1
|
Kast RE. UBC4: A Repurposed Drug Regimen for Adjunctive Use During Bladder Cancer Treatment. Biomedicines 2025; 13:706. [PMID: 40149682 PMCID: PMC11940094 DOI: 10.3390/biomedicines13030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
After it has metastasized, bladder cancer, the malignant transformation of the bladder urothelium, continues to be a common cause of death after maximal use of all currently available standard treatments. To address this problem in 2025, the drug repurposing movement within oncology aims to identify medicines in common general medical care use that have data indicating that they can interfere or inhibit a growth driving element that has been identified in bladder cancer. This paper now outlines extensive preclinical data showing that four drugs from general medical practice meet these criteria-the melatonergic drug ramelteon, the antidepressant fluoxetine, the antibiotic dapsone, and the analgesic drug celecoxib. This is the UBC4 regimen, meant as a possible adjunct added to standard treatments of metastatic bladder cancer. Three factors justify a clinical pilot trial of UBC4: (1) the UBC4 drugs are usually well tolerated and carry a low risk of harm, (2) the commonly fatal outcome of bladder cancer once it has widely metastasized, plus (3) the strong preclinical database showing UBC growth inhibition by each of the individual UBC4 drugs as outlined in this paper.
Collapse
Affiliation(s)
- Richard E Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, VT 05408, USA
| |
Collapse
|
2
|
Kast RE. Potential Benefits of Adding Alendronate, Celecoxib, Itraconazole, Ramelteon, and Simvastatin to Endometrial Cancer Treatment: The EC5 Regimen. Curr Issues Mol Biol 2025; 47:153. [PMID: 40136407 PMCID: PMC11941490 DOI: 10.3390/cimb47030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Metastatic endometrial cancer continues to be a common cause of death as of 2024, even after maximal use of all currently available standard treatments. To address this problem of metastatic cancer generally in 2025, the drug repurposing movement within oncology identifies medicines in common general medical use that have clinical or preclinical experimental data indicating that they interfere with or inhibit a specific growth driving element identified in a given cancer. The drug repurposing movement within oncology also uses data from large scale in vitro screens of thousands of drugs, looking for simple empirical growth inhibition in a given cancer type. This paper outlines the data showing that five drugs from general medical practice meet these evidence criteria for inhibition of endometrial cancer growth, the EC5 regimen. The EC5 regimen uses the osteoporosis treatment drug, alendronate; the analgesic drug, celecoxib; the antifungal drug, itraconazole; the sleep aid, ramelteon; and the cholesterol lowering drug, simvastatin. Side effects seen with these drugs are usually minimal and easily tolerated by patients.
Collapse
|
3
|
Chargui A. Lysine-63-linked polyubiquitination: a principal target of cadmium carcinogenesis. Toxicol Res 2024; 40:349-360. [PMID: 38911543 PMCID: PMC11187039 DOI: 10.1007/s43188-024-00236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 06/25/2024] Open
Abstract
Cadmium is an environmental pollutant that constitutes a major danger to human health. It is considered a definite human carcinogen. The lung and kidney are the most sensitive organs for cancer development, and we recently provided the first evidence of direct upregulation of lysine-63-linked polyubiquitination by cadmium, particularly in response to environmentally relevant concentrations. Investigations of K63 polyubiquitination have greatly progressed, and various strategies have been reported for studying this molecular process in different biological systems under both physiological and stress conditions. Furthermore, the mechanisms underlying cadmium-induced accumulation of K63-polyubiquitinated proteins in lung and renal cells continue to be of interest given the unknown mechanism involved in the carcinogenesis of this metal. Cadmium is persistent within the cytosol and induces oxidative stress, which continuously damages proteins and causes K63 polyubiquitination, leading to the regulation/activation of different cellular signaling pathways. The aim of this review was to perform a critical analysis of the knowledge about K63 polyubiquitination induced by cadmium and its effect on selective autophagy, CYLD, the NF-KB pathway and Hif-1α. We also report data obtained in different experimental studies using cadmium, highlighting similarities in the induction of the ubiquitination system. A more detailed discussion will concern the role of K63 polyubiquitination in cadmium-exposed renal proximal convoluted tubules and lung cells since they are suitable model systems that are extremely sensitive to environmental stress, and cadmium is one of the most carcinogenic metals to which humans are exposed. We ultimately concluded that K63 polyubiquitination may be the origin of cadmium carcinogenesis in the lung and kidney. Graphical Abstract Pathways of cadmium carcinogenesis: Cadmium mimics zinc and induces Lysine-63-linked polyubiquitination, which promotes three intracellular processes: (1) accumulation of ubiquitinated proteins, (2) stabilization of hypoxic inducible factor-1α and (3) activation of the nuclear factor-kappaB pathway, which results in the blockade of selective autophagy, angiogenesis, inflammation and cell proliferation.
Collapse
Affiliation(s)
- Abderrahmen Chargui
- Université de Jendouba, Ecole Supérieure d’Agriculture du Kef (ESAK), LR: Appui à la Durabilité des Systèmes de Production Agricoles du Nord-Ouest, 7119 Le Kef, Tunisie
| |
Collapse
|
4
|
van der Zalm AP, Dings MPG, Manoukian P, Boersma H, Janssen R, Bailey P, Koster J, Zwijnenburg D, Volckmann R, Bootsma S, Waasdorp C, van Mourik M, Blangé D, van den Ende T, Oyarce CI, Derks S, Creemers A, Ebbing EA, Hooijer GK, Meijer SL, van Berge Henegouwen MI, Medema JP, van Laarhoven HWM, Bijlsma MF. The pluripotency factor NANOG contributes to mesenchymal plasticity and is predictive for outcome in esophageal adenocarcinoma. COMMUNICATIONS MEDICINE 2024; 4:89. [PMID: 38760583 PMCID: PMC11101480 DOI: 10.1038/s43856-024-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Despite the advent of neoadjuvant chemoradiotherapy (CRT), overall survival rates of esophageal adenocarcinoma (EAC) remain low. A readily induced mesenchymal transition of EAC cells contributes to resistance to CRT. METHODS In this study, we aimed to chart the heterogeneity in cell state transition after CRT and to identify its underpinnings. A panel of 12 esophageal cultures were treated with CRT and ranked by their relative epithelial-mesenchymal plasticity. RNA-sequencing was performed on 100 pre-treatment biopsies. After RNA-sequencing, Ridge regression analysis was applied to correlate gene expression to ranked plasticity, and models were developed to predict mesenchymal transitions in patients. Plasticity score predictions of the three highest significant predictive models were projected on the pre-treatment biopsies and related to clinical outcome data. Motif enrichment analysis of the genes associated with all three models was performed. RESULTS This study reveals NANOG as the key associated transcription factor predicting mesenchymal plasticity in EAC. Expression of NANOG in pre-treatment biopsies is highly associated with poor response to neoadjuvant chemoradiation, the occurrence of recurrences, and median overall survival difference in EAC patients (>48 months). Perturbation of NANOG reduces plasticity and resensitizes cell lines, organoid cultures, and patient-derived in vivo grafts. CONCLUSIONS In conclusion, NANOG is a key transcription factor in mesenchymal plasticity in EAC and a promising predictive marker for outcome.
Collapse
Affiliation(s)
- Amber P van der Zalm
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Mark P G Dings
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Paul Manoukian
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Hannah Boersma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
| | - Reimer Janssen
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
| | - Peter Bailey
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jan Koster
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Danny Zwijnenburg
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Richard Volckmann
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Sanne Bootsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Monique van Mourik
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Dionne Blangé
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Tom van den Ende
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - César I Oyarce
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Sarah Derks
- Oncode Institute, Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Aafke Creemers
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
| | - Eva A Ebbing
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
| | - Gerrit K Hooijer
- Amsterdam UMC location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Sybren L Meijer
- Amsterdam UMC location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Mark I van Berge Henegouwen
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands.
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
5
|
Fuchino T, Kurogi S, Tsukamoto Y, Shibata T, Fumoto S, Fujishima H, Kinoshita K, Hirashita Y, Fukuda M, Nakada C, Itai Y, Suzuki K, Uchida T, Shiroshita H, Matsumoto T, Yamaoka Y, Tsutsumi K, Fukuda K, Ogawa R, Mizukami K, Kodama M, Inomata M, Murakami K, Moriyama M, Hijiya N. Characterization of residual cancer by comparison of a pair of organoids established from a patient with esophageal squamous cell carcinoma before and after neoadjuvant chemotherapy. Hum Cell 2024; 37:491-501. [PMID: 38184488 DOI: 10.1007/s13577-023-01020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024]
Abstract
Neoadjuvant chemotherapy (NAC) followed by surgery is a standard approach for management of locally advanced esophageal squamous cell carcinoma (ESCC). Patients who do not respond well to NAC have a poor prognosis. Despite extensive research, the mechanisms of chemoresistance in ESCC remain largely unknown. Here, we established paired tumor organoids-designated as PreNAC-O and PostNAC-O-from one ESCC patient before and after NAC, respectively. Although the two organoids did not exhibit significant differences in proliferation, morphology or drug sensitivity in vitro, the tumorigenicity of PostNAC-O in vivo was significantly higher than that of PreNAC-O. Xenografts from PreNAC-O tended to exhibit keratinization, while those from PostNAC-O displayed conspicuous necrotic areas. The tumorigenicity of PostNAC-O xenografts during the chemotherapy was comparable to that of PreNAC-O without treatment. Furthermore, the gene expression profiles of the xenografts suggested that expression of genes involved in the EMT and/or hypoxia response might be related to the tumorigenicity of PostNAC-O. Our data suggested that the tumorigenicity of residual cancer had been enhanced, outweighing the effects of chemotherapy, rather than being attributable to intrinsic chemoresistance. Further studies are required to clarify the extent to which residual cancers share a common mechanism similar to that revealed here.
Collapse
Affiliation(s)
- Takafumi Fuchino
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Shusaku Kurogi
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan.
| | - Tomotaka Shibata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Shoichi Fumoto
- Department of Surgery, Oita Nakamura Hospital, Oita, Japan
| | - Hajime Fujishima
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Keisuke Kinoshita
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yuka Hirashita
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masahide Fukuda
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
- Department of Urology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yusuke Itai
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Kosuke Suzuki
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Hidefumi Shiroshita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Koshiro Tsutsumi
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kensuke Fukuda
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Ryo Ogawa
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masaaki Kodama
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Hasama-machi, Yufu, Oita, 879-5593, Japan
| |
Collapse
|
6
|
Zhang S, Guo A, Wang H, Liu J, Dong C, Ren J, Wang G. Oncogenic MORC2 in cancer development and beyond. Genes Dis 2024; 11:861-873. [PMID: 37692502 PMCID: PMC10491978 DOI: 10.1016/j.gendis.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Microrchidia CW-type zinc finger 2 (MORC2) is a member of the MORC superfamily of nuclear proteins. Growing evidence has shown that MORC2 not only participates in gene transcription and chromatin remodeling but also plays a key in human disease and tumor development by regulating the expression of downstream oncogenes or tumor suppressors. The present review provides an updated overview of MORC2 in the aspect of cancer hallmark and therapeutic resistance and summarizes its upstream regulators and downstream target genes. This systematic review may provide a favorable theoretical basis for emerging players of MORC2 in tumor development and new insight into the potential clinical application of basic science discoveries in the future.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Ayao Guo
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huan Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Jia Liu
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Junyi Ren
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
7
|
Chutani N, Ragula S, Syed K, Pakala SB. Novel Insights into the Role of Chromatin Remodeler MORC2 in Cancer. Biomolecules 2023; 13:1527. [PMID: 37892209 PMCID: PMC10605154 DOI: 10.3390/biom13101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
A newly discovered chromatin remodeler, MORC2, is a Microrchidia (MORC) family member. MORC2 acts as a chromatin remodeler by binding to the DNA and changing chromatin conformation using its ATPase domain. MORC2 is highly expressed in a variety of human cancers. It controls diverse signaling pathways essential for cancer development through its target genes and interacting partners. MORC2 promotes cancer cells' growth, invasion, and migration by regulating the expression of genes involved in these processes. MORC2 is localized primarily in the nucleus and is also found in the cytoplasm. In the cytoplasm, MORC2 interacts with adenosine triphosphate (ATP)-citrate lyase (ACLY) to promote lipogenesis and cholesterogenesis in cancer. In the nucleus, MORC2 interacts with the transcription factor c-Myc to control the transcription of genes involved in glucose metabolism to drive cancer cell migration and invasion. Furthermore, MORC2 recruits on to the promoters of tumor suppressor genes to repress their transcription and expression to promote oncogenesis. In addition to its crucial function in oncogenesis, it plays a vital role in DNA repair. Overall, this review concisely summarizes the current knowledge about MORC2-regulated molecular pathways involved in cancer.
