further increases at 27 h. The attenuation of injury observed with MRS3558 treatment at 3 h of reperfusion was sustained at 27 h. CONCLUSIONS Lung edema may worsen hours after the immediate postreperfusion period, even though lung apoptosis and inflammation are reduced or show no change, respectively. This was associated with further increases in phosphorylated p38 levels. The nonischemic lung may also be affected, suggesting a systemic response to reperfusion. In addition, early attenuation of injury is beneficial beyond the immediate period after reperfusion. Treatment aimed at inhibiting p38 activation, such as A3 receptor activation, should be further studied to explore its potential long-term beneficial effect.
Collapse
|
37
|
Anti-apoptotic effect of morphine-induced delayed preconditioning on pulmonary artery endothelial cells with anoxia/reoxygenation injury. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200807020-00013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Abstract
PURPOSE OF REVIEW Since pulmonary edema from increased endothelial permeability is the hallmark of acute lung injury, a frequently encountered entity in critical care medicine, the study of endothelial responses in this setting is crucial to the development of effective endothelial-targeted treatments. RECENT FINDINGS From the enormous amount of research in the field of endothelial pathophysiology, we have focused on work delineating endothelial alterations elicited by noxious stimuli implicated in acute lung injury. The bulk of the material covered deals with molecular and cellular aspects of the pathogenesis, reflecting current trends in the published literature. We initially discuss pathways of endothelial dysfunction in acute lung injury and then cover the mechanisms of endothelial protection. Several experimental treatments in animal models are presented, which aid in the understanding of the disease pathogenesis and provide evidence for potentially useful therapies. SUMMARY Mechanistic studies have delivered several interventions, which are effective in preventing and treating experimental acute lung injury and have thus provided objectives for translational studies. Some of these modalities may evolve into clinically useful tools in the treatment of this devastating illness.
Collapse
|
39
|
Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol 2008; 153 Suppl 1:S457-64. [PMID: 18311159 DOI: 10.1038/bjp.2008.23] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The intensity and duration of host responses are determined by protective mechanisms that control tissue injury by dampening down inflammation. Adenosine generation and consequent effects, mediated via A2A adenosine receptors (A2AR) on effector cells, play a critical role in the pathophysiological modulation of these responses in vivo. Adenosine is both released by hypoxic cells/tissues and is also generated from extracellular nucleotides by ecto-enzymes e.g. CD39 (ENTPD1) and CD73 that are expressed by the vasculature and immune cells, in particular by T regulatory cell. In general, these adenosinergic mechanisms minimize the extent of collateral damage to host tissues during the course of inflammatory reactions. However, induction of suppressive pathways might also cause escape of pathogens and permit dissemination. In addition, adenosinergic responses may inhibit immune responses while enhancing vascular angiogenic responses to malignant cells that promote tumor growth. Novel drugs that block A2AR-adenosinergic effects and/or adenosine generation have the potential to boost pathogen destruction and to selectively destroy malignant tissues. In the latter instance, future treatment modalities might include novel 'anti-adenosinergic' approaches that augment immune clearance of malignant cells and block permissive angiogenesis. This review addresses several possible pharmacological modalities to block adenosinergic pathways and speculates on their future application together with impacts on human disease.
Collapse
|
40
|
Baraldi PG, Tabrizi MA, Gessi S, Borea PA. Adenosine Receptor Antagonists: Translating Medicinal Chemistry and Pharmacology into Clinical Utility. Chem Rev 2008; 108:238-63. [DOI: 10.1021/cr0682195] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Pier Giovanni Baraldi
- Departments of Pharmaceutical Sciences and Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Departments of Pharmaceutical Sciences and Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Italy
| | - Stefania Gessi
- Departments of Pharmaceutical Sciences and Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Italy
| | - Pier Andrea Borea
- Departments of Pharmaceutical Sciences and Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Italy
| |
Collapse
|
41
|
Abstract
Lung epithelium is the primary site of lung damage in interstitial lung diseases. Although there are various initiating factors, the terminal stages are characterized by pulmonary fibrosis. Conventional therapy consisting of glucocorticoids or immunosuppressive drugs is usually ineffective. Epithelial cell apoptosis have been considered to be initial events in interstitial lung diseases. The death receptor-mediated signaling pathway directly induces caspase activation and apoptosis. Other stresses induce the release of cytochrome from mitochondria and caspase activation. Endoplasmic reticulum stress also induces apoptosis. Epithelial cell death is followed by remodeling processes, which consist of epithelial and fibroblast activation, cytokine production, activation of the coagulation pathway, neoangiogenesis, re-epithelialization and fibrosis. Epithelial and mesenchymal interaction plays important roles in these processes. Further understanding of apoptosis signaling may lead to effective strategies against devastating lung diseases. We review the role of epithelial cell apoptosis in the molecular mechanisms of pulmonary fibrosis.
