1
|
Laurent A, Hirt-Burri N, Scaletta C, Michetti M, de Buys Roessingh AS, Raffoul W, Applegate LA. Holistic Approach of Swiss Fetal Progenitor Cell Banking: Optimizing Safe and Sustainable Substrates for Regenerative Medicine and Biotechnology. Front Bioeng Biotechnol 2020; 8:557758. [PMID: 33195124 PMCID: PMC7644790 DOI: 10.3389/fbioe.2020.557758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Safety, quality, and regulatory-driven iterative optimization of therapeutic cell source selection has constituted the core developmental bedrock for primary fetal progenitor cell (FPC) therapy in Switzerland throughout three decades. Customized Fetal Transplantation Programs were pragmatically devised as straightforward workflows for tissue procurement, traceability maximization, safety, consistency, and robustness of cultured progeny cellular materials. Whole-cell bioprocessing standardization has provided plethoric insights into the adequate conjugation of modern biotechnological advances with current restraining legislative, ethical, and regulatory frameworks. Pioneer translational advances in cutaneous and musculoskeletal regenerative medicine continuously demonstrate the therapeutic potential of FPCs. Extensive technical and clinical hindsight was gathered by managing pediatric burns and geriatric ulcers in Switzerland. Concomitant industrial transposition of dermal FPC banking, following good manufacturing practices, demonstrated the extensive potential of their therapeutic value. Furthermore, in extenso, exponential revalorization of Swiss FPC technology may be achieved via the renewal of integrative model frameworks. Consideration of both longitudinal and transversal aspects of simultaneous fetal tissue differential processing allows for a better understanding of the quasi-infinite expansion potential within multi-tiered primary FPC banking. Multiple fetal tissues (e.g., skin, cartilage, tendon, muscle, bone, lung) may be simultaneously harvested and processed for adherent cell cultures, establishing a unique model for sustainable therapeutic cellular material supply chains. Here, we integrated fundamental, preclinical, clinical, and industrial developments embodying the scientific advances supported by Swiss FPC banking and we focused on advances made to date for FPCs that may be derived from a single organ donation. A renewed model of single organ donation bioprocessing is proposed, achieving sustained standards and potential production of billions of affordable and efficient therapeutic doses. Thereby, the aim is to validate the core therapeutic value proposition, to increase awareness and use of standardized protocols for translational regenerative medicine, potentially impacting millions of patients suffering from cutaneous and musculoskeletal diseases. Alternative applications of FPC banking include biopharmaceutical therapeutic product manufacturing, thereby indirectly and synergistically enhancing the power of modern therapeutic armamentariums. It is hypothesized that a single qualifying fetal organ donation is sufficient to sustain decades of scientific, medical, and industrial developments, as technological optimization and standardization enable high efficiency.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Tec-Pharma SA, Bercher, Switzerland
- LAM Biotechnologies SA, Épalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Anthony S. de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Oxford Suzhou Center for Advanced Research, Science and Technology Co., Ltd., Oxford University, Suzhou, China
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Davoudi S, Chin CY, Cooke MJ, Tam RY, Shoichet MS, Gilbert PM. Muscle stem cell intramuscular delivery within hyaluronan methylcellulose improves engraftment efficiency and dispersion. Biomaterials 2018; 173:34-46. [DOI: 10.1016/j.biomaterials.2018.04.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/21/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022]
|
3
|
Skuk D, Tremblay JP. Cell Therapy in Myology: Dynamics of Muscle Precursor Cell Death after Intramuscular Administration in Non-human Primates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:232-240. [PMID: 28573152 PMCID: PMC5447384 DOI: 10.1016/j.omtm.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 01/14/2023]
Abstract
Cell therapy could be useful for the treatment of myopathies. A problem observed in mice, with different results and interpretations, is a significant death among the transplanted cells. We analyzed this problem in non-human primates, the animal model more similar to humans. Autologous or allogeneic myoblasts (with or without a reporter gene) were proliferated in vitro, labeled with [14C]thymidine, and intramuscularly injected in macaques. Some monkeys were immunosuppressed for long-term follow-up. Cell-grafted regions were biopsied at different intervals and analyzed by radiolabel quantification and histology. Most radiolabel was lost during the first week after injection, regardless of whether the cells were allogeneic or autologous, the culture conditions, and the use or not of immunosuppression. There was no significant difference between 1 hr and 1 day post-transplantation, a significant decrease between days 1 and 3 (45% to 83%), a significant decrease between days 3 and 7 (80% to 92%), and no significant differences between 7 days and 3 weeks. Our results confirmed in non-human primates a progressive and significant death of the grafted myoblasts during the first week after administration, relatively similar to some observations in mice but with different kinetics.