Collapse
Affiliation(s)
- Namita Chutani
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Mangalam, Tirupati 517 507, India;
| | - Sandhya Ragula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India;
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - Suresh B. Pakala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India;
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| |
Collapse
|
8
|
Krymov SK, Scherbakov AM, Dezhenkova LG, Salnikova DI, Solov’eva SE, Sorokin DV, Vullo D, De Luca V, Capasso C, Supuran CT, Shchekotikhin AE. Indoline-5-Sulfonamides: A Role of the Core in Inhibition of Cancer-Related Carbonic Anhydrases, Antiproliferative Activity and Circumventing of Multidrug Resistance. Pharmaceuticals (Basel) 2022; 15:ph15121453. [PMID: 36558903 PMCID: PMC9783868 DOI: 10.3390/ph15121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The overexpression and activity of carbonic anhydrase (CA, EC 4.2.1.1) isoforms CA IX and CA XII promote the accumulation of exceeding protons and acidosis in the extracellular tumor environment. Sulfonamides are effective inhibitors of most families of CAs. In this study, using scaffold-hopping, indoline-5-sulfonamide analogs 4a-u of the CA IX-selective inhibitor 3 were designed and synthesized to evaluate their biological properties. 1-Acylated indoline-5-sulfonamides demonstrated inhibitory activity against tumor-associated CA IX and XII with KI values up to 132.8 nM and 41.3 nM. Compound 4f, as one of the most potent inhibitors of CA IX and XII, exhibits hypoxic selectivity, suppressing the growth of MCF7 cells at 12.9 µM, and causes partial inhibition of hypoxia-induced CA IX expression in A431 skin cancer cells. 4e and 4f reverse chemoresistance to doxorubicin of K562/4 with overexpression of P-gp.
Collapse
Affiliation(s)
- Stepan K. Krymov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Svetlana E. Solov’eva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
- Correspondence: (C.T.S.); (A.E.S.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
- Correspondence: (C.T.S.); (A.E.S.)
| |
Collapse
|
9
|
Onal B, Gultekin MH, Simsekoglu MF, Selcuk B, Gurbuz A. Biomarkers in Urological Cancers. Biomark Med 2022. [DOI: 10.2174/9789815040463122010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urological tumours have become one of the most common cancers in the
last decade. It is important to apply an approach that evaluates many factors related to
the patient and the disease carefully to minimize cancer-associated morbidity and
mortality. The clinical use of cancer biomarkers is a valuable part of the clinical
management of urological cancers. These biomarkers may lead to optimized detection,
treatment, and follow-up of urological cancers. With the development of molecular
research, newly developed biomarkers and next-generation sequencing have also
contributed to patient management. In this chapter, we will present biomarkers in the
most common urological cancers under subheadings of bladder cancer, prostate cancer,
kidney cancer, and testicular cancer. Additionally, due to the development that
occurred in the next-generation sequencing (NGS), all the above-mentioned
malignancies are evaluated with regard to NGS.
Collapse
Affiliation(s)
- Bulent Onal
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| | - Mehmet Hamza Gultekin
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| | - Muhammed Fatih Simsekoglu
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| | - Berin Selcuk
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| | - Ahmet Gurbuz
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| |
Collapse
|
10
|
Jassim TS. Expression Levels of the CA9, WT1, and PRAME Genes and Genotyping-Associated Antigens for the Diagnosis and Prognosis of Colorectal Cancer. JOURNAL OF COLOPROCTOLOGY 2021. [DOI: 10.1055/s-0041-1741323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Background Colorectal cancer (CRC) is the third most prevalent type of cancer worldwide, and is one of the major health problems in Asia, Africa, Europe, and America. The tumor antigens recently are of interesting indicators as diagnostic and prognostic tools. The aim of the present study is to detect the expression levels of carbonic anhydrase IX (CA9), the Wilms tumor gene (WT1), and the preferentially expressed antigen in melanoma (PRAME) in the peripheral blood of CRC patients in comparison with healthy controls.
Methods A prospective case-control study of CRC patients was conducted. We included 25 newly-diagnosed CRC eligible patients and obtained peripheral blood samples of them as well as 10 blood samples from the control group. All samples were then submitted to deoxyribonucleic acid (DNA) extraction and a molecular study through real-time polymerase chain reaction (PCR).
Results The CRC group consisted of 15 (60%) female and 10 (40%) male patients with a mean age of 50.52 ± 9.8 years, while the control group included 4 (40%) female and 6 (60%) male patients with a mean age of 47.7 ± 7.9 years. The CRC group, 24 (96%) of patient samples were CA9-positive with strong statistically significant differences (p < 0.00001; sensitivity: 96%; specificity: 90%). Regarding the WT1 gene, there were 11 (44%) positive samples in the CRC group, with no statistically significant differences (p = 0.055; sensitivity: 44%; specificity: 90%). The PRAME gene was positive in 9 (36%) samples in the CRC group, with no statistically significant differences (p = 0.357; sensitivity: 36%; specificity: 80%. Among CA9 (24 patients; 96%) of patients with CRC expressed positive results, in WT1 11(91.6%) CRC patients expressed gene, and in PRAME gene, 9 patients with CRC (81.8%) expressed positive results.
Conclusion Overexpression of the CA9 gene in CRC of high sensitivity and specificity to be used as a tool to discriminate CRC from benign associate with high accuracy compare to WT1 and PRAME genes.
Collapse
Affiliation(s)
- Tabark S Jassim
- Prosthodontic Technology Department, Dijlah University College, Baghdad, Iraq
| |
Collapse
|
11
|
Akgul M, Williamson SR. Immunohistochemistry for the diagnosis of renal epithelial neoplasms. Semin Diagn Pathol 2021; 39:1-16. [PMID: 34823973 DOI: 10.1053/j.semdp.2021.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Despite the increasing number of newly identified renal neoplasms, the diagnosis of renal cell carcinoma (RCC) can usually be reached with careful histologic examination and a limited immunohistochemical (IHC) panel. Clear cell, papillary, chromophobe RCC and oncocytoma account for more than 90% of renal neoplasia in adults, and sophisticated ancillary tools are usually unnecessary. Renal tumors with entity-defining genetic alterations may ultimately require molecular confirmation via cytogenetics or sequencing technologies, such as RCC with TFE3, TFEB, or ALK gene rearrangements, or TFEB amplified RCC. In fumarate hydratase-deficient and succinate dehydrogenase-deficient RCC, highly specific IHC markers can strongly suggest the diagnosis. In the metastatic setting, PAX8 and carbonic anhydrase 9 are among the most helpful markers for confirming RCC and clear cell type, respectively; however, caution should be exercised in the absence of a current or historical renal mass. In diagnostically challenging cases, such as renal eosinophilic tumors with low-grade nuclear features, or infiltrative high-grade tumors, careful examination coupled with a judicious panel of IHC markers usually resolves the diagnosis. This review offers concise algorithms for diagnosis of kidney neoplasia with the latest recognized, provisional, and emerging entities to daily pathology practice.
Collapse
Affiliation(s)
- Mahmut Akgul
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY, 12208, USA
| | - Sean R Williamson
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA.
| |
Collapse
|
12
|
Tang K, Cheng Y, Li Q. Construction and Verification of a Hypoxia-Stemness-Based Gene Signature for Risk Stratification in Esophageal Cancer. Med Sci Monit 2021; 27:e934359. [PMID: 34716287 PMCID: PMC8565098 DOI: 10.12659/msm.934359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Numerous studies have shown that esophageal cancer (ESCA) contains areas of intertumoral hypoxia. It is widely accepted that the association of hypoxia with cancer stemness in the tumor microenvironment of ESCA is of profound clinical significance. However, reliable prognostic signatures based on hypoxia and cancer stemness are still lacking in ESCA. Material/Methods The t-SNE algorithm was used to estimate the hypoxia status based on the transcriptome profiles of the discovery cohort in the TCGA database. Median values of the stemness index were used to group and identify stemness-associated differentially expressed genes (DEGs). The LASSO method and Cox regression model were combined to screen for prognostic genes and to establish a genetic signature based on hypoxia-stemness. The robustness of the prognostic model was then tested in an external independent validation cohort of the GEO database. Results A total of 8 genes – FBLN2, IL17RB, CYP2W1, AMTN, FABP1, FOXA2, GAS1, and CTSF – were identified to construct a gene signature for ESCA risk stratification. Overall survival was significantly lower in the high-risk group than in the low-risk group in both the internal discovery set and the external validation set. The risk score was found to be an independent prognostic factor for ESCA patients. In addition, a higher risk score was significantly associated with the sensitivity of ESCA patients to gefitinib, bexarotene, dasatinib, and imatinib. Conclusions The hypoxia-stemness-based genetic signature established for the first time in our study could be a promising tool for ESCA cancer risk stratification.
Collapse
Affiliation(s)
- Kang Tang
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yong Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Qian Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
13
|
Nortunen M, Parkkila S, Saarnio J, Huhta H, Karttunen TJ. Carbonic Anhydrases II and IX in Non-ampullary Duodenal Adenomas and Adenocarcinoma. J Histochem Cytochem 2021; 69:677-690. [PMID: 34636283 DOI: 10.1369/00221554211050133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Non-ampullary duodenal adenocarcinoma (DAC) is a rare malignancy. Little information is available concerning the histopathological prognostic factors associated with DAC. Carbonic anhydrases (CAs) are metalloenzymes catalyzing the universal reaction of CO2 hydration. Isozymes CAII, CAIX, and CAXII are associated with prognosis in various cancers. Our aim was to analyze the immunohistochemical expressions of CAII, CAIX, and CAXII in normal duodenal epithelium, duodenal adenomas, and adenocarcinoma and their associations with clinicopathological variables and survival. Our retrospective study included all 27 DACs treated in Oulu University Hospital during years 2000-2020. For comparison, samples of 42 non-ampullary adenomas were collected. CAII expression was low in duodenal adenomas and adenocarcinoma. CAIX expression in adenomas and adenocarcinoma was comparable with the high expression of normal duodenal crypts. Expression patterns in carcinomas were largely not related to clinicopathological features. However, low expression of CAII associated with poorer differentiation of the tumor (p=0.049) and low expression of CAIX showed a trend for association with nodal spread, although statistical significance was not reached (p=0.091). CAII and CAIX lost their epithelial polarization and staining intensity in adenomas. CAXII expression was not detected in the studied samples. CAs were not associated with survival. The prognostic value of CAII and CAIX downregulation should be further investigated. Both isozymes may serve as biomarkers of epithelial dysplasia in the duodenum.
Collapse
Affiliation(s)
- Minna Nortunen
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University and Fimlab Ltd, Tampere University Hospital, Tampere, Finland (SP)
| | - Juha Saarnio
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Heikki Huhta
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tuomo J Karttunen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
14
|
McShane R, Arya S, Stewart AJ, Caie P, Bates M. Prognostic features of the tumour microenvironment in oesophageal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2021; 1876:188598. [PMID: 34332022 DOI: 10.1016/j.bbcan.2021.188598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Oesophageal adenocarcinoma (OAC) is a disease with an incredibly poor survival rate and a complex makeup. The growth and spread of OAC tumours are profoundly influenced by their surrounding microenvironment and the properties of the tumour itself. Constant crosstalk between the tumour and its microenvironment is key to the survival of the tumour and ultimately the death of the patient. The tumour microenvironment (TME) is composed of a complex milieu of cell types including cancer associated fibroblasts (CAFs) which make up the tumour stroma, endothelial cells which line blood and lymphatic vessels and infiltrating immune cell populations. These various cell types and the tumour constantly communicate through environmental cues including fluctuations in pH, hypoxia and the release of mitogens such as cytokines, chemokines and growth factors, many of which help promote malignant progression. Eventually clusters of tumour cells such as tumour buds break away and spread through the lymphatic system to nearby lymph nodes or enter the circulation forming secondary metastasis. Collectively, these factors need to be considered when assessing and treating patients clinically. This review aims to summarise the ways in which these various factors are currently assessed and how they relate to patient treatment and outcome at an individual level.