Collapse
Affiliation(s)
- Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo.
| |
Collapse
|
42
|
Additive protection against lung ischemia-reperfusion injury by adenosine A2A receptor activation before procurement and during reperfusion. J Thorac Cardiovasc Surg 2007; 135:156-65. [PMID: 18179933 DOI: 10.1016/j.jtcvs.2007.08.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/20/2007] [Accepted: 08/01/2007] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Adenosine A2A receptor activation during reperfusion improves lung ischemia-reperfusion injury. In this study we sought to determine whether pretreatment of rabbits with a potent and selective adenosine A2A receptor agonist, ATL-313, before transplantation or whether adding ATL-313 to the preservation solution results in equivalent or additional protection compared with ATL-313 added during reperfusion. METHODS An isolated, ventilated, ex vivo blood-perfused rabbit lung model was used. All groups underwent 2 hours of reperfusion after 18 hours of cold ischemia (4 degrees C). ATL-313 was administered 1 hour before ischemia intravenously, with the preservation solution, and/or during reperfusion. RESULTS Both pretreatment of donor animals with ATL-313 or adding ATL-313 just during reperfusion improved pulmonary function, but significantly greater improvement was observed when pretreatment and treatment during reperfusion were combined (all P < .05). Myeloperoxidase levels, bronchoalveolar lavage tumor necrosis factor alpha levels, and pulmonary edema were all maximally decreased in the combined treatment group. The administration of an equimolar amount of the potent and highly selective adenosine 2A receptor antagonist, ZM 241385, along with ATL-313, resulted in the loss of protection conferred by ATL-313. CONCLUSIONS Adenosine A2A receptor activation with ATL-313 results in the greatest protection against lung ischemia-reperfusion injury when given before ischemia and during reperfusion. Improved pulmonary function observed with adenosine A2A receptor activation was correlated with decreased bronchoalveolar lavage tumor necrosis factor alpha and decreased lung myeloperoxidase. The loss of protection observed with the concurrent administration of the adenosine A2A receptor antagonist, ZM 241385, supports that the mechanism of ATL-313 protection is specifically mediated via adenosine A2A receptor activation.
Collapse
|
43
|
Palmer TM, Trevethick MA. Suppression of inflammatory and immune responses by the A(2A) adenosine receptor: an introduction. Br J Pharmacol 2007; 153 Suppl 1:S27-34. [PMID: 18026131 DOI: 10.1038/sj.bjp.0707524] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The purine nucleoside adenosine has been described as a 'retaliatory metabolite' by virtue of its ability to function in an autocrine manner to modify the activity of a range of cell types following its extracellular accumulation during cell stress or injury. These effects are largely protective and are triggered by the binding of adenosine to any of four G-protein-coupled adenosine receptors. Most of the anti-inflammatory effects of adenosine have been assigned to the adenosine A(2A) receptor subtype, which is expressed in many immune and inflammatory cells. In this brief article, we will outline the growing evidence to support the hypothesis that the development of agonists selective for the A(2A) receptor is an effective strategy for suppressing the exaggerated inflammatory responses associated with many diseases by virtue of the receptor's ability to inhibit multiple pro-inflammatory signalling cascades.
Collapse
Affiliation(s)
- T M Palmer
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | | |
Collapse
|
44
|
Zhang H, Lawson WE, Polosukhin VV, Pozzi A, Blackwell TS, Litingtung Y, Chiang C. Inhibitor of differentiation 1 promotes endothelial survival in a bleomycin model of lung injury in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1113-26. [PMID: 17717145 PMCID: PMC1988863 DOI: 10.2353/ajpath.2007.070226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Id family of genes encodes negative regulators of basic helix-loop-helix transcription factors and has been implicated in diverse cellular processes such as proliferation, apoptosis, differentiation, and migration. However, the specific role of Id1 in lung injury has not been investigated. Bleomycin has been widely used to generate animal models of acute lung injury and fibrogenesis. In this study we found that, on bleomycin challenge, Id1 expression was significantly up-regulated in the lungs, predominantly in endothelial cells, as revealed by double immunolabeling and quantitative flow cytometric analysis. Mice with Id1 loss-of-function (Id1(-/-)) displayed increased vascular permeability and endothelial apoptosis in the lungs after bleomycin-induced injury. Cultured Id1(-/-) lung microvascular endothelial cells also showed decreased survival when exposed to bleomycin. We detected a decrease in the level of Bcl-2, a primary anti-apoptotic protein, in Id1(-/-) endothelial cells, suggesting that down-regulated Bcl-2 may promote endothelial apoptosis in the lung. Therefore, we propose that Id1 plays a crucial role in promoting endothelial survival in the adult lung on injury. In addition, bleomycin-exposed Id1(-/-) mice showed increased lung collagen accumulation and fibrogenesis, suggesting that Id1 up-regulation in the lung may play a critical role in lung homeostasis.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
WHAT'S NEW IN SHOCK, MARCH 2007? Shock 2007. [DOI: 10.1097/shk.0b013e3180309751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|