1
|
Reynolds RP, Fan RR, Tinajero A, Luo X, Huen SC, Fujikawa T, Lee S, Lemoff A, Mountjoy KG, Elmquist JK. Alpha-melanocyte-stimulating hormone contributes to an anti-inflammatory response to lipopolysaccharide. Mol Metab 2024; 87:101986. [PMID: 38992428 PMCID: PMC11362619 DOI: 10.1016/j.molmet.2024.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVE During infection, metabolism and immunity react dynamically to promote survival through mechanisms that remain unclear. Pro-opiomelanocortin (POMC) cleavage products are produced and released in the brain and in the pituitary gland. One POMC cleavage product, alpha-melanocyte-stimulating hormone (α-MSH), is known to regulate food intake and energy expenditure and has anti-inflammatory effects. However, it is not known whether α-MSH is required to regulate physiological anti-inflammatory responses. We recently developed a novel mouse model with a targeted mutation in Pomc (Pomctm1/tm1 mice) to block production of all α-MSH forms which are required to regulate metabolism. To test whether endogenous α-MSH is required to regulate immune responses, we compared acute bacterial lipopolysaccharide (LPS)-induced inflammation between Pomctm1/tm1 and wild-type Pomcwt/wt mice. METHODS We challenged 10- to 14-week-old male Pomctm1/tm1 and Pomcwt/wt mice with single i.p. injections of either saline or low-dose LPS (100 μg/kg) and monitored immune and metabolic responses. We used telemetry to measure core body temperature (Tb), ELISA to measure circulating cytokines, corticosterone and α-MSH, and metabolic chambers to measure body weight, food intake, activity, and respiration. We also developed a mass spectrometry method to measure three forms of α-MSH produced in the mouse hypothalamus and pituitary gland. RESULTS LPS induced an exaggerated immune response in Pomctm1/tm1 compared to Pomcwt/wt mice. Both groups of mice were hypoactive and hypothermic following LPS administration, but Pomctm1/tm1 mice were significantly more hypothermic compared to control mice injected with LPS. Pomctm1/tm1 mice also had reduced oxygen consumption and impaired metabolic responses to LPS compared to controls. Pomctm1/tm1 mice had increased levels of key proinflammatory cytokines at 2 h and 4 h post LPS injection compared to Pomcwt/wt mice. Lastly, Pomcwt/wt mice injected with LPS compared to saline had increased total α-MSH in circulation 2 h post injection. CONCLUSIONS Our data indicate endogenous α-MSH contributes to the inflammatory immune responses triggered by low-dose LPS administration and suggest that targeting the melanocortin system could be a potential therapeutic for the treatment of sepsis or inflammatory disease.
Collapse
Affiliation(s)
- R P Reynolds
- Department of Internal Medicine, Center for Hypothalamic Research, Dallas, TX, USA
| | - R R Fan
- Department of Internal Medicine, Center for Hypothalamic Research, Dallas, TX, USA
| | - A Tinajero
- Department of Internal Medicine, Center for Hypothalamic Research, Dallas, TX, USA
| | - X Luo
- Department of Biochemistry, Dallas, TX, USA
| | - S C Huen
- Department of Internal Medicine (Nephrology) and Pharmacology, Dallas, TX, USA
| | - T Fujikawa
- Department of Internal Medicine, Center for Hypothalamic Research, Dallas, TX, USA; The Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - S Lee
- Department of Internal Medicine, Center for Hypothalamic Research, Dallas, TX, USA
| | - A Lemoff
- Department of Biochemistry, Dallas, TX, USA
| | - K G Mountjoy
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland 1043, New Zealand
| | - J K Elmquist
- Department of Internal Medicine, Center for Hypothalamic Research, Dallas, TX, USA; The Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Noera G, Bertolini A, Calzà L, Gori M, Pitino A, D'Arrigo G, Egan CG, Tripepi G. Effect of early administration of tetracosactide on mortality and host response in critically ill patients requiring rescue surgery: a sensitivity analysis of the STOPSHOCK phase 3 randomized controlled trial. Mil Med Res 2024; 11:56. [PMID: 39160574 PMCID: PMC11331742 DOI: 10.1186/s40779-024-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Undifferentiated shock is recognized as a criticality state that is transitional in immune-mediated topology for casual risk of lethal microcirculatory dysfunction. This was a sensitivity analysis of a drug (tetracosactide; TCS10) targeting melanocortin receptors (MCRs) in a phase 3 randomized controlled trial to improve cardiovascular surgical rescue outcome by reversing mortality and hemostatic disorders. METHODS Sensitivity analysis was based on a randomized, two-arm, multicenter, double-blind, controlled trial. The Naïve Bayes classifier was performed by density-based sensitivity index for principal strata as proportional hazard model of 30-day surgical risk mortality according to European System for Cardiac Operative Risk Evaluation inputs-outputs in 100 consecutive cases (from August to September 2013 from