Collapse
Affiliation(s)
| | - Swati Arya
- School of Medicine, University of St Andrews, Fife, UK
| | | | - Peter Caie
- School of Medicine, University of St Andrews, Fife, UK
| | - Mark Bates
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
15
|
Xu P, Zhang Y, Ge F, Zhang F, He X, Gao X. Modulation of Tumor Microenvironment to Enhance Radiotherapy Efficacy in Esophageal Squamous Cell Carcinoma by Inhibiting Carbonic Anhydrase IX. Front Oncol 2021; 11:637252. [PMID: 34249682 PMCID: PMC8267588 DOI: 10.3389/fonc.2021.637252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/09/2021] [Indexed: 02/01/2023] Open
Abstract
The radiotherapy outcomes of patients with advanced esophageal squamous cell carcinoma (ESCC) remain poor due to hypoxia. Carbonic anhydrase IX (CAIX) is a membrane-associated enzyme that induces hypoxia, extracellular acidity, and upregulation of hypoxia-related factors in tumor microenvironment, thereby promoting tumor metastasis. CAIX is upregulated in ESCC tissues compared to normal surrounding tissues. In the current study, we aimed to investigate the effect of CAIX inhibition on the modulation of tumor microenvironment and radiotherapy efficacy in ESCC. Higher CAIX expression was correlated with poorer progression-free survival in ESCC patients. Then, the ethyl N-(4-methylphenyl) sulfonylcarbamate (S4) was used to inhibit CAIX expression in ESCC cells and mice xenografts. The pretreatment of ESCC cells with S4 significantly downregulated CAIX expression, decreased intracellular pH, reduced cell viability, resulting in decreased oxygen consumption and more sensitive response to X-ray irradiation. In mice inoculated with ESCC cells, the combination of X-ray irradiation with S4 further improved survival, delayed tumor growth, decreased hypoxia level, exaggerated DNA damage, and increased apoptosis compared with the groups treated solely with S4 or radiotherapy. In conclusion, our study showed that the inhibition of CAIX by S4 treatment altered hypoxic tumor micro-environment, exaggerated DNA damage, increased apoptosis, and thus enhanced radiotherapy efficacy in ESCC. These findings provided a potential therapeutic strategy for patients with resistant ESCC.
Collapse
Affiliation(s)
- Pengqin Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, China
| | - Yu Zhang
- The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, China
| | - Fanghong Ge
- The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, China
| | - Fuming Zhang
- The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, China
| | - Xia He
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xingya Gao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
King R, Hayes C, Donohoe CL, Dunne MR, Davern M, Donlon NE. Hypoxia and its impact on the tumour microenvironment of gastroesophageal cancers. World J Gastrointest Oncol 2021; 13:312-331. [PMID: 34040696 PMCID: PMC8131902 DOI: 10.4251/wjgo.v13.i5.312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The malfeasant role of the hypoxic tumour microenvironment (TME) in cancer progression was recognized decades ago but the exact mechanisms that augment the hallmarks of cancer and promote treatment resistance continue to be elucidated. Gastroesophageal cancers (GOCs) represent a major burden of worldwide disease, responsible for the deaths of over 1 million people annually. Disentangling the impact of hypoxia in GOCs enables a better overall understanding of the disease pathogenesis while shining a light on novel therapeutic strategies and facilitating precision treatment approaches with the ultimate goal of improving outcomes for patients with these diseases. This review discusses the underlying principles and processes of the hypoxic response and the effect of hypoxia in promoting the hallmarks of cancer in the context of GOCs. We focus on its bidirectional influence on inflammation and how it drives angiogenesis, innate and adaptive immune evasion, metastasis, and the reprogramming of cellular bioenergetics. The contribution of the hypoxic GOC TME to treatment resistance is examined and a brief overview of the pharmacodynamics of hypoxia-targeted therapeutics is given. The principal methods that are used in measuring hypoxia and how they may enhance prognostication or provide rationale for individually tailored management in the case of tumours with significant hypoxic regions are also discussed.
Collapse
Affiliation(s)
- Ross King
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Conall Hayes
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Claire L Donohoe
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Margaret R Dunne
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Maria Davern
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Noel E Donlon
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| |
Collapse
|
17
|
Peiró CHF, Perez MM, de Aquino GSA, Encinas JFA, Sousa LVDA, da Veiga GL, Del Giglio A, Fonseca FLA, da Costa Aguiar Alves B. Diagnostic potential of hypoxia-induced genes in liquid biopsies of breast cancer patients. Sci Rep 2021; 11:8724. [PMID: 33888756 PMCID: PMC8062492 DOI: 10.1038/s41598-021-87897-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
In tumor cells, higher expression of glucose transporter proteins (GLUT) and carbonic anhydrases (CAIX) genes is influenced by hypoxia-induced factors (HIF).Thus, we aimed to study the expression profile of these markers in sequential peripheral blood collections performed in breast cancer patients in order to verify their predictive potential in liquid biopsies. Gene expressions were analyzed by qPCR in tumor and blood samples from 125 patients and 25 healthy women. Differential expression was determined by the 2(−ΔCq) method. Expression of HIF-1α and GLUT1 in the blood of breast cancer patients is significantly higher (90–91 and 160–161 fold increased expression, respectively; p < 0.0001) than that found in healthy women. Their diagnostic power was confirmed by ROC curve. CAIX is also more expressed in breast cancer women blood, but its expression was detected only in a few samples. But none of these genes could be considered predictive markers. Therefore, evaluation of the expression of HIF-1α and GLUT1 in blood may be a useful laboratory tool to complement the diagnosis of breast cancer, in addition to being useful for follow-up of patients and of women with a family history of breast cancer.
Collapse
Affiliation(s)
- Carlos Henrique F Peiró
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil
| | - Matheus M Perez
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil
| | - Glauco S A de Aquino
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil
| | - Jéssica F A Encinas
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil
| | | | - Glaucia Luciano da Veiga
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil
| | - Auro Del Giglio
- Departamento de Oncologia e Hematologia do Centro Universitário Saúde ABC-Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Fernando L A Fonseca
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil.,Instituto de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Beatriz da Costa Aguiar Alves
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil.
| |
Collapse
|
18
|
Wijetunga I, McVeigh LE, Charalambous A, Antanaviciute A, Carr IM, Nair A, Prasad KR, Ingram N, Coletta PL. Translating Biomarkers of Cholangiocarcinoma for Theranosis: A Systematic Review. Cancers (Basel) 2020; 12:E2817. [PMID: 33007872 PMCID: PMC7601719 DOI: 10.3390/cancers12102817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare disease with poor outcomes and limited research efforts into novel treatment options. A systematic review of CCA biomarkers was undertaken to identify promising biomarkers that may be used for theranosis (therapy and diagnosis). MEDLINE/EMBASE databases (1996-2019) were systematically searched using two strategies to identify biomarker studies of CCA. The PANTHER Go-Slim classification system and STRING network version 11.0 were used to interrogate the identified biomarkers. The TArget Selection Criteria for Theranosis (TASC-T) score was used to rank identified proteins as potential targetable biomarkers for theranosis. The following proteins scored the highest, CA9, CLDN18, TNC, MMP9, and EGFR, and they were evaluated in detail. None of these biomarkers had high sensitivity or specificity for CCA but have potential for theranosis. This review is unique in that it describes the process of selecting suitable markers for theranosis, which is also applicable to other diseases. This has highlighted existing validated markers of CCA that can be used for active tumor targeting for the future development of targeted theranostic delivery systems. It also emphasizes the relevance of bioinformatics in aiding the search for validated biomarkers that could be repurposed for theranosis.
Collapse
Affiliation(s)
- Imeshi Wijetunga
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Laura E. McVeigh
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Antonia Charalambous
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Agne Antanaviciute
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Ian M. Carr
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Amit Nair
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - K. Raj Prasad
- Department of Hepatobiliary and Transplant Surgery, St. James’s University Hospital, Leeds LS9 7TF, UK;
| | - Nicola Ingram
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - P. Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| |
Collapse
|
19
|
Han P, Cao P, Hu S, Kong K, Deng Y, Zhao B, Li F. Esophageal Microenvironment: From Precursor Microenvironment to Premetastatic Niche. Cancer Manag Res 2020; 12:5857-5879. [PMID: 32765088 PMCID: PMC7371556 DOI: 10.2147/cmar.s258215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Esophageal cancer (EC) is the sixth most deadly cancer, and its incidence is still increasing year by year. Although the researches on the molecular mechanisms of EC have been widely carried out and incremental progress has been made, its overall survival rate is still low. There is cumulative evidence showing that the esophageal microenvironment plays a vital role in the development of EC. In precancerous lesions of the esophagus, high-risk environmental factors can promote the development of precancerous lesions by inducing the production of inflammatory factors and the recruitment of immune cells. In the tumor microenvironment, tumor-promoting cells can inhibit anti-tumor immunity and promote tumor progression through a variety of pathways, such as bone marrow-derived suppressor cells (MDSCs), tumor-associated fibroblasts (CAFs), and regulatory T cells (Tregs). The formation of extracellular hypoxia and acidic microenvironment and the change of extracellular matrix stiffness are also important factors affecting tumor progression and metastasis. Simultaneously, primary tumor-derived cytokines and bone marrow-derived immune cells can also promote the formation of pre-metastasis niche of EC lymph nodes, which are beneficial to EC lymph node metastasis. Further research on the specific mechanism of these processes in the occurrence, development, and metastasis of each EC subtype will support us to grasp the overall pre-cancerous prevention, targeted treatment, and metastatic assessment of EC.
Collapse
Affiliation(s)
- Peng Han
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Peng Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Kangle Kong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
20
|
Nery de Albuquerque Rego G, da Hora Alves A, Penteado Nucci M, Bustamante Mamani J, Anselmo de Oliveira F, Gamarra LF. Antiangiogenic Targets for Glioblastoma Therapy from a Pre-Clinical Approach, Using Nanoformulations. Int J Mol Sci 2020; 21:ijms21124490. [PMID: 32599834 PMCID: PMC7349965 DOI: 10.3390/ijms21124490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive tumor type whose resistance to conventional treatment is mediated, in part, by the angiogenic process. New treatments involving the application of nanoformulations composed of encapsulated drugs coupled to peptide motifs that direct drugs to specific targets triggered in angiogenesis have been developed to reach and modulate different phases of this process. We performed a systematic review with the search criterion (Glioblastoma OR Glioma) AND (Therapy OR Therapeutic) AND (Nanoparticle) AND (Antiangiogenic OR Angiogenesis OR Anti-angiogenic) in Pubmed, Scopus, and Cochrane databases, in which 312 articles were identified; of these, only 27 articles were included after selection and analysis of eligibility according to the inclusion and exclusion criteria. The data of the articles were analyzed in five contexts: the characteristics of the tumor cells; the animal models used to induce GBM for antiangiogenic treatment; the composition of nanoformulations and their physical and chemical characteristics; the therapeutic anti-angiogenic process; and methods for assessing the effects on antiangiogenic markers caused by therapies. The articles included in the review were heterogeneous and varied in practically all aspects related to nanoformulations and models. However, there was slight variance in the antiangiogenic effect analysis. CD31 was extensively used as a marker, which does not provide a view of the effects on the most diverse aspects involved in angiogenesis. Therefore, the present review highlighted the need for standardization between the different approaches of antiangiogenic therapy for the GBM model that allows a more effective meta-analysis and that helps in future translational studies.
Collapse
Affiliation(s)
| | - Arielly da Hora Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (G.N.d.A.R.); (A.d.H.A.); (J.B.M.); (F.A.d.O.)
| | - Mariana Penteado Nucci
- LIM44-Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Javier Bustamante Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (G.N.d.A.R.); (A.d.H.A.); (J.B.M.); (F.A.d.O.)
| | | | - Lionel Fernel Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (G.N.d.A.R.); (A.d.H.A.); (J.B.M.); (F.A.d.O.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
21
|
de Gouw DJJM, Rijpkema M, de Bitter TJJ, Baart VM, Sier CFM, Hernot S, van Dam GM, Nagtegaal ID, Klarenbeek BR, Rosman C, van der Post RS. Identifying Biomarkers in Lymph Node Metastases of Esophageal Adenocarcinoma for Tumor-Targeted Imaging. Mol Diagn Ther 2020; 24:191-200. [PMID: 32048177 PMCID: PMC7113228 DOI: 10.1007/s40291-020-00448-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Tumor-targeted imaging is a promising technique for the detection of lymph node metastases (LNM) and primary tumors. It remains unclear which biomarker is the most suitable target to distinguish malignant from healthy tissue in esophageal adenocarcinoma (EAC). OBJECTIVE We performed an immunohistochemistry study to identify viable tumor markers for tumor-targeted imaging of EAC. METHODS We used samples from 72 patients with EAC to determine the immunohistochemical expression of ten potential tumor biomarkers for EAC (carbonic anhydrase IX [CA-IX], carcinoembryonic antigen [CEA], hepatic growth factor receptor, epidermal growth factor receptor, epithelial membrane antigen [EMA], epithelial cell adhesion molecule [EpCAM], human epidermal growth factor receptor 2 [HER-2], urokinase plasminogen activator receptor, vascular endothelial growth factor-A [VEGF-A], and VEGF receptor 2). Immunohistochemistry was performed on tissue microarrays of LNM (n = 48), primary EACs (n = 62), fibrotic tissues (n = 11), nonmalignant lymph nodes (n = 24), and normal esophageal and gastric tissues (n = 40). Tumor marker staining was scored on intensity and percentage of positive cells. RESULTS EMA and EpCAM showed strong expression in LNM (> 95%) and primary EACs (> 95%). Significant expression was also observed for LNM and EAC using VEGF-A (85 and 92%), CEA (68 and 54%), and CA-IX (4 and 34%). The other tumor biomarkers showed expression of 0-15% for LNM and primary EAC. Except for VEGF-A, nonmalignant lymph node staining was scored as slight or absent. CONCLUSIONS High expression rates and correlation between LNM in EAC combined with low expression rates in healthy lymph nodes and esophagus tissues were observed for EpCAM and CEA, meaning these are promising targets for tumor-targeted imaging approaches for lymph nodes in patients with EAC.