Collapse
Affiliation(s)
- Daniel Skuk
- Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Québec, QC G1V 4G2, Canada
| | - Jacques P Tremblay
- Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Québec, QC G1V 4G2, Canada
| |
Collapse
|
4
|
Muskiewicz KR, Frank NY, Flint AF, Gussoni E. Myogenic Potential of Muscle Side and Main Population Cells after Intravenous Injection into Sub-lethally IrradiatedmdxMice. J Histochem Cytochem 2016; 53:861-73. [PMID: 15995145 DOI: 10.1369/jhc.4a6573.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Muscle side population (SP) cells have demonstrated hematopoietic and myogenic activities in vivo upon intravenous (IV) injection into lethally irradiated mdx mice. In contrast, muscle main population (MP) cells were unable to rescue the bone marrow of lethally irradiated mice and, consequently, their in vivo myogenic potential could not be assessed using this method. In the current study, muscle SP or MP cells derived from syngeneic wild-type male mice were delivered to sub-lethally irradiated mdx female mice by single or serial IV injections. Recipient mice were euthanized 12 weeks after transplantation at which time the quadriceps and diaphragm muscles were analyzed for the presence of donor-derived cells. Mice injected with 104muscle SP cells or with 106MP cells appeared to have similar numbers of dystrophin-positive myofibers containing fused donor nuclei. Analysis of the remaining tissue via real-time quantitative PCR indicated that mice injected with muscle SP cells had a higher percentage of donor-derived Y-DNA in the quadriceps than mice injected with MP cells, suggesting that muscle SP cells may be enriched for progenitors able to engraft dystrophic skeletal muscles from the circulation. Although the overall engraftment did not reach therapeutically significant levels, these results indicate that further optimization of cell delivery techniques may lead to improved efficacy of cell-mediated therapy using muscle SP cells.
Collapse
Affiliation(s)
- Kristina R Muskiewicz
- Division of Genetics, Program in Genomics, Children's Hospital Boston, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
5
|
Hunt LC, White J. The Role of Leukemia Inhibitory Factor Receptor Signaling in Skeletal Muscle Growth, Injury and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:45-59. [DOI: 10.1007/978-3-319-27511-6_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Sassoli C, Frati A, Tani A, Anderloni G, Pierucci F, Matteini F, Chellini F, Zecchi Orlandini S, Formigli L, Meacci E. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. PLoS One 2014; 9:e108662. [PMID: 25264785 PMCID: PMC4181304 DOI: 10.1371/journal.pone.0108662] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022] Open
Abstract
Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chiara Sassoli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessia Frati
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Giulia Anderloni
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
| | - Federica Pierucci
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
| | - Francesca Matteini
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Sandra Zecchi Orlandini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Lucia Formigli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Elisabetta Meacci
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
7
|
Dynamics of acute local inflammatory response after autologous transplantation of muscle-derived cells into the skeletal muscle. Mediators Inflamm 2014; 2014:482352. [PMID: 25242868 PMCID: PMC4163307 DOI: 10.1155/2014/482352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/10/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022] Open
Abstract
The vast majority of myoblasts transplanted into the skeletal muscle die within the first week after injection. Inflammatory response to the intramuscular cell transfer was studied in allogeneic but not in autologous model. The aim of this study was to evaluate immune reaction to autotransplantation of myogenic cells and to assess its dynamics within the first week after injection. Muscle-derived cells or medium alone was injected into the intact skeletal muscles in autologous model. Tissue samples were collected 1, 3, and 7 days after the procedure. Our analysis revealed the peak increase of the gene expression of all evaluated cytokines (Il-1α, Il-1β, Il-6, Tgf-β, and Tnf-α) at day 1. The mRNA level of analyzed cytokines normalized in subsequent time points. The increase of Il-β
gene expression was further confirmed at the protein level. Analysis of the tissue sections revealed rapid infiltration of injected cell clusters with neutrophils and macrophages. The inflammatory infiltration was almost completely resolved at day 7. The survived cells were able to participate in the muscle regeneration process. Presented results demonstrate that autotransplanted muscle-derived cells induce classical early immune reaction in the site of injection which may contribute to cellular graft elimination.