Emilia Romagna region, Italy). Patients included an agent-based TCS10 group (10 mg, single intravenous bolus before surgery; n = 56) and control group (n = 44) and the association with cytokines, lactate, and bleeding-blood transfusion episodes with the prior-risk log-odds for mortality rate in time-to-event was analyzed. RESULTS Thirty-day mortality was significantly improved in the TCS10 group vs. control group (0 vs. 8 deaths, P < 0.0001). Baseline levels of interleukin (IL)-6, IL-10, and lactate were associated with bleeding episodes, independent of TCS10 treatment [odds ratio (OR) = 1.90, 95% confidence interval (CI) 1.39-2.79; OR = 1.53, 95%CI 1.17-2.12; and OR = 2.92, 95%CI 1.40-6.66, respectively], while baseline level of Fms-like tyrosine kinase 3 ligand (Flt3L) was associated with lower bleeding rates in TCS10-treated patients (OR = 0.31, 95%CI 0.11-0.90, P = 0.03). For every 8 TCS10-treated patients, 1 bleeding case was avoided. Blood transfusion episodes were significantly reduced in the TCS10 group compared to the control group (OR = 0.32, 95%CI 0.14-0.73, P = 0.01). For every 4 TCS10-treated patients, 1 transfusion case was avoided. CONCLUSIONS Sensitivity index underlines the quality target product profile of TCS10 in the runway of emergency casualty care. To introduce the technology readiness level in real-life critically ill patients, further large-scale studies are required. TRIAL REGISTRATION European Union Drug Regulating Authorities Clinical Trials Database (EudraCT Number: 2007-006445-41 ).
Collapse
Affiliation(s)
- Giorgio Noera
- Health Ricerca e Sviluppo, Global Contractor for STOPSHOCK National Plan of Military Research Ministry of Defence, Rome, 00187, Italy.
| | - Alfio Bertolini
- Department of Medicine and Division of Clinical Pharmacology, School of Medicine, UNIMORE, Policlinico, Modena, 41124, Italy
| | - Laura Calzà
- IRET Foundation, Ozzano Dell' Emilia, Bologna, 40064, Italy
| | - Mercedes Gori
- Institute of Clinical Physiology (IFC-CNR), Section of Rome, Rome, 00185, Italy
| | - Annalisa Pitino
- Institute of Clinical Physiology (IFC-CNR), Section of Rome, Rome, 00185, Italy
| | - Graziella D'Arrigo
- National Research Council-Institute of Clinical Physiology, Reggio Calabria, 89124, Italy
| | | | - Giovanni Tripepi
- National Research Council-Institute of Clinical Physiology, Reggio Calabria, 89124, Italy
| |
Collapse
|
3
|
Lescoat A, Roofeh D, Kuwana M, Lafyatis R, Allanore Y, Khanna D. Therapeutic Approaches to Systemic Sclerosis: Recent Approvals and Future Candidate Therapies. Clin Rev Allergy Immunol 2023; 64:239-261. [PMID: 34468946 PMCID: PMC9034469 DOI: 10.1007/s12016-021-08891-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis is the rheumatic disease with the highest individual mortality. The severity of the disease is determined by the extent of fibrotic changes to cutaneous and internal organ tissues, the most life-threatening visceral manifestations being interstitial lung disease, SSc-associated-pulmonary arterial hypertension and myocardial involvement. The heterogeneity of the disease has initially hindered the design of successful clinical trials, but considerations on classification criteria have improved patient selection in trials, allowing the identification of more homogeneous groups of patients based on progressive visceral manifestations or the extent of skin involvement with a focus of patients with early disease. Two major subsets of systemic sclerosis are classically described: limited cutaneous systemic sclerosis characterized by distal skin fibrosis and the diffuse subset with distal and proximal skin thickening. Beyond this dichotomic subgrouping of systemic sclerosis, new phenotypic considerations based on antibody subtypes have provided a better understanding of the heterogeneity of the disease, anti-Scl70 antibodies being associated with progressive interstitial lung disease regardless of cutaneous involvement. Two targeted therapies, tocilizumab (a monoclonal antibody targeting interleukin-6 receptors (IL-6R)) and nintedanib (a tyrosine kinase inhibitor), have recently been approved by the American Food & Drug Administration to limit the decline of lung function in patients with SSc-associated interstitial lung disease, demonstrating that such better understanding of the disease pathogenesis with the identification of key targets can lead to therapeutic advances in the management of some visceral manifestations of the disease. This review will provide a brief overview of the pathogenesis of SSc and will present a selection of therapies recently approved or evaluated in this context. Therapies evaluated and approved in SSc-ILD will be emphasized and a review of recent phase II trials in diffuse cutaneous systemic sclerosis will be proposed. We will also discuss selected therapeutic pathways currently under investigation in systemic sclerosis that still lack clinical data in this context but that may show promising results in the future based on preclinical data.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - David Roofeh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yannick Allanore