Collapse
Affiliation(s)
- D J J M de Gouw
- Department of Surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - M Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - T J J de Bitter
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 30, 6525 GA, Nijmegen, The Netherlands
| | - V M Baart
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - S Hernot
- Laboratory for In vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussel, Belgium
| | - G M van Dam
- Department of Surgery and department of Nuclear Medicine and Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - I D Nagtegaal
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 30, 6525 GA, Nijmegen, The Netherlands
| | - B R Klarenbeek
- Department of Surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - C Rosman
- Department of Surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - R S van der Post
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 30, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Otandault A, Abraham JD, Al Amir Dache Z, Khalyfa A, Jariel-Encontre I, Forné T, Prévostel C, Chouaib S, Gozal D, Thierry AR. Hypoxia differently modulates the release of mitochondrial and nuclear DNA. Br J Cancer 2020; 122:715-725. [PMID: 31929518 PMCID: PMC7054557 DOI: 10.1038/s41416-019-0716-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We investigated the influence of hypoxia on the concentration of mitochondrial and nuclear cell-free DNA (McfDNA and NcfDNA, respectively). METHOD By an ultra-sensitive quantitative PCR-based assay, McfDNA and NcfDNA were measured in the supernatants of different colorectal cell lines, and in the plasma of C57/Bl6 mice engrafted with TC1 tumour cells, in normoxic or hypoxic conditions. RESULTS Our data when setting cell culture conditions highlighted the higher stability of McfDNA as compared to NcfDNA and revealed that cancer cells released amounts of nuclear DNA equivalent to the mass of a chromosome over a 6-h duration of incubation. In cell model, hypoxia induced a great increase in NcfDNA and McfDNA concentrations within the first 24 h. After this period, cfDNA total concentrations remained stable in hypoxia consecutive to a decrease of nuclear DNA release, and noteworthy, to a complete inhibition of daily mitochondrial DNA release. In TC1-engrafted mice submitted to intermittent hypoxia, plasma NcfDNA levels are much higher than in mice bred in normoxia, unlike plasma McfDNA concentration that is not impacted by hypoxia. CONCLUSION This study suggests that hypoxia negatively modulates nuclear and, particularly, mitochondrial DNA releases in long-term hypoxia, and revealed that the underlying mechanisms are differently regulated.
Collapse
Affiliation(s)
- Amaelle Otandault
- IRCM, Inserm U1194, Institut de recherche en cancérologie de Montpellier, 208, avenue des Apothicaires, Montpellier, 34298, France
- Université de Montpellier, Montpellier, 34090, France
- Institut régional du cancer de Montpellier, Montpellier, 34298, France
| | - Jean-Daniel Abraham
- IRCM, Inserm U1194, Institut de recherche en cancérologie de Montpellier, 208, avenue des Apothicaires, Montpellier, 34298, France
- Université de Montpellier, Montpellier, 34090, France
- Institut régional du cancer de Montpellier, Montpellier, 34298, France
| | - Zahra Al Amir Dache
- IRCM, Inserm U1194, Institut de recherche en cancérologie de Montpellier, 208, avenue des Apothicaires, Montpellier, 34298, France
- Université de Montpellier, Montpellier, 34090, France
- Institut régional du cancer de Montpellier, Montpellier, 34298, France
| | - Abdelnaby Khalyfa
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, 65201, USA
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Thierry Forné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Corinne Prévostel
- IRCM, Inserm U1194, Institut de recherche en cancérologie de Montpellier, 208, avenue des Apothicaires, Montpellier, 34298, France
- Université de Montpellier, Montpellier, 34090, France
- Institut régional du cancer de Montpellier, Montpellier, 34298, France
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif, 94805, France
- TRIPM, Gulf Medical University, Ajman, UAE
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, 65201, USA
| | - Alain R Thierry
- IRCM, Inserm U1194, Institut de recherche en cancérologie de Montpellier, 208, avenue des Apothicaires, Montpellier, 34298, France.
- Université de Montpellier, Montpellier, 34090, France.
- Institut régional du cancer de Montpellier, Montpellier, 34298, France.
| |
Collapse
|
23
|
Carbonic Anhydrase IX-Mouse versus Human. Int J Mol Sci 2019; 21:ijms21010246. [PMID: 31905844 PMCID: PMC6982145 DOI: 10.3390/ijms21010246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/17/2022] Open
Abstract
In contrast to human carbonic anhydrase IX (hCA IX) that has been extensively studied with respect to its molecular and functional properties as well as regulation and expression, the mouse ortholog has been investigated primarily in relation to tissue distribution and characterization of CA IX-deficient mice. Thus, no data describing transcriptional regulation and functional properties of the mouse CA IX (mCA IX) have been published so far, despite its evident potential as a biomarker/target in pre-clinical animal models of tumor hypoxia. Here, we investigated for the first time, the transcriptional regulation of the Car9 gene with a detailed description of its promoter. Moreover, we performed a functional analysis of the mCA IX protein focused on pH regulation, cell-cell adhesion, and migration. Finally, we revealed an absence of a soluble extracellular form of mCA IX and provided the first experimental evidence of mCA IX presence in exosomes. In conclusion, though the protein characteristics of hCA IX and mCA IX are highly similar, and the transcription of both genes is predominantly governed by hypoxia, some attributes of transcriptional regulation are specific for either human or mouse and as such, could result in different tissue expression and data interpretation.
Collapse
|
24
|
Bi C, Liu M, Rong W, Wu F, Zhang Y, Lin S, Liu Y, Wu J, Wang L. High Beclin-1 and ARID1A expression corelates with poor survival and high recurrence in intrahepatic cholangiocarcinoma: a histopathological retrospective study. BMC Cancer 2019; 19:213. [PMID: 30849962 PMCID: PMC6408801 DOI: 10.1186/s12885-019-5429-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Background Although surgical resection provides a cure for patients with intrahepatic cholangiocarcinoma (ICC), the risk of mortality and recurrence remains high. Several biomarkers are reported to be associated with the prognosis of ICC, including Beclin-1, ARID1A, carbonic anhydrase IX (CA9) and isocitrate dehydrogenase 1 (IDH1), but results are inconsistent. Therefore, a histopathological retrospective study was performed to simultaneously investigate the relationship of these four potential biomarkers with clinicopathological parameters and their prognostic values in patients with ICC. Methods A total of 113 patients with ICC were enrolled from Cancer Hospital of Chinese Academy of Medical Sciences between January 1999 and June 2015. The expression of Beclin-1, ARID1A, IDH1 and CA9 were determined by immunohistochemical staining. The prognostic values of the four biomarkers were analyzed by Cox regression and the Kaplan-Meier method. Results Beclin-1, ARID1A, CA9 and IDH1 were highly expressed in ICC tumor tissues. Higher mortality was positively associated with Beclin-1 expression (HR = 2.39, 95% CI = 1.09–5.24) and higher recurrence was positively associated with ARID1A expression (HR = 1.71, 95% CI = 1.06–2.78). Neither CA9 nor IDH1 expression was significantly associated with mortality or disease recurrence. Kaplan-Meier survival curves showed that ICC patients with higher Beclin-1 and ARID1A expression had a lower survival rate and a worse recurrence rate than patients with low Beclin-1 and ARID1A expression (p < 0.05). Conclusions High Beclin-1 and ARIDIA expression are strongly associated with poor prognosis in ICC patients, and thus Beclin-1 and ARID1A should be simultaneously considered as potential prognostic biomarkers for ICC patients. Electronic supplementary material The online version of this article (10.1186/s12885-019-5429-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Bi
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yang Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shengtao Lin
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yunhe Liu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer /Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
25
|
Ohtaki Y, Shimizu K, Kawabata-Iwakawa R, Gombodorj N, Altan B, Rokudai S, Yamane A, Kaira K, Yokobori T, Nagashima T, Obayashi K, Nakazawa S, Iijima M, Kosaka T, Yajima T, Mogi A, Kuwano H, Shirabe K, Nishiyama M. Carbonic anhydrase 9 expression is associated with poor prognosis, tumor proliferation, and radiosensitivity of thymic carcinomas. Oncotarget 2019; 10:1306-1319. [PMID: 30863491 PMCID: PMC6407679 DOI: 10.18632/oncotarget.26657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/22/2019] [Indexed: 12/25/2022] Open
Abstract
Introduction Thymic epithelial tumors (TETs) comprise several histologies of thymoma and thymic carcinomas (TCs), and TC frequently metastasizes and causes death. We therefore aimed here to identify key molecules closely related to prognosis and their biological roles in high-risk TETs, particularly TCs. Results RNA sequence analysis demonstrated that hypoxia-related genes were highly expressed in TETs. The expression of the hypoxia-related gene CA9 was noteworthy, particularly in TCs. Immunohistochemical analysis revealed that CA9 was expressed in 81.0% of TCs and 20.7% of all TET samples. CA9 expression was significantly associated with Masaoka stage, WHO classification, and recurrence-free survival after tumor resection (P = 0.005). The down-regulation of CA9 transcription in TC cell lines by small interfering RNAs significantly inhibited CA9 expression, which inhibited proliferation and increased sensitivity to irradiation. Conclusions CA9 expression may serve as a significant prognostic marker of TETs and therefore represents a potential target for the development of novel drugs and radiation-sensitizing therapy designed to improve the outcomes of patients with TCs. Materials and Methods We performed comprehensive transcriptome sequencing of 23 TETs and physiologic thymic specimens to identify genes highly and specifically expressed in high-risk TETs, particulary TCs. We performed immunohistochemical analysis of 179 consecutive surgically resected TETs to evaluate the significance of the association of protein expression with clinicopathological features and prognosis. The biological significance of the most promising prognostic marker was further studied using the TC cell lines, Ty-82 and MP57.
Collapse
Affiliation(s)
- Yoichi Ohtaki
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kimihiro Shimizu
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Navchaa Gombodorj
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Bolag Altan
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Susumu Rokudai
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Arito Yamane
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takehiko Yokobori
- Department of Innovative Cancer Immunotherapy, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Toshiteru Nagashima
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kai Obayashi
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Seshiru Nakazawa
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Misaki Iijima
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takayuki Kosaka
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Toshiki Yajima
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Akira Mogi
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan.,Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masahiko Nishiyama
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
26
|
Mashhadiabbas F, Rajabi M, KharaziFard MJ, Moslemi H. Correlation of CA19-9 and P57 (KiP2) Expression with Tumor Grade and Invasive Front in Oral Squamous Cell Carcinoma. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2018; 19:287-294. [PMID: 30680301 PMCID: PMC6338686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
STATEMENT OF THE PROBLEM Oral squamous cell carcinoma (OSCC) is one of the most widely occurring cancers worldwide. Early diagnosis of primary tumors is the key to improve treatment outcome. Detecting cancer, determining prognosis, and monitoring disease progression or treatment response can be done based on molecular markers. CA19-9 is an isolated form of Lewis antigen. It is widely used for detecting pancreatic cancer in the clinical setting. P57 (KiP2) is a tumor suppressor gene. It is a positive regulator of cell proliferation, regulating proliferation through G1 phase by inhibiting cyclin dependent kinases. Its expression decreases in most malignancies. OSCC has variable differentiation grades and local invasion potential. PURPOSE The aim of this study was to evaluate and assess the correlation of CA19-9 and P57 expression with invasive front and grade of OSCC. MATERIALS AND METHOD This cross-sectional study was performed on forty paraffin blocks in three histologic grades; well, moderate, and poorly differentiated SCC. The two markers were assessed by immunohistochemistry methods (En vision). Proportional and total scores and staining intensity were measured for all samples. RESULTS CA19-9 staining was low in all three grades. The Kruskal Wallis test showed no significant correlation between tumor grade and CA19-9 expression; however, there was a significant difference between tumor intensity and margin intensity (p= 0.003). P57 staining was high in all three grades. The Kruskal Wallis test showed no significant correlation between tumor grade and P57 expression. There were no significant differences in total intensity of staining in margins of tumor (p= 0.85). CONCLUSION Within the limitations of this study, it may be concluded that expression of CA19-9 and P57 cannot be used as determinants of tumor grade. Higher expression of CA19-9 in invasive front of SCC can be representative of local invasion and higher activity of tumor cells in the margins.