Collapse
|
8
|
Stem cell transplantation for muscular dystrophy: the challenge of immune response. BIOMED RESEARCH INTERNATIONAL 2014; 2014:964010. [PMID: 25054157 PMCID: PMC4098613 DOI: 10.1155/2014/964010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/05/2014] [Indexed: 01/03/2023]
Abstract
Treating muscle disorders poses several challenges to the rapidly evolving field of regenerative medicine. Considerable progress has been made in isolating, characterizing, and expanding myogenic stem cells and, although we are now envisaging strategies to generate very large numbers of transplantable cells (e.g., by differentiating induced pluripotent stem cells), limitations directly linked to the interaction between transplanted cells and the host will continue to hamper a successful outcome. Among these limitations, host inflammatory and immune responses challenge the critical phases after cell delivery, including engraftment, migration, and differentiation. Therefore, it is key to study the mechanisms and dynamics that impair the efficacy of cell transplants in order to develop strategies that can ultimately improve the outcome of allogeneic and autologous stem cell therapies, in particular for severe disease such as muscular dystrophies. In this review we provide an overview of the main players and issues involved in this process and discuss potential approaches that might be beneficial for future regenerative therapies of skeletal muscle.
Collapse
|
9
|
Trophic actions of bone marrow-derived mesenchymal stromal cells for muscle repair/regeneration. Cells 2012; 1:832-50. [PMID: 24710532 PMCID: PMC3901134 DOI: 10.3390/cells1040832] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 12/30/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) represent the leading candidate cell in tissue engineering and regenerative medicine. These cells can be easily isolated, expanded in vitro and are capable of providing significant functional benefits after implantation in the damaged muscle tissues. Despite their plasticity, the participation of BM-MSCs to new muscle fiber formation is controversial; in fact, emerging evidence indicates that their therapeutic effects occur without signs of long-term tissue engraftment and involve the paracrine secretion of cytokines and growth factors with multiple effects on the injured tissue, including modulation of inflammation and immune reaction, positive extracellular matrix (ECM) remodeling, angiogenesis and protection from apoptosis. Recently, a new role for BM-MSCs in the stimulation of muscle progenitor cells proliferation has been demonstrated, suggesting the potential ability of these cells to influence the fate of local stem cells and augment the endogenous mechanisms of repair/regeneration in the damaged tissues.
Collapse
|
10
|
Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle. PLoS One 2012; 7:e46698. [PMID: 23056408 PMCID: PMC3462747 DOI: 10.1371/journal.pone.0046698] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022] Open
Abstract
Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i) myoblast survival by limiting their massive death, ii) myoblast expansion within the tissue and iii) myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.