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université de Paris, Université Paris Descartes, Paris, France
- Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Rinne P, Taylor AW, Montero-Melendez T. Editorial: Melanocortins and melanocortin receptors in the regulation of inflammation: mechanisms and novel therapeutic strategies. Front Immunol 2023; 14:1226886. [PMID: 37325641 PMCID: PMC10265466 DOI: 10.3389/fimmu.2023.1226886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
- Petteri Rinne
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Andrew W Taylor
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| | | |
Collapse
|
5
|
Khodeneva N, Sugimoto MA, Davan-Wetton CSA, Montero-Melendez T. Melanocortin therapies to resolve fibroblast-mediated diseases. Front Immunol 2023; 13:1084394. [PMID: 36793548 PMCID: PMC9922712 DOI: 10.3389/fimmu.2022.1084394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
Stromal cells have emerged as central drivers in multiple and diverse diseases, and consequently, as potential new cellular targets for the development of novel therapeutic strategies. In this review we revise the main roles of fibroblasts, not only as structural cells but also as players and regulators of immune responses. Important aspects like fibroblast heterogeneity, functional specialization and cellular plasticity are also discussed as well as the implications that these aspects may have in disease and in the design of novel therapeutics. An extensive revision of the actions of fibroblasts on different conditions uncovers the existence of numerous diseases in which this cell type plays a pathogenic role, either due to an exacerbation of their 'structural' side, or a dysregulation of their 'immune side'. In both cases, opportunities for the development of innovative therapeutic approaches exist. In this regard, here we revise the existing evidence pointing at the melanocortin pathway as a potential new strategy for the treatment and management of diseases mediated by aberrantly activated fibroblasts, including scleroderma or rheumatoid arthritis. This evidence derives from studies involving models of in vitro primary fibroblasts, in vivo models of disease as well as ongoing human clinical trials. Melanocortin drugs, which are pro-resolving mediators, have shown ability to reduce collagen deposition, activation of myofibroblasts, reduction of pro-inflammatory mediators and reduced scar formation. Here we also discuss existing challenges, both in approaching fibroblasts as therapeutic targets, and in the development of novel melanocortin drug candidates, that may help advance the field and deliver new medicines for the management of diseases with high medical needs.
Collapse
|
6
|
Webber T, Ronacher K, Conradie-Smit M, Kleynhans L. Interplay Between the Immune and Endocrine Systems in the Lung: Implications for TB Susceptibility. Front Immunol 2022; 13:829355. [PMID: 35273609 PMCID: PMC8901994 DOI: 10.3389/fimmu.2022.829355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/02/2022] [Indexed: 12/25/2022] Open
Abstract
The role of the endocrine system on the immune response, especially in the lung, remains poorly understood. Hormones play a crucial role in the development, homeostasis, metabolism, and response to the environment of cells and tissues. Major infectious and metabolic diseases, such as tuberculosis and diabetes, continue to converge, necessitating the development of a clearer understanding of the immune and endocrine interactions that occur in the lung. Research in bacterial respiratory infections is at a critical point, where the limitations in identifying and developing antibiotics is becoming more profound. Hormone receptors on alveolar and immune cells may provide a plethora of targets for host-directed therapy. This review discusses the interactions between the immune and endocrine systems in the lung. We describe hormone receptors currently identified in the lungs, focusing on the effect hormones have on the pulmonary immune response. Altered endocrine responses in the lung affect the balance between pro- and anti-inflammatory immune responses and play a role in the response to infection in the lung. While some hormones, such as leptin, resistin and lipocalin-2 promote pro-inflammatory responses and immune cell infiltration, others including adiponectin and ghrelin reduce inflammation and promote anti-inflammatory cell responses. Furthermore, type 2 diabetes as a major endocrine disease presents with altered immune responses leading to susceptibility to lung infections, such as tuberculosis. A better understanding of these interactions will expand our knowledge of the mechanisms at play in susceptibility to infectious diseases and may reveal opportunities for the development of host-directed therapies.
