1
|
Immune response associated with ischemia and reperfusion injury during organ transplantation. Inflamm Res 2022; 71:1463-1476. [PMID: 36282292 PMCID: PMC9653341 DOI: 10.1007/s00011-022-01651-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Ischemia and reperfusion injury (IRI) is an ineluctable immune-related pathophysiological process during organ transplantation, which not only causes a shortage of donor organs, but also has long-term and short-term negative consequences on patients. Severe IRI-induced cell death leads to the release of endogenous substances, which bind specifically to receptors on immune cells to initiate an immune response. Although innate and adaptive immunity have been discovered to play essential roles in IRI in the context of organ transplantation, the pathway and precise involvement of the immune response at various stages has not yet to be elucidated. Methods We combined “IRI” and “organ transplantation” with keywords, respectively such as immune cells, danger signal molecules, macrophages, neutrophils, natural killer cells, complement cascade, T cells or B cells in PubMed and the Web of Science to search for relevant literatures. Conclusion Comprehension of the immune mechanisms involved in organ transplantation is promising for the treatment of IRI, this review summarizes the similarities and differences in both innate and adaptive immunity and advancements in the immune response associated with IRI during diverse organ transplantation.
Collapse
|
2
|
Tao L, Ren X, Zhai W, Chen Z. Progress and Prospects of Non-Canonical NF-κB Signaling Pathway in the Regulation of Liver Diseases. Molecules 2022; 27:molecules27134275. [PMID: 35807520 PMCID: PMC9268066 DOI: 10.3390/molecules27134275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Non-canonical nuclear factor kappa B (NF-κB) signaling pathway regulates many physiological and pathological processes, including liver homeostasis and diseases. Recent studies demonstrate that non-canonical NF-κB signaling pathway plays an essential role in hyperglycemia, non-alcoholic fatty liver disease, alcoholic liver disease, liver regeneration, liver injury, autoimmune liver disease, viral hepatitis, and hepatocellular carcinoma. Small-molecule inhibitors targeting to non-canonical NF-κB signaling pathway have been developed and shown promising results in the treatment of liver injuries. Here, the recent advances and future prospects in understanding the roles of the non-canonical NF-κB signaling pathways in the regulation of liver diseases are discussed.
Collapse
Affiliation(s)
- Li Tao
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing 100017, China; (L.T.); (W.Z.)
| | - Xiaomeng Ren
- College of Pharmaceutical and Biology Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- Correspondence: (X.R.); (Z.C.); Tel.: +86-45186402029 (Z.C.)
| | - Wenhui Zhai
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing 100017, China; (L.T.); (W.Z.)
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Correspondence: (X.R.); (Z.C.); Tel.: +86-45186402029 (Z.C.)
| |
Collapse
|
3
|
Ramavath NN, Gadipudi LL, Provera A, Gigliotti LC, Boggio E, Bozzola C, Albano E, Dianzani U, Sutti S. Inducible T-Cell Costimulator Mediates Lymphocyte/Macrophage Interactions During Liver Repair. Front Immunol 2021; 12:786680. [PMID: 34925367 PMCID: PMC8678521 DOI: 10.3389/fimmu.2021.786680] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
The liver capacity to recover from acute liver injury is a critical factor in the development of acute liver failure (ALF) caused by viral infections, ischemia/reperfusion or drug toxicity. Liver healing requires the switching of pro-inflammatory monocyte-derived macrophages(MoMFs) to a reparative phenotype. However, the mechanisms involved are still incompletely characterized. In this study we investigated the contribution of T-lymphocyte/macrophage interaction through the co-stimulatory molecule Inducible T-cell co-stimulator (ICOS; CD278) and its ligand (ICOSL; CD275) in modulating liver repair. The role of ICOS/ICOSL dyad was investigated during the recovery from acute liver damage induced by a single dose of carbon tetrachloride (CCl4). Flow cytometry of non-parenchymal liver cells obtained from CCl4-treated wild-type mice revealed that the recovery from acute liver injury associated with a specific up-regulation of ICOS in CD8+ T-lymphocytes and with an increase in ICOSL expression involving CD11bhigh/F4-80+ hepatic MoMFs. Although ICOS deficiency did not influence the severity of liver damage and the evolution of inflammation, CCl4-treated ICOS knockout (ICOS-/-) mice showed delayed clearance of liver necrosis and increased mortality. These animals were also characterized by a significant reduction of hepatic reparative MoMFs due to an increased rate of cell apoptosis. An impaired liver healing and loss of reparative MoMFs was similarly evident in ICOSL-deficient mice or following CD8+ T-cells ablation in wild-type mice. The loss of reparative MoMFs was prevented by supplementing CCl4-treated ICOS-/- mice with recombinant ICOS (ICOS-Fc) which also stimulated full recovery from liver injury. These data demonstrated that CD8+ T-lymphocytes play a key role in supporting the survival of reparative MoMFs during liver healing trough ICOS/ICOSL-mediated signaling. These observations open the possibility of targeting ICOS/ICOSL dyad as a novel tool for promoting efficient healing following acute liver injury.