Collapse
|
11
|
Alterations in the expression of leukemia inhibitory factor following exercise: comparisons between wild-type and mdx muscles. PLOS CURRENTS 2011; 3:RRN1277. [PMID: 22183053 PMCID: PMC3222879 DOI: 10.1371/currents.rrn1277] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/24/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND Leukemia inhibitory factor (LIF) is a pleiotropic cytokine, belonging to the interleukin-6 family of cytokines, that has been suggested to have positive effects on myogenesis following injury and to minimise dystrophic pathology in mdx mice. Previous reports have suggested that Lif mRNA is up-regulated in the limb and diaphragm muscles of mdx mice, in human cases of dystrophy and acutely following exercise. This study examined expression of Lif mRNA in the quadriceps muscles of mdx and wild-type mice that were either sedentary or allowed to exercise voluntarily for two weeks. RESULTS Exercise caused a decrease in Lif mRNA expression in wild-type muscle, but this was not the case in mdx muscle. Lif mRNA levels in sedentary mdx mice were similar to those in exercised wild type muscles, and in mdx mice there was no further decrease in levels following exercise. Similar down-regulation of Lif mRNA was observed in the tibialis anterior and diaphragm muscles of mdx mice at three and six weeks of age respectively, compared with wild-type controls. Transcripts for the LIF receptor (Lifr) were also down-regulated in these mdx muscles, suggesting LIF activity may be minimised in dystrophic muscle. However fluorescent immunohistochemical labeling of LIF did not correlate with transcript expression data, as LIF immunoreactivity could not be detected in wild-type muscle, where mRNA expression was high, but was present in dystrophic muscle where mRNA expression was low. This study also described the translocation of membrane proteins, including LIFR, to the nuclei of syncytial muscle cells during differentiation and fusion. In addition this study demonstrates that survival of donor myoblasts injected into dystrophic muscle was enhanced by co-administration of recombinant LIF. CONCLUSIONS This study provides new evidence to support a role for LIF in normal muscle biology in response to exercise. Although expression levels of Lif transcript in mdx muscles were not consistent with previous studies, the detection of LIF protein in mdx muscle but not wild-type muscle supports a role for LIF in dystrophy. This study also provides evidence of the differential localisation of the LIFR, and the potential for anti-inflammatory actions of LIF that promote survival of transplanted myoblasts in dystrophic muscle.*corresponding author: Jason White, Muscular Dystrophy Research Group, Murdoch Childrens Research Institute; email: jasondw@unimelb.edu.au.
Collapse
|
12
|
The survival of myoblasts after intramuscular transplantation is improved when fewer cells are injected. Transplantation 2011; 91:522-6. [PMID: 21192317 DOI: 10.1097/tp.0b013e318208a8c0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Myoblast transplantation has long been studied as a potential therapy for Duchenne muscular dystrophy as the incorporation of donor myoblasts into host muscle allows the production of functional dystrophin protein. However, the clinical feasibility of this approach is limited by the poor survival of the donor cells in the weeks after transplantation. It has recently been determined that the intramuscular transplantation of large numbers of cells can lead to the formation of ischemic necrosis in the center of these cell masses. For this reason, the relationship between donor cell survival and the number of cells transplanted was investigated. METHODS Myoblasts were prepared from the hind limb muscles of male C57BL/10Sn mice and transplanted into the tibialis anterior muscles of female mdx mice at one of the following amounts: 10, 10, 10, or 10 cells. The survival of the transplanted cells was analyzed using a Y chromosome-specific qPCR. RESULTS It was found that donor cell survival was improved 1 week after transplantation when fewer myoblasts were transplanted, including the observation of donor cell proliferation after the transplantation of 10 myoblasts. However, concentration effects and long-term survival complicate the interpretation of these results. CONCLUSIONS These results indicate that early donor myoblast survival was dependent on the number of cells transplanted and the volume of liquid used to deliver them into the muscle. We believe that this finding has implications for the design and interpretation of future experimentation relating to intramuscular cell therapies.
Collapse
|
13
|
Skuk D, Tremblay JP. Intramuscular cell transplantation as a potential treatment of myopathies: clinical and preclinical relevant data. Expert Opin Biol Ther 2011; 11:359-74. [PMID: 21204740 DOI: 10.1517/14712598.2011.548800] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Myopathies produce deficits in skeletal muscle function and, in some cases, literally progressive loss of skeletal muscles. The transplantation of cells able to differentiate into myofibers is an experimental strategy for the potential treatment of some of these diseases. AREAS COVERED Among the two routes used to deliver cells to skeletal muscles, that is intramuscular and intravascular, this paper focuses on the intramuscular route due to our expertise and because it is the most used in animal experiments and the only tested so far in humans. Given the absence of recent reviews about clinical observations and the profusion based on mouse results, this review prioritizes observations made in humans and non-human primates. The review provides a vision of cell transplantation in myology centered on what can be learned from clinical trials and from preclinical studies in non-human primates and leading mouse studies. EXPERT OPINION Experiments on myogenic cell transplantation in mice are essential to quickly identify potential treatments, but studies showing the possibility to scale up the methods in large mammals are indispensable to determine their applicability in humans and to design clinical protocols.