Collapse
Affiliation(s)
- Fatemeh Mashhadiabbas
- Dental Research Center, Research Institute of Dental School, Dept. of Oral and maxillofacial Pathology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mohammad Javad KharaziFard
- Epidemiologist, Dental Research Center, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Moslemi
- Dental and MPH Student, Students' Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Büscheck F, Fraune C, Simon R, Kluth M, Hube-Magg C, Möller-Koop C, Shadanpour N, Bannenberg C, Eichelberg C, Höflmayer D, Clauditz T, Wittmer C, Wilczak W, Sauter G, Fisch M, Rink M, Eichenauer T. Aberrant expression of membranous carbonic anhydrase IX (CAIX) is associated with unfavorable disease course in papillary and clear cell renal cell carcinoma. Urol Oncol 2018; 36:531.e19-531.e25. [PMID: 30322727 DOI: 10.1016/j.urolonc.2018.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Antibodies against carbonic anhydrase IX (CAIX) are often part of immunohistochemical panels used to assist renal cell cancer (RCC) subtyping. This study was undertaken to determine, whether assessing CAIX expression levels could provide additional prognostic information. METHODS AND MATERIALS More than 1,800 RCCs were analyzed in a tissue microarray (TMA) format for CAIX expression. All tumors had been reviewed and newly classified according to the WHO 2016 classification. RESULTS Membranous CAIX expression revealed a "black and white" pattern that was strikingly dependent on the RCC subtype. In clear cell RCC, 89.2% of cancers showed strong positivity. The few clear cell RCC with lower CAIX expression levels were more likely to exhibit unfavorable tumor phenotype (p < 0.0001) and poor disease course (p = 0.0036). CAIX was completely absent in 99% of chromophobe RCC and in 100% of oncocytomas. In papillary RCC, 80.2% of cancers showed complete absence of CAIX staining. Papillary RCC with detectable CAIX expression had a less favorable tumor phenotype (p≤0.05) and worse disease outcome (p = 0.0176). These data are consistent with the concept, that "aberrant" CAIX staining - meaning absent or weak staining in a cancer expected to have a high level CAIX expression such as clear cell RCC or detectable CAIX expression in tumors that are typically CAIX negative such as papillary and chromophobe RCC - reflects biologic tumor dedifferentiation. CONCLUSION Our data demonstrate that CAIX is a highly useful diagnostic biomarker for RCC providing both diagnostic and prognostic information.
Collapse
Affiliation(s)
- Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Navid Shadanpour
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens Bannenberg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Eichenauer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Carbonic anhydrases II, IX, and XII in Barrett’s esophagus and adenocarcinoma. Virchows Arch 2018; 473:567-575. [DOI: 10.1007/s00428-018-2424-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/30/2018] [Accepted: 07/22/2018] [Indexed: 12/14/2022]
|
29
|
Drenckhan A, Freytag M, Supuran CT, Sauter G, Izbicki JR, Gros SJ. CAIX furthers tumour progression in the hypoxic tumour microenvironment of esophageal carcinoma and is a possible therapeutic target. J Enzyme Inhib Med Chem 2018; 33:1024-1033. [PMID: 29865880 PMCID: PMC6010094 DOI: 10.1080/14756366.2018.1475369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hypoxic tumour microenvironment of solid tumours represents an important starting point for modulating progression and metastatic spread. Carbonic anhydrase IX (CAIX) is a known HIF-1α-dependent key player in maintaining cell pH conditions under hypoxia. We show that CAIX is strongly expressed in esophageal carcinoma tissues. We hypothesize that a moderate CAIX expression facilitates metastases and thereby worsens prognosis. Selective inhibition of CAIX by specific CAIX inhibitors and a CAIX knockdown effectively inhibit proliferation and migration in vitro. In the orthotopic esophageal carcinoma model, the humanized HER2 antibody trastuzumab down-regulates CAIX, possibly through CAIX’s linkage with HER2 in the hypoxic microenvironment. Our results show CAIX to be an essential part of the tumour microenvironment and a possible master regulator of tumour progression. This makes CAIX a highly effective and feasible therapeutic target for selective cancer treatment.
Collapse
Affiliation(s)
- Astrid Drenckhan
- a Department of General, Visceral and Thoracic Surgery , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Morton Freytag
- a Department of General, Visceral and Thoracic Surgery , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Claudiu T Supuran
- b Department Neurofarba , Section of Pharmaceutical Sciences, University of Florence , Florence , Italy
| | - Guido Sauter
- c Department of Pathology , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Jakob R Izbicki
- a Department of General, Visceral and Thoracic Surgery , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Stephanie J Gros
- a Department of General, Visceral and Thoracic Surgery , University Medical Center Hamburg-Eppendorf , Hamburg , Germany.,d Department of Pediatric Surgery , Ûniversity Children's Hospital Basel , Basel , Switzerland
| |
Collapse
|
30
|
Melsens E, De Vlieghere E, Descamps B, Vanhove C, Kersemans K, De Vos F, Goethals I, Brans B, De Wever O, Ceelen W, Pattyn P. Hypoxia imaging with 18F-FAZA PET/CT predicts radiotherapy response in esophageal adenocarcinoma xenografts. Radiat Oncol 2018. [PMID: 29514673 PMCID: PMC5842657 DOI: 10.1186/s13014-018-0984-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Esophageal cancer is an aggressive disease with poor survival rates. A more patient-tailored approach based on predictive biomarkers could improve outcome. We aimed to predict radiotherapy (RT) response by imaging tumor hypoxia with 18F-FAZA PET/CT in an esophageal adenocarcinoma (EAC) mouse model. Additionally, we investigated the radiosensitizing effect of the hypoxia modifier nimorazole in vitro and in vivo. Methods In vitro MTS cell proliferation assays (OACM5 1.C SC1, human EAC cell line) were performed under normoxic and hypoxic (< 1%) conditions: control (100 μL PBS), nimorazole, irradiation (5, 10 or 20 Gy) with or without nimorazole. In vivo, subcutaneous xenografts were induced in nude mice (OACM5 1.C SC1). Treatment was given daily for 5 consecutive days: (A) control (600 μl NaCl 0.9% intraperitoneally (IP)) (N = 5, n = 7), (B) RT (5 Gy/d) (N = 11, n = 20), (C) combination (nimorazole (200 mg/kg/d IP) 30 min before RT) (N = 13, n = 21). N = number of mice, n = number of tumors. 18F-FAZA PET/CT was performed before treatment and tumor to background (T/B) ratios were calculated. Relative tumor growth was calculated and tumor sections were examined histologically (hypoxia, proliferation). Results A T/B ≥ 3.59 on pre-treatment 18F-FAZA PET/CT was predictive for worse RT response (sensitivity 92.3%, specificity 71.4%). Radiation was less effective in hypoxic tumors (T/B ≥ 3.59) compared to normoxic tumors (T/B < 3.59) (P = 0.0025). In vitro, pre-treatment with nimorazole significantly decreased hypoxic radioresistance (P < 0.01) while in vivo, nimorazole enhanced the efficacy of RT to suppress cancer cell proliferation in hypoxic tumor areas (Ki67, P = 0.064), but did not affect macroscopic tumor growth. Conclusions Tumor tissue hypoxia as measured with 18F-FAZA PET/CT is predictive for RT response in an EAC xenograft model. The radiosensitizing effect of nimorazole was questionable and requires further investigation. Electronic supplementary material The online version of this article (10.1186/s13014-018-0984-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elodie Melsens
- Laboratory of Experimental Surgery, Department of Gastro- Intestinal Surgery, Ghent University Hospital, De Pintelaan 185, B-9000, Ghent, Belgium.
| | - Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Infinity (IBiTech-MEDISIP), Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Infinity (IBiTech-MEDISIP), Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Ken Kersemans
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Filip De Vos
- Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Boudewijn Brans
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Laboratory of Experimental Surgery, Department of Gastro- Intestinal Surgery, Ghent University Hospital, De Pintelaan 185, B-9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Piet Pattyn
- Laboratory of Experimental Surgery, Department of Gastro- Intestinal Surgery, Ghent University Hospital, De Pintelaan 185, B-9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Spirina LV, Usynin EA, Yurmazov ZA, Slonimskaya EM, Kondakova IV. Effect of Targeted Therapy With Pazopanib on Expression Levels of Transcription, Growth Factors and Components of AKT/m-TOR Signaling Pathway in Patients with Renal Cell Carcinoma. Asian Pac J Cancer Prev 2017; 18:2977-2983. [PMID: 29172268 PMCID: PMC5773780 DOI: 10.22034/apjcp.2017.18.11.2977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: The effect of the targeted therapy on cancer molecular markers remains currently unknown. The aim of the study was to investigate the expression and content of transcription, growth factors and components of the AKT/m-TOR signaling pathway in kidney cancer patients before and after targeted therapy with pazopanib. Methods: A total of 157 patients with renal cell carcinoma were enrolled into the study. The level of mRNA expression was investigated by real-time PCR, and the contents of transcription and growth factors, as well as the levels of AKT/m-TOR signaling pathway components were determined by ELISA and Western blotting. Results: Targeted therapy with pazopanib resulted in a 3.1-fold decrease in HIF-2α expression that was accompanied by a reduction in the levels of NF-κB p65 and p50, HIF-1α and CAIX. The levels of GSK-3ß and AKT mRNA were increased; however, the levels of corresponding proteins remained low. The targeted therapy with pazopanib did not influence the level of PTEN phosphatase. A 1.9-fold increase in the level of p70 S6 (S371) was observed after therapy. Conclusion: The efficacy of tyrosine kinase inhibitors is associated with the changes in the angiogenic factors. Molecular characteristics of cancer could determine markers of disease progression as well as potential targets for anticancer therapies
Collapse
Affiliation(s)
- Liudmila V Spirina
- Cancer Research Institute, Tomsk National Research Center, Russian Academy of Medical Sciences, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia
| | | | | | | | | |
Collapse
|
32
|
Peerlings J, Van De Voorde L, Mitea C, Larue R, Yaromina A, Sandeleanu S, Spiegelberg L, Dubois L, Lambin P, Mottaghy FM. Hypoxia and hypoxia response-associated molecular markers in esophageal cancer: A systematic review. Methods 2017; 130:51-62. [PMID: 28705470 DOI: 10.1016/j.ymeth.2017.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
PURPOSE In this systematic review, the existing evidence of available hypoxia-associated molecular response biomarkers in esophageal cancer (EC) patients is summarized and set into the context of the role of hypoxia in the prediction of esophageal cancer, treatment response and treatment outcome. METHODS A systematic literature search was performed in Web of Science, MEDLINE, and PubMed databases using the keywords: hypoxia, esophagus, cancer, treatment outcome and treatment response. Eligible publications were independently evaluated by two reviewers. In total, 22 out of 419 records were included for systematic review. The described search strategy was applied weekly, with the last update being performed on April 3rd, 2017. RESULTS In esophageal cancer, several (non-)invasive biomarkers for hypoxia could be identified. Independent prognostic factors for treatment response include HIF-1α, CA IX, GLUT-1 overexpression and elevated uptake of the PET-tracer 18F-fluoroerythronitroimidazole (18F-FETNIM). Hypoxia-associated molecular responses represents a clinically relevant phenomenon in esophageal cancer and detection of elevated levels of hypoxia-associated biomarkers and tends to be associated with poor treatment outcome (i.e., overall survival, disease-free survival, complete response and local control). CONCLUSION Evaluation of tumor micro-environmental conditions, such as intratumoral hypoxia, is important to predict treatment outcome and efficacy. Promising non-invasive imaging-techniques have been suggested to assess tumor hypoxia and hypoxia-associated molecular responses. However, extensive validation in EC is lacking. Hypoxia-associated markers that are independent prognostic factors could potentially provide targets for novel treatment strategies to improve treatment outcome. For personalized hypoxia-guided treatment, safe and reliable makers for tumor hypoxia are needed to select suitable patients.