Collapse
Affiliation(s)
- Tariq Webber
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Katharina Ronacher
- Translational Research Institute, Mater Research Institute - The University of Queensland, Brisbane, QLD, Australia
| | - Marli Conradie-Smit
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
7
|
Galiniak S, Podgórski R, Rachel M, Mazur A. Serum levels of hormones regulating appetite in patients with cystic fibrosis - a single-center, cross-sectional study. Front Endocrinol (Lausanne) 2022; 13:992667. [PMID: 36313742 PMCID: PMC9606394 DOI: 10.3389/fendo.2022.992667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF), which is the most common inherited genetically determined disease caused by a mutation in the gene for the CF transmembrane conductance regulator protein. Pulmonary failure is the leading cause of death in this population, while the dysregulation of endocrine system creates significant disorders, including malnutrition, underweight, and CF-related diabetes. Therefore, the objective of our study was to determine the following hormones in the serum of patients with CF: ghrelin, putative peptide YY (PYY), Agouti-signaling protein (ASP), and alpha-melanocyte-stimulating hormone (α-MSH). To our knowledge, serum levels of PYY, ASP, and α-MSH have not yet been assessed in CF. For this purpose, we measured hormone levels using enzyme-linked immunosorbent assays in 38 patients from the local CF care center, as well as 16 sex- and age-matched healthy controls. Moreover, we estimated the correlations between the tested hormones and the parameters of the patients' clinical status. In this study, we found sinificantly reduced serum levels of ghrelin and ASP in patients with CF (p<0.01). There was no difference in PYY and α-MSH levels between participants with CF and healthy subjects. Furthermore, there was no difference in hormone levels between females and males with CF. The type of gene mutation (homozygous or heterozygous for ΔF508) had no effect on hormone levels. Ghrelin was negatively correlated with age, body mass index, and C-reactive protein. PYY was negatively associated with the age of the patients. Hormone dysregulation in CF may contribute to decreased appetite, as well as many other disturbed processes. Therefore, ghrelin appears to play a key role in the regulation of energy management of CF. Future multicenter and multidisciplinary studies should focus on an unequivocal understanding of the role of these hormones in CF.
Collapse
|
8
|
Li C, Wu M, Gu L, Yin M, Li H, Yuan W, Lin J, Wang Q, Xu Q, Jiang N, Zhao G. α- MSH plays anti-inflammatory and anti-fungal role in Aspergillus Fumigatus keratitis. Curr Eye Res 2021; 47:343-351. [PMID: 34766863 DOI: 10.1080/02713683.2021.2006235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate the anti-inflammatory and anti-fungal role of α-melanocyte stimulating hormone (α-MSH) in Aspergillus Fumigatus (A. fumigatus) keratitis. METHOD Corneas of C57BL/6 mice were infected with A. Fumigatus. α-MSH (5 ul, 1x10-4mmol/ml) was given by subconjunctival injection from day 1 to day 3 post infection (p.i.). After 3 days p.i., clinical score was recored and HE staining was tested. Fungal load in mice corneas was observed by plate counting. Pro-inflammatory mediators and pattern recognition receptors (PRRs) were detected. The numbers of neutrophils and macrophages were tested by immunofluorescence staining. The role of α-MSH in RAW264.7 cells after A. fumigatus stimulation were evaluated by PCR and Western blot, and MPKA protein levels including total-JNK (T-JNK), phosphorylated-JNK (P-JNK), total-ERK (T-ERK) and phosphorylated-ERK (P-ERK) were tested via Western blot with or without α-MSH treatment. RESULTS Compared with PBS control group, α-MSH treatment alleviated disease response and decreased clinical score at 3 days p.i. HE staining showed less infiltration in corneal tissue after α-MSH treatment. Plate counting experiment showed that number of viable fungus in corneas of α-MSH treated group was less than control group. mRNA levels of IL-1β, TNF-α, IL-6, MIP-2, LOX-1, Dectin-1 and iNOS were decreased. Protein levels of IL-1β, TNF-α, IL-6 and Dectin-1 were decreased. α-MSH treatment also decreased the infiltrating neutrophils and macrophages. The levels of pro-inflammatory cytokines, Dectin-1 and LOX-1 stimulated by A. fumigatus, were also suppressed by pretreatment of α-MSH in RAW264.7 cells. The ratio of P-JNK/T-JNK and P-ERK/T-ERK were down regulated in α-MSH group compared with PBS control group. CONCLUSION α-MSH alleviates the severity and decreases fungal load of A. fumigatus keratitis in mice. Migration of neutrophils and macrophages are restrained. α-MSH downregulates the expression of dectin-1 and the ratio of P-JNK/T-JNK and P-ERK/T-ERK in A. fumigatus infection.