Collapse
Affiliation(s)
- Daniel Skuk
- CHUQ Research Center - CHUL, Neurosciences Division - Human Genetics, 2705 Boulevard Laurier, Quebec, Quebec G1V 4G2, Canada.
| | | |
Collapse
|
14
|
Gheysens O, Lin S, Cao F, Wang D, Chen IY, Rodriguez-Porcel M, Min JJ, Gambhir SS, Wu JC. Noninvasive evaluation of immunosuppressive drug efficacy on acute donor cell survival. Mol Imaging Biol 2009; 8:163-70. [PMID: 16555032 PMCID: PMC4161130 DOI: 10.1007/s11307-006-0038-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE The therapeutic benefits of cell transplantation may depend on the survival of sufficient numbers of grafted cells. We evaluate four potent immunosuppressive medications aimed at preventing acute donor cell death. PROCEDURES AND RESULTS Embryonic rat H9c2 myoblasts were stably transduced to express firefly luciferase reporter gene (H9c2-Fluc). H9c2-Fluc cells (3x10(6)) were injected into thigh muscles of Sprague-Dawley rats (N=30) treated with cyclosporine, dexamethasone, mycophenolate mofetil, tacrolimus, or saline from day -3 to day +14. Longitudinal optical bioluminescence imaging was performed over two weeks. Fluc activity was 40.0+/-12.1% (dexamethasone), 30.5+/-12.5% (tacrolimus), and 21.5+/-3.5% (mycophenolate) vs. 12.0+/-5.0% (control) and 8.3+/-5.0% (cyclosporine) at day 4 (P<0.05). However, by day 14, cell signals had decreased drastically to <10% for all groups despite drug therapy. CONCLUSION This study demonstrates the ability of optical molecular imaging for tracking cell survival noninvasively and raises important questions with regard to the overall efficacy of immunosuppressives for prolonging transplanted cell survival.
Collapse
Affiliation(s)
- Olivier Gheysens
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
| | - Shuan Lin
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
| | - Feng Cao
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
| | - Dongxu Wang
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
| | - Ian Y. Chen
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
| | | | - Jung J. Min
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
| | - Sanjiv S. Gambhir
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Joseph C. Wu
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
15
|
Praud C, Vauchez K, Lombes A, Fiszman MY, Vilquin JT. Myoblast Xenotransplantation as a Tool to Evaluate the Appropriateness of Nanoparticular versus Cellular Trackers. Cell Transplant 2008; 17:1035-43. [DOI: 10.3727/096368908786991588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Myoblast transplantation is being considered as a potential strategy to improve muscle function in myopathies; hence, it is important to identify the transplanted cells and to have available efficient reagents to track these cells. We first validated a human to mouse xenotransplantation model warranting the complete and rapid rejection of the cells. We then used this model to assess the appropriateness of a nanoparticle reagent to track the transplanted cells. Human myoblasts were loaded with ferrite nanoparticles and injected into the tibialis muscle of immunocompetent mice. Upon collection and histological analysis of muscle sections at different time points, we observed the total disappearance of the human cells within 6 days while ferrite particles remained detectable and colocalized with mouse infiltrating and neighboring cells at the injection site. These results suggest that the use of exogenous markers such as ferrite nanoparticles may lead to false-positive results and misinterpretation of cell fate.