Collapse
Affiliation(s)
- Jurgen Peerlings
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Lien Van De Voorde
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ruben Larue
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ala Yaromina
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sebastian Sandeleanu
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Linda Spiegelberg
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ludwig Dubois
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Philippe Lambin
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| |
Collapse
|
33
|
Klameth L, Rath B, Hamilton G. In vitro Cytotoxic Activities of the Oral Platinum(IV) Prodrug Oxoplatin and HSP90 Inhibitor Ganetespib against a Panel of Gastric Cancer Cell Lines. J Cancer 2017; 8:1733-1743. [PMID: 28819369 PMCID: PMC5556635 DOI: 10.7150/jca.17816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/01/2017] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer exhibits a poor prognosis and is the third most common cause of cancer death worldwide. Chemotherapy of metastatic gastric cancer is based on combinations of platinum drugs and fluoropyrimidines, with added agents. Oxoplatin is a stable oral platinum(IV) prodrug which is converted to a highly active tetrachlorido(IV) complex under acidic conditions. In the present work, we studied the cytotoxic effects of oxoplatin against a panel of four gastric cancer cell lines in vitro. Furthermore, the role of HSP90 in chemoresistance of these lines was investigated using the specific inhibitor ganetespib. The KATO-III, MKN-1, MKN-28, MKN-45 lines were used in MTT chemosensitivity, cell cycle and apoptosis assays. KATO-III is a signet ring diffuse cell type, MKN-1 an adenosquamous primary, MKN-28 a well-differentiated intestinal type and the MKN-45 a poorly differentiated, diffuse type gastric carcinoma line. Cytotoxicity was tested in MTT assays and intracellular signal transduction with proteome profiler Western blot arrays. Interactions of platinum drugs and ganetespib were calculated with help of the Chou-Talalay method. The prodrug oxoplatin revealed low activity against the four gastric cancer cell lines, whereas the platinum tetrachlorido(IV) complex and cisplatin gave IC50 values of 1-3 µg/ml with increasing chemoresistance observed in the order of MKN-1, KATO-III, MKN-28 to MKN-45. With exception of KATO-III and MKN-28/oxoplatin, all other cell lines featured marked synergistic toxicity with clinically achievable concentrations of ganetespib. Oral administration of a platinum agent such as oxoplatin would be of great value for patients and care providers alike. These results suggest that the oncogene-stabilizing HSP90 chaperone represents an important mediator of chemoresistance in gastric cancer. Ganetespib reduced the phosphorylation of p53, Akt1/2/3 and PRAS40, as well as of WNK1, a kinase which regulates intracellular chloride concentrations. Intracellular chloride was reported to control proliferation of gastric cancer cell lines. Expression of MUC1 was not downregulated in contrast to the expression of CAIX, a prognostic marker in gastric cancer. In conclusion, the HSP90 inhibitor ganetespib synergizes with platinum anticancer drugs and modulates intracellular signal transduction in direction of a less proliferative and aggressive phenotype.
Collapse
Affiliation(s)
- Lukas Klameth
- Department for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Spirina LV, Usynin YA, Yurmazov ZA, Slonimskaya EM, Kolegova ES, Kondakova IV. Transcription factors NF-kB, HIF-1, HIF-2, growth factor VEGF, VEGFR2 and carboanhydrase IX mRNA and protein level in the development of kidney cancer metastasis. Mol Biol 2017. [DOI: 10.1134/s0026893317020194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Ma Y, Zhou W, He S, Xu W, Xiao J. Tyrosine kinase inhibitor sunitinib therapy is effective in the treatment of bone metastasis from cancer of unknown primary: Identification of clinical and immunohistochemical biomarkers predicting survival. Int J Cancer 2017; 139:1423-30. [PMID: 27164264 DOI: 10.1002/ijc.30176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/14/2016] [Accepted: 05/03/2016] [Indexed: 11/06/2022]
Abstract
Bone metastasis from cancer of unknown primary (BMCUP) brings poor survival prognosis and its management remains controversial. Sunitinib (SUTENT) proved effective in many sorts of solid tumors but has never been applied for patients with occult primary cancers, and there is no study to identify sensitive or resistant biomarkers for sunitinib therapy in CUP patients. An analysis was carried out to investigate the efficacy of sunitinib by multivariate survival analysis of 286 patients with BMCUP. We further carried out multivariate analysis to identify histological and clinical biomarkers that could predict sensitivity or resistance for sunitinib therapy. Of the 286 patients included from January 2011 to March 2016, sunitinib therapy proved effective to prolong survival in patients with BMCUP. Sensitive and resistant biomarkers were identified in histological specimen of patients receiving sunitinib therapy. Clinical factors were also identified that predict poor survival prognosis for sunitinib therapy. Sunitinib therapy proved effective to prolong survival in patients with BMCUP. Sensitive markers for sunitinib therapy include KDR positivity and early-developed treatment-induced hypertension. Resistance factors for sunitinib include VEGF positivity, CAIX positivity and squamous cell carcinoma pathology type. Prolonged symptom time and severe weight loss before therapy seemed to be associated with poor survival prognosis for sunitinib therapy.
Collapse
Affiliation(s)
- Yifei Ma
- Department of Orthorpedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wang Zhou
- Department of Orthorpedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shaohui He
- Department of Orthorpedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Department of Orthorpedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianru Xiao
- Department of Orthorpedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
36
|
Kalavska K, Cierna Z, Chovanec M, Takacova M, Svetlovska D, Miskovska V, Obertova J, Palacka P, Rajec J, Sycova-Mila Z, Machalekova K, Kajo K, Spanik S, Mardiak J, Babal P, Pastorekova S, Mego M. Prognostic value of intratumoral carbonic anhydrase IX expression in testicular germ cell tumors. Oncol Lett 2017; 13:2177-2185. [PMID: 28454378 PMCID: PMC5403396 DOI: 10.3892/ol.2017.5745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/26/2016] [Indexed: 11/13/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) represent a highly curable malignancy, however a small proportion of patients fails to be cured with cisplatin-based chemotherapy. Carbonic anhydrase IX (CA IX) is upregulated by hypoxia in several cancer types and correlates with a poor prognosis. The present translational study evaluated expression and prognostic value of CA IX in TGCTs. Surgical specimens from 228 patients with TGCTs were processed by the tissue microarray method and subjected to immunohistochemistry with the M75 monoclonal antibody. CA IX expression was evaluated in tumors vs. adjacent normal testicular tissues and correlated with clinicopathological characteristics and clinical outcome. CA IX expression was detected in 62 (30.2%) of TGCTs compared to 0 (0%) of normal tissue adjacent to testicular tumor (P<0.001). The highest frequency of the CA IX expression was detected in teratoma (39.0%), followed by seminoma (22.7%), yolk sac tumor (22.2%), embryonal carcinoma (11.9%) and choriocarcinoma (7.7%). None of germ cell neoplasias in situ (GCNIS) exhibited CA IX expression. Patients without the CA IX tumor expression showed significantly better progression-free survival, but not overall survival, compared to patients with the CA IX expression [hazard ratio (HR), 0.57; 95% CI, 0.32-1.02; P=0.037 and HR, 0.58; 95% CI, 0.29-1.16; P=0.088, respectively]. There was no significant correlation between the CA IX expression and clinicopathological variables. The intratumoral CA IX expression can serve as a prognostic marker in the TGCT patients. These results suggest that activation of the hypoxia-induced pathways may be important in the treatment failure in TGCTs patients.
Collapse
Affiliation(s)
- Katarina Kalavska
- Translational Research Unit, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovak Republic
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovak Republic
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Zuzana Cierna
- Department of Pathology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovak Republic
| | - Michal Chovanec
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovak Republic
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Martina Takacova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Daniela Svetlovska
- Translational Research Unit, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovak Republic
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Viera Miskovska
- First Department of Oncology, Faculty of Medicine, Comenius University and St. Elisabeth Cancer Institute, 812 50 Bratislava, Slovak Republic
- Department of Oncology, St. Elizabeth Cancer Institute, 812 50 Bratislava, Slovak Republic
| | - Jana Obertova
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Patrik Palacka
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Jan Rajec
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Zuzana Sycova-Mila
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Katarina Machalekova
- Department of Pathology, Slovak Medical University, 833 03 Bratislava, Slovak Republic
| | - Karol Kajo
- Department of Pathology, Slovak Medical University, 833 03 Bratislava, Slovak Republic
| | - Stanislav Spanik
- First Department of Oncology, Faculty of Medicine, Comenius University and St. Elisabeth Cancer Institute, 812 50 Bratislava, Slovak Republic
- Department of Oncology, St. Elizabeth Cancer Institute, 812 50 Bratislava, Slovak Republic
| | - Jozef Mardiak
- Translational Research Unit, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovak Republic
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Pavel Babal
- Department of Pathology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovak Republic
| | - Silvia Pastorekova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Michal Mego
- Translational Research Unit, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovak Republic
- Department of Oncology, National Cancer Institute, 833 10 Bratislava, Slovak Republic
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| |
Collapse
|
37
|
Abd-Aziz N, Stanbridge EJ, Shafee N. Newcastle disease virus degrades HIF-1α through proteasomal pathways independent of VHL and p53. J Gen Virol 2016; 97:3174-3182. [PMID: 27902314 PMCID: PMC5203671 DOI: 10.1099/jgv.0.000623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Newcastle disease virus (NDV) is a candidate agent for oncolytic virotherapy. Despite its potential, the exact mechanism of its oncolysis is still not known. Recently, we reported that NDV exhibited an increased oncolytic activity in hypoxic cancer cells. These types of cells negatively affect therapeutic outcome by overexpressing pro-survival genes under the control of the hypoxia-inducible factor (HIF). HIF-1 is a heterodimeric transcriptional factor consisting of a regulated α (HIF-1α) and a constitutive β subunit (HIF-1β). To investigate the effects of NDV infection on HIF-1α in cancer cells, the osteosarcoma (Saos-2), breast carcinoma (MCF-7), colon carcinoma (HCT116) and fibrosarcoma (HT1080) cell lines were used in the present study. Data obtained showed that a velogenic NDV infection diminished hypoxia-induced HIF-1α accumulation, leading to a decreased activation of its downstream target gene, carbonic anhydrase 9. This NDV-induced downregulation of HIF-1α occurred post-translationally and was partially abrogated by proteasomal inhibition. The process appeared to be independent of the tumour suppressor protein p53. These data revealed a correlation between NDV infection and HIF-1α downregulation, which highlights NDV as a promising agent to eliminate hypoxic cancer cells.
Collapse
Affiliation(s)
- Noraini Abd-Aziz
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| | - Eric J Stanbridge
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Norazizah Shafee
- Institute of Biosciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| |
Collapse
|
38
|
van Kuijk SJA, Yaromina A, Houben R, Niemans R, Lambin P, Dubois LJ. Prognostic Significance of Carbonic Anhydrase IX Expression in Cancer Patients: A Meta-Analysis. Front Oncol 2016; 6:69. [PMID: 27066453 PMCID: PMC4810028 DOI: 10.3389/fonc.2016.00069] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/08/2016] [Indexed: 01/08/2023] Open
Abstract
Hypoxia is a characteristic of many solid tumors and an adverse prognostic factor for treatment outcome. Hypoxia increases the expression of carbonic anhydrase IX (CAIX), an enzyme that is predominantly found on tumor cells and is involved in maintaining the cellular pH balance. Many clinical studies investigated the prognostic value of CAIX expression, but most have been inconclusive, partly due to small numbers of patients included. The present meta-analysis was therefore performed utilizing the results of all clinical studies to determine the prognostic value of CAIX expression in solid tumors. Renal cell carcinoma was excluded from this meta-analysis due to an alternative mechanism of upregulation. 958 papers were identified from a literature search performed in PubMed and Embase. These papers were independently evaluated by two reviewers and 147 studies were included in the analysis. The meta-analysis revealed strong significant associations between CAIX expression and all endpoints: overall survival [hazard ratio (HR) = 1.76, 95% confidence interval (95%CI) 1.58–1.98], disease-free survival (HR = 1.87, 95%CI 1.62–2.16), locoregional control (HR = 1.54, 95%CI 1.22–1.93), disease-specific survival (HR = 1.78, 95%CI 1.41–2.25), metastasis-free survival (HR = 1.82, 95%CI 1.33–2.50), and progression-free survival (HR = 1.58, 95%CI 1.27–1.96). Subgroup analyses revealed similar associations in the majority of tumor sites and types. In conclusion, these results show that patients having tumors with high CAIX expression have higher risk of locoregional failure, disease progression, and higher risk to develop metastases, independent of tumor type or site. The results of this meta-analysis further support the development of a clinical test to determine patient prognosis based on CAIX expression and may have important implications for the development of new treatment strategies.