Collapse
Affiliation(s)
- Cui Li
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Mengqi Wu
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Lingwen Gu
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Min Yin
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Hui Li
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Wu Yuan
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Jing Lin
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Qian Wang
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Qiang Xu
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Nan Jiang
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Guiqiu Zhao
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| |
Collapse
|
9
|
Lonati C, Battistin M, Dondossola DE, Bassani GA, Brambilla D, Merighi R, Leonardi P, Carlin A, Meroni M, Zanella A, Catania A, Gatti S. NDP-MSH treatment recovers marginal lungs during ex vivo lung perfusion (EVLP). Peptides 2021; 141:170552. [PMID: 33865932 DOI: 10.1016/j.peptides.2021.170552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022]
Abstract
The increasing use of marginal lungs for transplantation encourages novel approaches to improve graft quality. Melanocortins and their receptors (MCRs) exert multiple beneficial effects in pulmonary inflammation. We tested the idea that treatment with the synthetic α-melanocyte-stimulating hormone analogue [Nle4,D-Phe7]-α-MSH (NDP-MSH) during ex vivo lung perfusion (EVLP) could exert positive influences in lungs exposed to different injuries. Rats were assigned to one of the following protocols (N = 10 each): 1) ischemia/reperfusion (IR) or 2) cardiac death (CD) followed by ex vivo perfusion. NDP-MSH treatment was performed in five rats of each protocol before lung procurement and during EVLP. Pulmonary function and perfusate concentration of gases, electrolytes, metabolites, nitric-oxide, mediators, and cells were assessed throughout EVLP. ATP content and specific MCR expression were investigated in perfused lungs and in biopsies collected from rats in resting conditions (Native, N = 5). NDP-MSH reduced the release of inflammatory mediators in perfusates of both the IR and the CD groups. Treatment was likewise associated with a lesser amount of leukocytes (IR: p = 0.034; CD: p = 0.002) and reduced lactate production (IR: p = 0.010; CD: p = 0.008). In lungs exposed to IR injury, the NDP-MSH group showed increased ATP content (p = 0.040) compared to controls. In CD lungs, a significant improvement of vascular (p = 0.002) and airway (Ppeak: p < 0.001, compliance: p < 0.050, pO2: p < 0.001) parameters was observed. Finally, the expression of MC1R and MC5R was detected in both native and ex vivo-perfused lungs. The results indicate that NDP-MSH administration preserves lung function through broad positive effects on multiple pathways and suggest that exploitation of the melanocortin system during EVLP could improve reconditioning of marginal lungs before transplantation.
Collapse
Affiliation(s)
- Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy.
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy; Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico of Milan, via Francesco Sforza 35, 20100, Italy
| | - Daniele E Dondossola
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20100, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20100, Milan, Italy
| | - Giulia A Bassani
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy
| | - Daniela Brambilla
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy
| | - Riccardo Merighi
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy
| | - Patrizia Leonardi
- Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20100, Milan, Italy
| | - Andrea Carlin
- Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20100, Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, Milan, 20122, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20100, Milan, Italy; Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20100, Milan, Italy
| | - Anna Catania
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy; Emeritus, Italy
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20100, Milan, Italy
| |
Collapse
|
10
|
Lescoat A, Varga J, Matucci-Cerinic M, Khanna D. New promising drugs for the treatment of systemic sclerosis: pathogenic considerations, enhanced classifications, and personalized medicine. Expert Opin Investig Drugs 2021; 30:635-652. [PMID: 33909517 PMCID: PMC8292968 DOI: 10.1080/13543784.2021.1923693] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Introduction: Systemic sclerosis (SSc), also known as scleroderma, is a complex orphan disease characterized by early inflammatory features, vascular hyper-reactivity, and fibrosis of the skin and internal organs. Although substantial progress has been made in the understanding of the pathogenesis of SSc, there is still no disease-modifying drug that could significantly impact the natural history of the disease.Areas covered: This review discusses the rationale, preclinical evidence, first clinical eevidence,and pending issues concerning new promising therapeutic options that are under investigation in SSc. The search strategy was based on PubMed database and clinical trial.gov, highlighting recent key pathogenic aspects and phase I or II trials of investigational drugs in SSc.Expert opinion: The identification of new molecular entities that potentially impact inflammation and fibrosis may constitute promising options for a disease modifying-agent in SSc. The early combinations of antifibrotic drugs (such as pirfenidone) with immunomodulatory agents (such as mycophenolate mofetil) may also participate to achieve such a goal. A more refined stratification of patients, based on clinical features, molecular signatures, and identification of subpopulations with distinct clinical trajectories, may also improve management strategies in the future.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Dinparastisaleh R, Mirsaeidi M. Antifibrotic and Anti-Inflammatory Actions of α-Melanocytic Hormone: New Roles for an Old Player. Pharmaceuticals (Basel) 2021; 14:ph14010045. [PMID: 33430064 PMCID: PMC7827684 DOI: 10.3390/ph14010045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
The melanocortin system encompasses melanocortin peptides, five receptors, and two endogenous antagonists. Besides pigmentary effects generated by α-Melanocytic Hormone (α-MSH), new physiologic roles in sexual activity, exocrine secretion, energy homeostasis, as well as immunomodulatory actions, exerted by melanocortins, have been described recently. Among the most common and burdensome consequences of chronic inflammation is the development of fibrosis. Depending on the regenerative capacity of the affected tissue and the quality of the inflammatory response, the outcome is not always perfect, with the development of some fibrosis. Despite the heterogeneous etiology and clinical presentations, fibrosis in many pathological states follows the same path of activation or migration of fibroblasts, and the differentiation of fibroblasts to myofibroblasts, which produce collagen and α-SMA in fibrosing tissue. The melanocortin agonists might have favorable effects on the trajectories leading from tissue injury to inflammation, from inflammation to fibrosis, and from fibrosis to organ dysfunction. In this review we briefly summarized the data on structure, receptor signaling, and anti-inflammatory and anti-fibrotic properties of α-MSH and proposed that α-MSH analogues might be promising future therapeutic candidates for inflammatory and fibrotic diseases, regarding their favorable safety profile.