Collapse
Affiliation(s)
- C. Praud
- Inserm U582, Institut de Myologie, UPMC Univ Paris 06, Paris, France
| | - K. Vauchez
- Inserm U582, Institut de Myologie, UPMC Univ Paris 06, Paris, France
- Genzyme S.A., Saint Germain en Laye, France
| | - A. Lombes
- Inserm U582, Institut de Myologie, UPMC Univ Paris 06, Paris, France
| | - M. Y. Fiszman
- Inserm U582, Institut de Myologie, UPMC Univ Paris 06, Paris, France
| | - J.-T. Vilquin
- Inserm U582, Institut de Myologie, UPMC Univ Paris 06, Paris, France
| |
Collapse
|
16
|
Wallace GQ, Lapidos KA, Kenik JS, McNally EM. Long-term survival of transplanted stem cells in immunocompetent mice with muscular dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:792-802. [PMID: 18711004 DOI: 10.2353/ajpath.2008.080259] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Satellite cells refer to resident stem cells in muscle that are activated in response to damage or disease for the regeneration and repair of muscle fibers. The use of stem cell transplantation to treat muscular diseases has been limited by impaired donor cell survival attributed to rejection and an unavailable stem cell niche. We isolated a population of adult muscle mononuclear cells (AMMCs) from normal, strain-matched muscle and transplanted these cells into delta-sarcoglycan-null dystrophic mice. Distinct from other transplant studies, the recipient mice were immunocompetent with an intact endogenous satellite cell pool. We found that AMMCs were 35 times more efficient at restoring sarcoglycan compared with cultured myoblasts. Unlike cultured myoblasts, AMMC-derived muscle fibers expressed sarcoglycan protein throughout their entire length, consistent with enhanced migratory ability. We examined the capacity of single injections of AMMCs to provide long-term benefit for muscular dystrophy and found persistent regeneration after 6 months, consistent with augmentation of the endogenous stem cell pool. Interestingly, AMMCs were more effectively engrafted into aged dystrophic mice for the regeneration of large clusters of sarcoglycan-positive muscle fibers, which were protected from damage, suggesting that the stem cell niche in older muscle remains permissive.
Collapse
Affiliation(s)
- Gregory Q Wallace
- Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
17
|
Hirt-Burri N, de Buys Roessingh AS, Scaletta C, Gerber S, Pioletti DP, Applegate LA, Hohlfeld J. Human muscular fetal cells: a potential cell source for muscular therapies. Pediatr Surg Int 2008; 24:37-47. [PMID: 17962961 DOI: 10.1007/s00383-007-2040-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Myoblast transfer therapy has been extensively studied for a wide range of clinical applications, such as tissue engineering for muscular loss, cardiac surgery or Duchenne Muscular Dystrophy treatment. However, this approach has been hindered by numerous limitations, including early myoblast death after injection and specific immune response after transplantation with allogenic cells. Different cell sources have been analyzed to overcome some of these limitations. The object of our study was to investigate the growth potential, characterization and integration in vivo of human primary fetal skeletal muscle cells. These data together show the potential for the creation of a cell bank to be used as a cell source for muscle cell therapy and tissue engineering. For this purpose, we developed primary muscular cell cultures from biopsies of human male thigh muscle from a 16-week-old fetus and from donors of 13 and 30 years old. We show that fetal myogenic cells can be successfully isolated and expanded in vitro from human fetal muscle biopsies, and that fetal cells have higher growth capacities when compared to young and adult cells. We confirm lineage specificity by comparing fetal muscle cells to fetal skin and bone cells in vitro by immunohistochemistry with desmin and 5.1 H11 antibodies. For the feasibility of the cell bank, we ensured that fetal muscle cells retained intrinsic characteristics after 5 years cryopreservation. Finally, human fetal muscle cells marked with PKH26 were injected in normal C57BL/6 mice and were found to be present up to 4 days. In conclusion we estimate that a human fetal skeletal muscle cell bank can be created for potential muscle cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Nathalie Hirt-Burri
- Pediatric Surgery Laboratory, University Hospital Lausanne, CHUV, CI/02/60, Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Bouchentouf M, Skuk D, Tremblay JP. Early and massive death of myoblasts transplanted into skeletal muscle: responsible factors and potential solutions. Curr Opin Organ Transplant 2007. [DOI: 10.1097/mot.0b013e3282f19f20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Yang S, Laumonier T, Menetrey J. Heat shock pretreatment enhances porcine myoblasts survival after autotransplantation in intact skeletal muscle. ACTA ACUST UNITED AC 2007; 50:438-46. [PMID: 17653663 DOI: 10.1007/s11427-007-0065-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 03/02/2007] [Indexed: 11/29/2022]
Abstract