Collapse
Affiliation(s)
- Simon J A van Kuijk
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Ala Yaromina
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Ruud Houben
- Department of Radiation Oncology, MAASTRO Clinic , Maastricht , Netherlands
| | - Raymon Niemans
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Ludwig J Dubois
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| |
Collapse
|
39
|
Zhou Y, Wen F, Zhang P, Tang R, Li Q. Vesicular stomatitis virus is a potent agent for the treatment of malignant ascites. Oncol Rep 2015; 35:1573-81. [PMID: 26707610 DOI: 10.3892/or.2015.4522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/26/2015] [Indexed: 02/05/2023] Open
Abstract
Cancer cells in ascites are usually exposed to a hypoxia tumor microenvironment and utilize enhanced glycolysis which produces energy and metabolizes nutrients to support proliferation. Vesicular stomatitis virus (VSV) is an oncolytic virus that relies on the host cellular metabolism for replication. We tested the efficacy of VSV on peritoneal carcinomatosis and assessed VSV replication in cancer cells from ascites. BALB/c female mice bearing peritoneal H22 or MethA cells received an i.p. administration of 1x108 PFU VSV or 1x108 PFU equivalent of UV-inactivated VSV on day 10, 12 and 14 after incubation. Administration of VSV resulted in a significant inhibition of ascites formation and prolonged survival of the treated mice. The replication of VSV was obviously enhanced in the cancer cells from the ascites. Considering the central carbon metabolic pathways, cancer cells in the malignant ascites provided more exogenous glucose, glutamine and pyruvate after VSV infection due to its unregulated glycolytic activity and glutamine metabolism. Pharmacologically, inhibition of the glycolytic pathway and glutamine metabolism reduced VSV replication, and this inhibited replication was rescued by the addition of multiple tricarboxylic acid (TCA) cycle intermediates. Our results demonstrated that metabolic adaptive processes in peritoneal carcinoma, such as high glycolytic activity and glutamine metabolism, favor VSV replication. These results suggest the clinical potency of VSV in the treatment of malignant ascites and provide new insights into the further exploration of the potential application of VSV in the treatment of hypoxia ascites cancer cells.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Pengfei Zhang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruilei Tang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
40
|
Takahashi H, Suzuki Y, Nishimura J, Haraguchi N, Ohtsuka M, Miyazaki S, Uemura M, Hata T, Takemasa I, Mizushima T, Yamamoto H, Doki Y, Mori M. Characteristics of carbonic anhydrase 9 expressing cells in human intestinal crypt base. Int J Oncol 2015; 48:115-22. [PMID: 26648507 DOI: 10.3892/ijo.2015.3260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
Though recent studies have revealed that stem cells of many tissues are harbored in hypoxic microenvironment, little is known about the relationship between hypoxia and intestinal crypt base, where intestinal stem cells are supposed to exist. In this study, we focused on carbonic anhydrase IX (CA9), a hypoxia-inducible membrane-tethered protein, in normal intestinal crypt base, adenoma and early colorectal cancer. Using surgically resected human colorectal cancer specimen, we searched for the expression pattern and functional association of CA9 in human adult normal intestinal epithelia, adenoma and early colorectal cancer by immunofluorescent and immunohistochemical staining, flow cytometry, and quantitative real-time-polymerase chain reaction. We demonstrated that almost all crypt base slender cells in ileum and crypt base cells with eosinophilic structure in their basal cytoplasm in right and left colon were CA9+ with the ratio of 25 to 40%, and that adenoma and T1 colorectal cancer showed broad expression of CA9. Flow cytometrically sorted CA9+ population showed increased mRNA level of a Wnt signaling factor AXIN2. In conclusion, these observations indicate that CA9 expression in normal crypt base cells has association with intestinal epithelial stemness and CA9 may be involved in the carcinogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yozo Suzuki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masahisa Ohtsuka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Susumu Miyazaki
- Department of Surgery, Osaka General Medical Center, Higashi Sumiyoshi-Ku, Osaka 558-0056, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ichiro Takemasa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
41
|
Harris BHL, Barberis A, West CML, Buffa FM. Gene Expression Signatures as Biomarkers of Tumour Hypoxia. Clin Oncol (R Coll Radiol) 2015; 27:547-60. [PMID: 26282471 DOI: 10.1016/j.clon.2015.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 02/08/2023]
Abstract
Hypoxia is a feature of most solid tumours and is associated with a poor prognosis. The hypoxic environment can reduce the efficacy of radiotherapy and some chemotherapeutics, and has been investigated extensively as a therapeutic target. The clinical use of hypoxia-targeting treatment will benefit from the development of a biomarker to assess tumour hypoxia. There are several possible techniques that measure either the level of oxygen or the tumour molecular response to hypoxia. The latter includes gene expression profiling, which measures the transcriptional response of a tumour to its hypoxic microenvironment. A systematic review identified 32 published hypoxia gene expression signatures. The methods used for their derivation varied, but are broadly classified as: (i) identifying genes with significantly higher or lower expression in cancer cells cultured under hypoxic versus normoxic conditions; (ii) using either previously characterised hypoxia-regulated genes/biomarkers to define hypoxic tumours and then identifying other genes that are over- or under-expressed in the hypoxic tumours. Both generated gene signatures useful in furthering our understanding of hypoxia biology. However, signatures derived using the second method seem to be superior in terms of providing prognostic information. Here we summarise all 32 published hypoxia signatures, discuss their commonalities and differences, and highlight their strengths and limitations. This review also highlights the importance of reproducibility and gene annotation, which must be accounted for to transfer signatures robustly for clinical application as biomarkers.
Collapse
Affiliation(s)
- B H L Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - A Barberis
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - C M L West
- Translational Radiobiology Group, Institute of Cancer Sciences, University of Manchester, Christie Hospital, Manchester M13 9PT, UK
| | - F M Buffa
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
42
|
Ochi F, Shiozaki A, Ichikawa D, Fujiwara H, Nakashima S, Takemoto K, Kosuga T, Konishi H, Komatsu S, Okamoto K, Kishimoto M, Marunaka Y, Otsuji E. Carbonic Anhydrase XII as an Independent Prognostic Factor in Advanced Esophageal Squamous Cell Carcinoma. J Cancer 2015; 6:922-9. [PMID: 26316888 PMCID: PMC4543752 DOI: 10.7150/jca.11269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/19/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Although recent studies described important roles for carbonic anhydrase (CA) XII in epithelial carcinogenesis and tumor behavior, a consensus has not yet been reached regarding its clinicopathological significance in esophageal squamous cell carcinoma (ESCC). In the present study, we investigated its prognostic significance in ESCC. MATERIALS AND METHODS An immunohistochemical analysis was performed on 70 primary tumor samples obtained from ESCC patients who underwent esophagectomy, and the relationships between the expression of CA XII and various clinicopathological features or prognosis were analyzed. RESULTS Immunohistochemical staining showed that CA XII was primarily found in the cell membranes of carcinoma cells. Although the expression of CA XII was related to the pT category, it had no prognostic impact. We then examined the expression of CA XII according to the pT category. In pT2-3 ESCC, the 3-year survival rate of patients with the high grade expression of CA XII (29.1 %) was significantly lower than that of patients with the low grade expression of CA XII (70.3 %). Furthermore, a multivariate analysis demonstrated that the expression of CA XII was one of the most important independent prognostic factors following radical esophagectomy in pT2-3 ESCC. CONCLUSION These results suggest that the expression of CA XII may be a valuable prognostic factor for patients with advanced ESCC. The results of the present study provide an insight into the role of CA XII as a biomarker in ESCC.
Collapse
Affiliation(s)
- Fumiaki Ochi
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Daisuke Ichikawa
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shingo Nakashima
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kenichi Takemoto
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Toshiyuki Kosuga
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- 2. Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- 3. Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan ; 4. Japan Institute for Food Education and Health, St. Agnes' University, Kyoto, 602-8013, Japan
| | - Eigo Otsuji
- 1. Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
43
|
Huber AR, Tan D, Sun J, Dean D, Wu T, Zhou Z. High expression of carbonic anhydrase IX is significantly associated with glandular lesions in gastroesophageal junction and with tumorigenesis markers BMI1, MCM4 and MCM7. BMC Gastroenterol 2015; 15:80. [PMID: 26156831 PMCID: PMC4495619 DOI: 10.1186/s12876-015-0310-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Abstract
Background Carbonic anhydrase IX (CA9) is a transmembrane glycoprotein related to hypoxia. Increased CA9 expression has been associated with decreased survival and cancer progression and has been targeted as a potential therapy for several cancers, including esophageal cancer. The reported percentages of expression of CA9 in esophageal adenocarcinoma vary, and CA9 expression in precancerous esophageal lesions has not been well studied. Methods In this study, we investigated CA9 expression in esophageal cancers and in precancerous lesions and explored the association of CA9 expression with prognostic factors and with stem cell and tumorigenesis-related markers including BMI1, cyclin E, ki67, MCM4 and MCM7 expression. Previously constructed tissue microarrays consisting of samples of 7 tissue types (columnar cell metaplasia, Barrett esophagus, low- and high-grade dysplasia, esophageal adenocarcinoma, squamous epithelium, and squamous cell carcinoma) were used for the immunostaining of CA9, BMI1, cyclin E, Ki67, MCM4 and MCM7. Results and discussion CA9 high expression occurred more frequently in glandular mucosa with or without dysplasia than in squamous epithelium or squamous cell carcinoma. Survival duration of esophageal adenocarcinoma did not significantly differ between patients with high CA9 expression and those with low expression. High CA9 expression is significantly associated with BMI1, cyclin E, Ki67, MCM4 and MCM7 expression. Conclusions High CA9 expression may be related to the acidic environment caused by gastroesophageal reflux disease in the gastroesophageal junction and associated with tumorigenesis through BMI1, MCM4 and MCM7.
Collapse
Affiliation(s)
- Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY, 14642, USA.
| | - Dongfeng Tan
- Department of Pathology, MD Anderson Cancer Institute, Houston, TX, USA.
| | - Jun Sun
- Biochemistry, Rush University Medical Center, Chicago, IL, USA.
| | - David Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, USA.
| | - Tongtong Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA.
| | - Zhongren Zhou
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY, 14642, USA.
| |
Collapse
|
44
|
Stromal expression of heat-shock protein 27 is associated with worse clinical outcome in patients with colorectal cancer lung metastases. PLoS One 2015; 10:e0120724. [PMID: 25793600 PMCID: PMC4368667 DOI: 10.1371/journal.pone.0120724] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/26/2015] [Indexed: 02/03/2023] Open
Abstract
Background Pulmonary metastases are common in patients with primary colorectal cancer (CRC). Heat-shock protein 27 (Hsp27) is upregulated in activated fibroblasts during wound healing and systemically elevated in various diseases. Cancer-associated fibroblasts (CAFs) are also thought to play a role as prognostic and predictive markers in various malignancies including CRC. Surprisingly, the expression of Hsp27 has never been assessed in CAFs. Therefore we aimed to investigate the expression level of Hsp27 in CAFs and its clinical implications in patients with CRC lung metastases. Methods FFPE tissue samples from 51 pulmonary metastases (PMs) and 33 paired primary tumors were evaluated for alpha-SMA, CD31, Hsp27 and vimentin expression by immunohistochemistry and correlated with clinicopathological variables. 25 liver metastases served as control group. Moreover, serum samples (n=10) before and after pulmonary metastasectomy were assessed for circulating phospho-Hsp27 and total Hsp27 by ELISA. Results Stromal expression of Hsp27 was observed in all PM and showed strong correlation with alpha-SMA (P<0.001) and vimentin (P<0.001). Strong stromal Hsp27 was associated with higher microvessel density in primary CRC and PM. Moreover, high stromal Hsp27 and αSMA expression were associated with decreased recurrence-free survival after pulmonary metastasectomy (P=0.018 and P=0.008, respectively) and overall survival (P=0.031 and P=0.017, respectively). Serum levels of phospho- and total Hsp27 dropped after metastasectomy to levels comparable to healthy controls. Conclusions Herein we describe for the first time that Hsp27 is highly expressed in tumor stroma of CRC. Stromal α-SMA and Hsp27 expressions correlate with the clinical outcome after pulmonary metastasectomy. Moreover, serum Hsp27 might pose a future marker for metastatic disease in CRC.