Collapse
Affiliation(s)
- Roshan Dinparastisaleh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL 33146, USA
- Correspondence: ; Tel.: +1-305-243-1377
| |
Collapse
|
12
|
Lonati C, Gatti S, Catania A. Activation of Melanocortin Receptors as a Potential Strategy to Reduce Local and Systemic Reactions Induced by Respiratory Viruses. Front Endocrinol (Lausanne) 2020; 11:569241. [PMID: 33362713 PMCID: PMC7758465 DOI: 10.3389/fendo.2020.569241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
The clinical hallmarks of infections caused by critical respiratory viruses consist of pneumonia, which can progress to acute lung injury (ALI), and systemic manifestations including hypercoagulopathy, vascular dysfunction, and endotheliitis. The disease outcome largely depends on the immune response produced by the host. The bio-molecular mechanisms underlying certain dire consequences of the infection partly arise from an aberrant production of inflammatory molecules, an event denoted as "cytokine storm". Therefore, in addition to antiviral therapies, molecules able to prevent the injury caused by cytokine excess are under investigation. In this perspective, taking advantage of melanocortin peptides and their receptors, components of an endogenous modulatory system that exerts marked anti-inflammatory and immunomodulatory influences, could be an effective therapeutic strategy to control disease evolution. Exploiting the melanocortin system using natural or synthetic ligands can form a realistic basis to counteract certain deleterious effects of respiratory virus infections. The central and peripheral protective actions exerted following melanocortin receptor activation could allow dampening the harmful events that trigger the cytokine storm and endothelial dysfunction while sustaining the beneficial signals required to elicit repair mechanisms. The long standing evidence for melanocortin safety encourages this approach.
Collapse
Affiliation(s)
- Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | |
Collapse
|
13
|
Recchiuti A, Patruno S, Plebani R, Romano M. The Resolution Approach to Cystic Fibrosis Inflammation. Front Pharmacol 2020; 11:1129. [PMID: 32848748 PMCID: PMC7403222 DOI: 10.3389/fphar.2020.01129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/10/2020] [Indexed: 01/11/2023] Open
Abstract
Despite the high expectations associated with the recent introduction of CFTR modulators, airway inflammation still remains a relevant clinical issue in cystic fibrosis (CF). The classical anti-inflammatory drugs have shown very limited efficacy, when not being harmful, raising the question of whether alternative approaches should be undertaken. Thus, a better knowledge of the mechanisms underlying the aberrant inflammation observed in CF is pivotal to develop more efficacious pharmacology. In this respect, the observation that endogenous proresolving pathways are defective in CF and that proresolving mediators, physiologically generated during an acute inflammatory reaction, do not completely suppress inflammation, but promote resolution, tissue healing and microbial clearance, without compromising immune host defense mechanisms, opens interesting therapeutic scenarios for CF. In this mini-review, we present the current knowledge and perspectives of proresolving pharmacology in CF, focusing on the specialized proresolving lipid mediators and selected peptides.
Collapse
Affiliation(s)
- Antonio Recchiuti
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Patruno
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberto Plebani
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mario Romano
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
14
|
Moscowitz AE, Asif H, Lindenmaier LB, Calzadilla A, Zhang C, Mirsaeidi M. The Importance of Melanocortin Receptors and Their Agonists in Pulmonary Disease. Front Med (Lausanne) 2019; 6:145. [PMID: 31316990 PMCID: PMC6610340 DOI: 10.3389/fmed.2019.00145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Melanocortin agonists are ancient neuropeptides that have steroidogenesis and anti-inflammatory properties. They activate melanocortin receptors (MCR), a family of five seven-transmembrane G-protein coupled receptors. MC1R and MC3R are mainly involved in immunomodulatory effects. Adrenocorticotropin hormone (ACTH) and alpha-Melanocortin stimulating hormone (α-MSH) reduce pro-inflammatory cytokines in several pulmonary inflammatory disorders including asthma, sarcoidosis, and the acute respiratory distress syndrome. They have also been shown to reduce fibrogenesis in animal models with pulmonary fibrosis. By understanding the functions of MCR in macrophages, T-helper cell type 1, and T-helper cell type 17, we may uncover the mechanism of action of melanocortin agonists in sarcoidosis. Further translational and clinical research is needed to define the role of ACTH and α-MSH in pulmonary diseases.