Myoblast transplantation (MT) is a cell-based gene therapy treatment, representing a potential treatment for Duchenne muscular dystrophy (DMD), cardiac failure and muscle trauma. The rapid and massive death of transplanted cells after MT is considered as a major hurdle which limits the efficacy of MT treatment. Heat shock proteins (HSPs) are overexpressed when cells undergo various insults. HSPs have been described to protect cells in vivo and in vitro against diverse insults. The aim of our study is to investigate whether HSP overexpression could increase myoblast survival after autotransplantation in pig intact skeletal muscle. HSP expression was induced by warming the cells at 42 degrees C for 1 h. HSP70 expression was quantified by Western blot and flow cytometry 24 h after the treatment. To investigate the myogenic characteristics of myoblasts, desmin and CD56 were analysed by Western blot and flow cytometry; and the fusion index was measured. We also quantified cell survival after autologous transplantation in pig intact skeletal muscle and followed cell integration. Results showed that heat shock treatment of myoblasts induced a significative overexpression of the HSP70 (P < 0.01) without loss of their myogenic characteristics as assessed by FACS and fusion index. In vivo (n=7), the myoblast survival rate was not significantly different at 24 h between heat shock treated and nontreated cells (67.69% +/- 8.35% versus 58.79% +/- 8.35%, P > 0.05). However, the myoblast survival rate in the heat shocked cells increased by twofold at 48 h (53.32% +/- 8.22% versus 28.27% +/- 6.32%, P < 0.01) and more than threefold at 120 h (26.33% +/- 5.54% versus 8.79% +/- 2.51%, P < 0.01). Histological analysis showed the presence of non-heat shocked and heat shocked donor myoblasts fused with host myoblasts. These results suggested that heat shock pretreatment increased the HSP70 expression in porcine myoblasts, and improved the survival rate after autologous transplantation. Therefore, heat shock pretreatment of myoblast in vitro is a simple and effective way to enhance cell survival after transplantation in pig. It might represent a potential method to overcome the limitations of MT treatment.
Collapse
Affiliation(s)
- Sheng Yang
- Department of Orthopedic Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | | | | |
Collapse
|
20
|
Hodgetts S, Radley H, Davies M, Grounds MD. Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord 2006; 16:591-602. [PMID: 16935507 DOI: 10.1016/j.nmd.2006.06.011] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 06/22/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
Necrosis of skeletal muscle fibres in the lethal childhood myopathy Duchenne Muscular Dystrophy results from deficiency of the cell membrane associated protein, dystrophin. We test the hypothesis in dystrophin-deficient mice, that the initial sarcolemmal breakdown resulting from dystrophin deficiency is exacerbated by inflammatory cells, specifically neutrophils, and that cytokines, specifically Tumour Necrosis Factor alpha (TNFalpha), contribute to myofibre necrosis. Antibody depletion of host neutrophils resulted in a delayed and significantly reduced amount of skeletal muscle breakdown in young dystrophic mdx mice. A more striking and prolonged protective effect was seen after pharmacological blockade of TNFalpha bioactivity using Etanercept. The extent of exercise induced myofibre necrosis in adult mdx mice after voluntarily wheel exercise was also reduced after Etanercept administration. These data show a clear role for neutrophils and TNFalpha in necrosis of dystrophic mdx muscle in vivo. Etanercept is a highly specific anti-inflammatory drug, widely used clinically, and potential application to muscular dystrophies is suggested by this reduced breakdown of mdx skeletal muscle.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Disease Models, Animal
- Down-Regulation/drug effects
- Down-Regulation/immunology
- Dystrophin/deficiency
- Etanercept
- Female
- Immunoglobulin G/pharmacology
- Immunoglobulin G/therapeutic use
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Inflammation/drug therapy
- Inflammation/physiopathology
- Inflammation/prevention & control
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/immunology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/immunology
- Muscular Dystrophy, Duchenne/physiopathology
- Necrosis/drug therapy
- Necrosis/physiopathology
- Necrosis/prevention & control
- Neutrophils/drug effects
- Neutrophils/immunology
- Physical Conditioning, Animal/adverse effects
- Receptors, Tumor Necrosis Factor/therapeutic use
- Treatment Outcome
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Stuart Hodgetts
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | | | | | |
Collapse
|
21
|
Abstract
Myoblast transplantation (MT) is an experimental strategy for the potential treatment of myopathies. MT has two properties that make it potentially beneficial: genetic complementation and myogenic potential. Preclinical experiments on monkeys have shown that promising results can be obtained with MT in large muscles of primates depending on two conditions: appropriate immunosuppression and cell delivery by a method of high-density injections. Preclinical work on MT is being, or may be, addressed to: develop efficient methods of donor cell delivery applicable to clinics; control or avoid acute rejection by methods with the fewest secondary effects; understand the factors that condition the early survival of donor cells following transplantation; increase the success of each individual injection; re-engineer a functional structure in muscles that degenerates to fibrosis and fat substitution; and search for precursor cells with potential advantages over myoblasts.