Collapse
|
45
|
Huang WJ, Jeng YM, Lai HS, Fong IU, Sheu FYB, Lai PL, Yuan RH. Expression of hypoxic marker carbonic anhydrase IX predicts poor prognosis in resectable hepatocellular carcinoma. PLoS One 2015; 10:e0119181. [PMID: 25738958 PMCID: PMC4349857 DOI: 10.1371/journal.pone.0119181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/11/2015] [Indexed: 02/07/2023] Open
Abstract
Carbonic anhydrase IX (CA-IX), a hypoxia marker, correlates with tumor progression in a variety of human cancers. However, the role of CA-IX in hepatocellular carcinomas (HCCs) remains largely unknown. We examined the expression of 277 unifocal, resectable, primary HCC tumors using immunohistochemistry. The CA-IX protein was expressed in 110 of the 227 (48.5%) HCC tumors. The expression of CA-IX correlated with younger age (P = 0.0446), female sex (P = 0.0049), high serum α-fetoprotein levels (P<1x10-6), larger tumor size (P = 0.0031), high tumor grade P<1x10-6) and high tumor stage (P = 1.5x10-6). Patients with HCC tumors that expressed CA-IX were more likely to have lower 5-year disease-free survival (DFS; P = 0.0001) and 5-year overall survival (OS; P<1x10-6). The multivariate analysis indicated that CA-IX expression was an independent predictor for high tumor stage (P = 0.0047) and DFS (P = 0.0456), and a borderline predictor for OS (P = 0.0762). Furthermore, CA-IX expression predicted poor DFS and OS in patients with high tumor stage (P = 0.0004 and P<1x10-6, respectively). Interestingly, CA-IX expression might contribute to the worse prognosis of female patients with advanced HCCs. Our study indicates the expression of the CA-IX protein is a crucial predictor of poor prognosis in resectable HCC, and it is also an unfavorable prognostic predictor in HCC patients with high tumor stage.
Collapse
Affiliation(s)
- Wei-Ju Huang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Section 1, Taipei, 10051, Taiwan
- Department of Nursing, Hsin-Sheng College of Medical Care and Management, No. 418, Gaoping Section, Zhongfeng Road, Longtan Township, Taoyuan County, 32544, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Section 1, Taipei, 10051, Taiwan
- Department of Pathology, National Taiwan University Hospital and College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Section 1, Taipei, 10051, Taiwan
| | - Hong-Shiee Lai
- Departments of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Section 1, Taipei, 10051, Taiwan
| | - Iok-U Fong
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Section 1, Taipei, 10051, Taiwan
| | - Fang-Yu Bonnie Sheu
- Department of Biomedical Science, University of Illinois College of Medicine, 1601 Parkview Ave, Rockford, IL, 61107, United States of America
| | - Po-Lin Lai
- Department of Pathology, National Taiwan University Hospital and College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Section 1, Taipei, 10051, Taiwan
| | - Ray-Hwang Yuan
- Departments of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Section 1, Taipei, 10051, Taiwan
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 10051, Taiwan
- * E-mail:
| |
Collapse
|
46
|
Gu M. CA9 overexpression is an independent favorable prognostic marker in intrahepatic cholangiocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:862-866. [PMID: 25755787 PMCID: PMC4348930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study is to evaluate the expression of carbonic anhydrase IX (CA9) and to identify its prognostic significance in intrahepatic cholangiocarcinoma (IHCC). We performed immunohistochemistry (IHC) for CA9 in a total of 85 IHCCs. CA9 overexpression was observed in 38 of 85 (44.7%) IHCCs. CA9 overexpression was related to tumors with intraductal growth than mass forming or periductal infiltrative type. CA9 overexpression was more observed in tumors with well/moderate differentiation than poor differentiation and without lymph node metastasis. No significant correlation was observed in CA9 overexpression with tumor size, pT, stage and lymphovascular invasion. Intrahepatic cholangiocarcinomas with CA9 overexpression showed better overall survival than that without expression (P = 0.001). In multivariate analysis, lymph node metastasis (95% CI: 2.103 (1.167-3.791), P = 0.013) was an independent poor prognostic factor. IHCC with CA9 overexpression showed a 0.5-fold (95% confidence interval, 0.328-0.944) lower risk of death compared with those of no or weak expression. CA9 overexpression was related to histologic differentiation and an independent good prognostic factor.
Collapse
Affiliation(s)
- Mijin Gu
- Department of Pathology, Yeungnam University College of Medicine Daegu, Rep of Korea
| |
Collapse
|
47
|
The potential of liposomes with carbonic anhydrase IX to deliver anticancer ingredients to cancer cells in vivo. Int J Mol Sci 2014; 16:230-55. [PMID: 25547490 PMCID: PMC4307245 DOI: 10.3390/ijms16010230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/16/2014] [Indexed: 12/19/2022] Open
Abstract
Drug delivery nanocarriers, especially targeted drug delivery by liposomes are emerging as a class of therapeutics for cancer. Early research results suggest that liposomal therapeutics enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumors and active cellular uptake. Here, we highlight the features of immunoliposomes that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While a large number of studies has been published, the emphasis here is placed on the carbonic anhydrase IX (CA-IX) and the conjugated liposomes that are likely to open a new chapter on drug delivery system by using immunoliposomes to deliver anticancer ingredients to cancer cells in vivo.
Collapse
|
48
|
Honarvar H, Garousi J, Gunneriusson E, Höidén-Guthenberg I, Altai M, Widström C, Tolmachev V, Frejd FY. Imaging of CAIX-expressing xenografts in vivo using 99mTc-HEHEHE-ZCAIX:1 affibody molecule. Int J Oncol 2014; 46:513-20. [PMID: 25434612 PMCID: PMC4277246 DOI: 10.3892/ijo.2014.2782] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 10/23/2014] [Indexed: 11/21/2022] Open
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane enzyme involved in regulation of tissue pH balance. In cancer, CAIX expression is associated with tumor hypoxia. CAIX is also overexpressed in renal cell carcinoma and is a molecular target for the therapeutic antibody cG250 (girentuximab). Radionuclide imaging of CAIX expression might be used for identification of patients who may benefit from cG250 therapy and from treatment strategies for hypoxic tumors. Affibody molecules are small (7 kDa) scaffold proteins having a high potential as probes for radionuclide molecular imaging. The aim of the present study was to evaluate feasibility of in vivo imaging of CAIX-expression using radiolabeled Affibody molecules. A histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag-containing CAIX-binding Affibody molecule (HE)3-ZCAIX:1 was labeled with [99mTc(CO)3]+. Its binding properties were evaluated in vitro using CAIX-expressing SK-RC-52 renal carcinoma cells. 99mTc-(HE)3-ZCAIX:1 was evaluated in NMRI nu/nu mice bearing SK-RC-52 xenografts. The in vivo specificity test confirmed CAIX-mediated tumor targeting. 99mTc-(HE)3-ZCAIX:1 cleared rapidly from blood and normal tissues except for kidneys. At optimal time-point (4 h p.i.), the tumor uptake was 9.7±0.7% ID/g, and tumor-to-blood ratio was 53±10. Experimental imaging of CAIX-expressing SK-RC-52 xenografts at 4 h p.i. provided high contrast images. The use of radioiodine label for ZCAIX:1 enabled the reduction of renal uptake, but resulted in significantly lower tumor uptake and tumor-to-blood ratio. Results of the present study suggest that radiolabeled Affibody molecules are promising probes for imaging of CAIX-expression in vivo.
Collapse
Affiliation(s)
- Hadis Honarvar
- Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Javad Garousi
- Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | | | | | - Mohamed Altai
- Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Charles Widström
- Department of Hospital Physics, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | - Vladimir Tolmachev
- Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Fredrik Y Frejd
- Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| |
Collapse
|
49
|
Zhao Z, Liao G, Li Y, Zhou S, Zou H, Fernando S. Prognostic value of carbonic anhydrase IX immunohistochemical expression in renal cell carcinoma: a meta-analysis of the literature. PLoS One 2014; 9:e114096. [PMID: 25426861 PMCID: PMC4245260 DOI: 10.1371/journal.pone.0114096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/30/2014] [Indexed: 11/29/2022] Open
Abstract
Background Carbonic anhydrase IX (CAIX) protein has been correlated with progression and survival in patients with renal cell carcinoma (RCC). The prognostic value of CAIX in RCC however, remains inconclusive according to published works. This study aimed to analyze CAIX as a biological marker to predict RCC patient prognosis. Methods A literature search of the PubMed and Web of Knowledge databases was performed to retrieve original studies from their inception to December of 2013. Fifteen studies, collectively including a total of 2611 patients with renal cell carcinoma, were carefully reviewed. Standard meta-analysis methods were applied to evaluate the prognostic impact of CAIX expression on patient prognosis. The hazard ratio (HR) and its 95% confidence interval (CI) were recorded for the relationship between CAIX expression and survival, and the data were analyzed using Review Manager 5.2 software and Stata software 11.0. Results In patients with RCC, low CAIX expression was associated with poor disease-specific survival (HR = 1.89, 95% CI: 1.20–2.98, P = 0.006), unfavorable progression-free survival (HR = 2.62, 95% CI: 1.14–6.05, P = 0.02) and worse overall survival (HR = 2.03, 95% CI: 1.28–3.21, P = 0.002). Furthermore, low CAIX expression was significantly associated with the presence of lymph node metastases (odds ratio (OR) = 0.31, 95% CI = 0.15–0.62, P = 0.0009) and distant metastases (OR = 0.66, 95% CI = 0.46–0.96, P = 0.03) and predicted a higher tumor grade (OR = 0.41, 95% CI = 0.31–0.54, P<0.00001). Conclusions Low CAIX expression most likely indicates poor prognosis in RCC patients. Moreover, low CAIX expression was significantly associated with unfavorable clinicopathological factors. To strengthen our findings, further well-designed prospective studies should be conducted to investigate the role of CAIX expression in RCC.
Collapse
Affiliation(s)
- Zhihong Zhao
- Institution of Urology and Nephrology, The third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guixiang Liao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongqiang Li
- Institution of Urology and Nephrology, The third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shulu Zhou
- Institution of Urology and Nephrology, The third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hequn Zou
- Institution of Urology and Nephrology, The third Affiliated Hospital of Southern Medical University, Guangzhou, China
- * E-mail:
| | | |
Collapse
|
50
|
Pastorek J, Pastorekova S. Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: from biology to clinical use. Semin Cancer Biol 2014; 31:52-64. [PMID: 25117006 DOI: 10.1016/j.semcancer.2014.08.002] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment includes a complicated network of physiological gradients contributing to plasticity of tumor cells and heterogeneity of tumor tissue. Hypoxia is a key component generating intratumoral oxygen gradients, which affect the cellular expression program and lead to therapy resistance and increased metastatic propensity of weakly oxygenated cell subpopulations. One of the adaptive responses of tumor cells to hypoxia involves the increased expression and functional activation of carbonic anhydrase IX (CA IX), a cancer-related cell surface enzyme catalyzing the reversible conversion of carbon dioxide to bicarbonate ion and proton. Via its catalytic activity, CA IX participates in regulation of intracellular and extracellular pH perturbations that result from hypoxia-induced changes in cellular metabolism producing excess of acid. Through the ability to regulate pH, CA IX also facilitates cell migration and invasion. In addition, CA IX has non-catalytic function in cell adhesion and spreading. Thus, CA IX endows tumor cells with survival advantages in hypoxia/acidosis and confers an increased ability to migrate, invade and metastasize. Accordingly, CA IX is expressed in a broad range of tumors, where it is associated with prognosis and therapy outcome. Its expression pattern and functional implications in tumor biology make CA IX a promising therapeutic target, which can be hit either by immunotherapy with monoclonal antibodies or with compounds inhibiting its enzyme activity. The first strategy has already reached the clinical trials, whereas the second one is still in preclinical testing. Both strategies indicate that CA IX can become a clinically useful anticancer target, but urge further efforts toward better selection of patients for immunotherapy and deeper understanding of tumor types, clinical situations and synthetic lethality interactions with other treatment approaches.
Collapse
Affiliation(s)
- Jaromir Pastorek
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia; Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| |
Collapse
|