Collapse
Affiliation(s)
| | - Huda Asif
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, United States
| | | | - Andrew Calzadilla
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, United States
| | - Chongxu Zhang
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, United States
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, United States.,Section of Pulmonary, Miami VA Healthcare System, Miami, FL, United States
| |
Collapse
|
15
|
Webering S, Lunding LP, Vock C, Schröder A, Gaede KI, Herzmann C, Fehrenbach H, Wegmann M. The alpha-melanocyte-stimulating hormone acts as a local immune homeostasis factor in experimental allergic asthma. Clin Exp Allergy 2019; 49:1026-1039. [PMID: 30980429 DOI: 10.1111/cea.13400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 03/23/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Originally, the neuropeptide α-melanocyte-stimulating hormone (α-MSH) has been described as a mediator of skin pigmentation. However, recent studies have shown that α-MSH is able to modulate inflammation in various tissues including the lung. So far, it is still not clear whether α-MSH also plays a role in allergic bronchial asthma. OBJECTIVE This study aimed at investigating the role and regulatory mechanisms of α-MSH in asthma pathogenesis. METHODS α-MSH levels were measured in bronchoalveolar lavage (BAL) fluid of asthmatic and non-asthmatic individuals as well as of healthy mice and mice with experimental asthma. Wild-type mice were sensitized to ovalbumin (OVA) and exposed to an OVA aerosol in order to induce experimental allergic asthma. α-MSH was administrated intratracheally, the α-MSH antibody intraperitoneally prior each OVA challenge. Airway inflammation, cytokine production, mucus production, airway hyperresponsiveness and receptor expression were assessed. RESULTS α-MSH levels in BAL of asthmatic individuals and mice were significantly higher compared to healthy controls. In a mouse model of experimental asthma, α-MSH neutralization increased airway inflammation and mucus production, whereas local administration of α-MSH significantly reduced inflammation of the airways. The beneficial effects were further associated with decreased levels of eosinophilic chemoattractant factors that are released by MC5R-positive T helper 2 and airway epithelial cells. CONCLUSION AND CLINICAL RELEVANCE α-MSH acts as a regulatory factor to maintain local immune homeostasis in allergic bronchial asthma.
Collapse
Affiliation(s)
- Sina Webering
- Division of Asthma Exacerbation & Regulation, Priority Area Asthma & Allergy, Research Center Borstel- Leibniz Lung Center, Borstel, Germany
| | - Lars Peter Lunding
- Division of Asthma Exacerbation & Regulation, Priority Area Asthma & Allergy, Research Center Borstel- Leibniz Lung Center, Borstel, Germany
| | - Christina Vock
- Division of Experimental Pneumology, Priority Area Asthma & Allergy, Research Center Borstel- Leibniz Lung Center, Borstel, Germany
| | - Alexandra Schröder
- Division of Asthma Exacerbation & Regulation, Priority Area Asthma & Allergy, Research Center Borstel- Leibniz Lung Center, Borstel, Germany
| | - Karoline I Gaede
- BioMaterialBank Nord, Research Center Borstel- Leibniz Lung Center, Borstel, Germany
| | - Christian Herzmann
- Center for Clinical Studies, Research Center Borstel- Leibniz Lung Center, Borstel, Germany
| | - Heinz Fehrenbach
- Division of Experimental Pneumology, Priority Area Asthma & Allergy, Research Center Borstel- Leibniz Lung Center, Borstel, Germany
| | - Michael Wegmann
- Division of Asthma Exacerbation & Regulation, Priority Area Asthma & Allergy, Research Center Borstel- Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
16
|
Böhm M, Luger T. Are melanocortin peptides future therapeutics for cutaneous wound healing? Exp Dermatol 2019; 28:219-224. [PMID: 30661264 DOI: 10.1111/exd.13887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Cutaneous wound healing is a complex process divided into different phases, that is an inflammatory, proliferative and remodelling phase. During these phases, a variety of resident skin cell types but also cells of the immune system orchestrate the healing process. In the last year, it has been shown that the majority of cutaneous cell types express the melanocortin 1 receptor (MC1R) that binds α-melanocyte-stimulating hormone (α-MSH) with high affinity and elicits pleiotropic biological effects, for example modulation of inflammation and immune responses, cytoprotection, antioxidative defense and collagen turnover. Truncated α-MSH peptides such as Lys-Pro-Val (KPV) as well as derivatives like Lys-d-Pro-Thr (KdPT), the latter containing the amino acid sequence 193-195 of interleukin-1β, have been found to possess anti-inflammatory effects but to lack the pigment-inducing activity of α-MSH. We propose here that such peptides are promising future candidates for the treatment of cutaneous wounds and skin ulcers. Experimental approaches in silico, in vitro, ex vivo and in animal models are outlined. This is followed by an unbiased discussion of the pro and contra arguments of such peptides as future candidates for the therapeutic management of cutaneous wounds and a review of the so-far available data on melanocortin peptides and derivatives in wound healing.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, University of Münster, Münster, Germany