Collapse
Affiliation(s)
- Daniel Skuk
- Centre de recherche du Centre hospitalier de l'Université Laval, Unité de recherche en Génétique humaine, CHUL du CHUQ, 2705, Boulevard Laurier, Québec, Canada.
| |
Collapse
|
22
|
Holzer N, Hogendoorn S, Zürcher L, Garavaglia G, Yang S, König S, Laumonier T, Menetrey J. Autologous transplantation of porcine myogenic precursor cells in skeletal muscle. Neuromuscul Disord 2005; 15:237-44. [PMID: 15725585 DOI: 10.1016/j.nmd.2004.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 11/08/2004] [Accepted: 11/15/2004] [Indexed: 11/30/2022]
Abstract
Myoblast transplantation is a potential therapy for severe muscle trauma, myopathies and heart infarct. Success with this therapy relies on the ability to obtain cell preparations enriched in myogenic precursor cells and on their survival after transplantation. To define myoblast transplantation strategies applicable to patients, we used a large animal model, the pig. Muscle dissociation procedures adapted to porcine tissue gave high yields of cells containing at least 80% myogenic precursor cells. Autologous transplantation of 3[H]-thymidine labeled porcine myogenic precursor cells indicated 60% survival at day 1 followed by a decay to 10% at day 5 post-injection. Nuclei of myogenic precursor cells transduced with a lentivirus encoding the nls-lacZ reporter gene were present in host myotubes 8 days post-transplantation, indicating that injected myogenic precursor cells contribute to muscle regeneration. This work suggests that pig is an adequate large animal model for exploring myogenic precursor cells transplantation strategies applicable in patients.
Collapse
Affiliation(s)
- Nicolas Holzer
- Department of Clinical Neurosciences and Dermatology, Geneva Faculty of Medicine and University Hospital, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee-Pullen TF, Bennett AL, Beilharz MW, Grounds MD, Sammels LM. Superior survival and proliferation after transplantation of myoblasts obtained from adult mice compared with neonatal mice. Transplantation 2004; 78:1172-6. [PMID: 15502715 DOI: 10.1097/01.tp.0000137936.75203.b4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Myoblast transfer therapy (MTT) is a strategy designed to compensate for the defective gene in myopathies such as Duchenne muscular dystrophy (DMD). Experimental MTT in the mdx mouse (an animal model of DMD) has used donor myoblasts derived from mice of various ages; however, to date, there has been no direct quantitative comparison between the efficacy of MTT using myoblasts isolated from adult and neonate donor muscle. METHODS Donor normal male myoblasts were injected into Tibialis Anterior muscles of dystrophic female host mice and the survival and proliferation of male myoblasts quantitated using Y-chromosome specific real-time quantitative polymerase chain reaction. The survival of late preplate (PP6) myoblasts derived from neonatal (3-5 days old) or adult (6-8 weeks old) donor mice after MTT were compared. The influence of the number of tissue culture passages, on survival post-MTT, was also evaluated for both types of myoblasts. RESULTS Surprisingly, superior transplantation efficiency was observed for adult-derived compared with neonatal myoblasts (both early and late passage). Extended expansion (>17 passages) in tissue culture resulted in inferior survival and proliferation of both adult and neonatal myoblasts; however, proliferation of early passage myoblasts (both adult and neonate) was evident between 3 weeks and 3 months. CONCLUSIONS Myoblasts derived from neonatal mice were inferior for transplantation, and early passage donor myoblasts from adult mice are recommended for MTT in this model.
Collapse
Affiliation(s)
- Tracey F Lee-Pullen
- Discipline of Microbiology, School of Biomedical and Chemical Sciences, The University of Western Australia, QEII Medical Centre, Nedlands, Perth, WA 6009, Australia
| | | | | | | | | |
Collapse
|