Collapse
Affiliation(s)
- Naresh Naik Ramavath
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Laila Lavanya Gadipudi
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Alessia Provera
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Luca C Gigliotti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Elena Boggio
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Cristina Bozzola
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| |
Collapse
|
4
|
Wang XP, Zheng WC, Bai Y, Li Y, Xin Y, Wang JZ, Chang YL, Zhang LM. Carbon Monoxide-Releasing Molecule-3 Alleviates Kupffer Cell Pyroptosis Induced by Hemorrhagic Shock and Resuscitation via sGC-cGMP Signal Pathway. Inflammation 2021; 44:1330-1344. [PMID: 33575924 DOI: 10.1007/s10753-021-01419-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
Following hepatic ischemia-reperfusion injury, Kupffer cells could be activated by inflammatory factors released from damaged hepatocytes. Carbon monoxide (CO)-releasing molecule (CORM)-3, a water-soluble transition metal carbonyl, exhibits excellent anti-inflammatory and anti-pyroptosis properties. We investigated whether CORM-3 attenuated hemorrhagic shock and resuscitation (HSR)-induced pyroptosis of Kupffer cells through the soluble guanylate-cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signal pathway. NS2028 (10 mg/kg), a blocker of sGC, was administrated at the onset of hemorrhage, but CORM-3 (4 mg/kg) was infused after resuscitation via femoral vein. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels, tumor necrosis Factor-α (TNF-α), and interleukin-1β (IL-1β) were measured at 3, 6, 12, and 24 h after HSR, respectively. Six hours post-HSR, liver injury, pyroptosis of Kupffer cells, and expressions in total caspase-1, cleaved caspase-1, gasdermin D (GSDMD) N-terminal fragment, IL-1β, and IL-18 were measured by hematoxylin-eosin (H&E), immunofluorescence and western blot assays, respectively (Fig. 1). The rats exposed to HSR exhibited significant upregulated levels of serum ALT, AST, TNF-α, and IL-1β, elevated liver injury score, increased pyroptosis of Kupffer cells, and accumulated expressions of pyroptosis-associated protein including cleaved caspase-1, GSDMD N-terminal fragment, IL-1β, and IL-18 than sham-treated rats. However, CORM-3 administration markedly reduced liver injury and pyroptosis of Kupffer cells, whereas these protective effects could be partially blocked by NS2028. CORM-3 can mitigate pyroptosis of Kupffer cells in a blood loss and re-infusion model of rats via sGC-cGMP signal pathway.