| | - Thomas Luger
- Department of Dermatology, Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Wang W, Guo DY, Lin YJ, Tao YX. Melanocortin Regulation of Inflammation. Front Endocrinol (Lausanne) 2019; 10:683. [PMID: 31649620 PMCID: PMC6794349 DOI: 10.3389/fendo.2019.00683] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
Adrenocorticotropic hormone (ACTH), and α-, β-, and γ-melanocyte-stimulating hormones (α-, β-, γ-MSH), collectively known as melanocortins, together with their receptors (melanocortin receptors), are components of an ancient modulatory system. The clinical use of ACTH in the treatment of rheumatoid arthritis started in 1949, originally thought that the anti-inflammatory action was through hypothalamus-pituitary-adrenal axis and glucocorticoid-dependent. Subsequent decades have witnessed extensive attempts in unraveling the physiology and pharmacology of the melanocortin system. It is now known that ACTH, together with α-, β-, and γ-MSHs, also possess glucocorticoid-independent anti-inflammatory and immunomodulatory effects by activating the melanocortin receptors expressed in the brain or peripheral immune cells. This review will briefly introduce the melanocortin system and highlight the action of melanocortins in the regulation of immune functions from in vitro, in vivo, preclinical, and clinical studies. The potential therapeutic use of melanocortins are also summarized.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- *Correspondence: Dong-Yu Guo
| | - Yue-Jun Lin
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Ya-Xiong Tao
| |
Collapse
|
18
|
Lee YJ, Lee SH, Youn YS, Choi JY, Song KS, Cho MS, Kang JL. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice. Toxicol Appl Pharmacol 2012; 263:61-72. [PMID: 22687607 DOI: 10.1016/j.taap.2012.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 12/31/2022]
Abstract
Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
STY39, a Novel Alpha-Melanocyte-Stimulating Hormone Analogue, Attenuates Bleomycin-Induced Pulmonary Inflammation and Fibrosis in Mice. Shock 2011; 35:308-14. [DOI: 10.1097/shk.0b013e3181f8f15e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Gatti S, Lonati C, Sordi A, Catania A. Protective Effects of Melanocortins in Systemic Host Reactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 681:117-25. [DOI: 10.1007/978-1-4419-6354-3_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Kokot A, Sindrilaru A, Schiller M, Sunderkötter C, Kerkhoff C, Eckes B, Scharffetter-Kochanek K, Luger TA, Böhm M. α-melanocyte-stimulating hormone suppresses bleomycin-induced collagen synthesis and reduces tissue fibrosis in a mouse model of scleroderma: Melanocortin peptides as a novel treatment strategy for scleroderma? ACTA ACUST UNITED AC 2009; 60:592-603. [DOI: 10.1002/art.24228] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Brzoska T, Luger TA, Maaser C, Abels C, Böhm M. Alpha-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev 2008; 29:581-602. [PMID: 18612139 DOI: 10.1210/er.2007-0027] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alpha-MSH is a tridecapeptide derived from proopiomelanocortin. Many studies over the last few years have provided evidence that alpha-MSH has potent protective and antiinflammatory effects. These effects can be elicited via centrally expressed melanocortin receptors that orchestrate descending neurogenic antiinflammatory pathways. alpha-MSH can also exert antiinflammatory and protective effects on cells of the immune system and on peripheral nonimmune cell types expressing melanocortin receptors. At the molecular level, alpha-MSH affects various pathways implicated in regulation of inflammation and protection, i.e., nuclear factor-kappaB activation, expression of adhesion molecules and chemokine receptors, production of proinflammatory cytokines and mediators, IL-10 synthesis, T cell proliferation and activity, inflammatory cell migration, expression of antioxidative enzymes, and apoptosis. The antiinflammatory effects of alpha-MSH have been validated in animal models of experimentally induced fever; irritant and allergic contact dermatitis, vasculitis, and fibrosis; ocular, gastrointestinal, brain, and allergic airway inflammation; and arthritis, but also in models of organ injury. One obstacle limiting the use of alpha-MSH in inflammatory disorders is its pigmentary effect. Due to its preserved antiinflammatory effect but lack of pigmentary action, the C-terminal tripeptide of alpha-MSH, KPV, has been delineated as an alternative for antiinflammatory therapy. KdPT, a derivative of KPV corresponding to amino acids 193-195 of IL-1beta, is also emerging as a tripeptide with antiinflammatory effects. The physiochemical properties and expected low costs of production render both agents suitable for the future treatment of immune-mediated inflammatory skin and bowel disease, fibrosis, allergic and inflammatory lung disease, ocular inflammation, and arthritis.
Collapse
Affiliation(s)
- Thomas Brzoska
- Department of Dermatology, University of Münster, Von Esmarch-Strasse 58, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
23
|
WHAT'S NEW IN SHOCK, MARCH 2007? Shock 2007. [DOI: 10.1097/shk.0b013e3180309751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|