Collapse
Affiliation(s)
- Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yang Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yue Xin
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Jing-Zhou Wang
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yu-Lin Chang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| |
Collapse
|
5
|
Narváez A, Guiteras R, Sola A, Manonelles A, Morote J, Torras J, Grinyó JM, Cruzado JM. siRNA-silencing of CD40 attenuates unilateral ureteral obstruction-induced kidney injury in mice. PLoS One 2019; 14:e0215232. [PMID: 30978213 PMCID: PMC6461348 DOI: 10.1371/journal.pone.0215232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background The costimulatory CD40-CD40L pathway plays a role in kidney inflammation. We have previously reported that renal CD40 upregulation precedes cellular interstitial infiltrate and fibrosis in the unilateral ureteral obstruction (UUO) model. Here we sought to evaluate whether the administration of siRNA-CD40 has a therapeutic effect in a reversible unilateral ureteral obstruction (D-UUO) mice model. Methods Eight week-old C57BL6J male mice were divided into four groups: Vehicle (Phosphate-buffered saline) (n = 8); siRNA SC (non-specific siRNA) (n = 6); siRNA-CD40 (n = 8) and WT (wild type) (n = 6) mice. UUO was performed with a microvascular clamp. At day 3 after surgery, the ureteral clamp was removed and nephrectomy of the contralateral kidney was performed. Immediately, PBS, siRNA SC (50μg) or siRNA-CD40 (50μg) was administrated via the tail vein. Mice were killed 48h hours after the siRNA or saline administration. Wild type (WT) mice were used as controls. Blood samples were collected for measuring creatinine and blood urea nitrogen (BUN). Histology and kidney mRNA expression were performed. Results The administration of siRNA-CD40 reduced significantly the severity of acute renal failure associated with UUO. Pathologic analysis showed reduction of tubular dilation, interstitial fibrosis, F4/80 macrophage and CD3 (T cell) infiltration in animals treated with siRNA-CD40. Furthermore, kidney mRNA gene expression analysis showed significantly lower levels of macrophage markers (F4/80 and Mannose receptor), fibrosis matrix proteins (Fibronectin, MMP-9, Collagen IV and α-SMA), pro-inflammatory cytokines (iNOS and MCP-1) and the pro-fibrotic molecule TGF-β1 in siRNA-CD40. Conclusions The administration of siRNA-CD40 therapy reduces the severity of the acute kidney injury induced by obstructive uropathy and promotes kidney repair. This strategy seems suitable to be tested in humans.
Collapse
Affiliation(s)
- Alonso Narváez
- Experimental Nephrology, Department of Ciències Clíniques, Universitat de Barcelona, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Department of Urology, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Roser Guiteras
- Experimental Nephrology, Department of Ciències Clíniques, Universitat de Barcelona, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Sola
- Experimental Nephrology, Department of Ciències Clíniques, Universitat de Barcelona, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Manonelles
- Experimental Nephrology, Department of Ciències Clíniques, Universitat de Barcelona, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Department of Nephrology, Bellvitge University Hospital, Barcelona, Spain
| | - Juan Morote
- Department of Urology, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Juan Torras
- Experimental Nephrology, Department of Ciències Clíniques, Universitat de Barcelona, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M. Grinyó
- Experimental Nephrology, Department of Ciències Clíniques, Universitat de Barcelona, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M. Cruzado
- Experimental Nephrology, Department of Ciències Clíniques, Universitat de Barcelona, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Department of Nephrology, Bellvitge University Hospital, Barcelona, Spain
- * E-mail:
| |
Collapse
|
6
|
AICAR-Induced AMPK Activation Inhibits the Noncanonical NF-κB Pathway to Attenuate Liver Injury and Fibrosis in BDL Rats. Can J Gastroenterol Hepatol 2018; 2018:6181432. [PMID: 30662889 PMCID: PMC6314002 DOI: 10.1155/2018/6181432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/17/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To evaluate the AMP-activated protein kinase- (AMPK-) mediated signaling and NF-κB-related inflammatory pathways that contribute to cholestatic diseases in the bile duct ligation (BDL) rat model of chronic cholestasis and verify the protective role of 5-Aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR) against hepatic injury and fibrosis triggered by cholestasis-related inflammation. METHODS Animals were randomly divided into three groups: sham-operated group, BDL group, and BDL+ AICAR group. Cholestatic liver injury was induced by common BDL. Two weeks later, rats in BDL+AICAR group started receiving AICAR treatment. Hepatic pathology was examined by haematoxylin and eosin (H&E) and sirius red staining and hydroxyproline assay was performed in evaluating the severity of hepatic cirrhosis. Real-time PCR and Western blot were performed for RNA gene expression of RNA and protein levels, respectively. RESULTS The BDL group showed liver injury as evidenced by histological changes and elevation in serum biochemicals, ductular reaction, fibrosis, and inflammation. The mRNA expression of canonical NF-κB inflammatory cytokines such as TNF-α, IL-1β, TGF-β, and the protein of noncanonical NF-κB, P100, and P52 was upregulated in the livers of BDL rats. The BDL rats with the administration of AICAR could induce AMPK activation inhibiting the noncanonical NF-κB pathway to attenuate liver injury and fibrosis in BDL rats. CONCLUSION The BDL model of hepatic cholestatic injury resulting in activation of Kupffer cells and recruitment of immune cells might initiate an inflammatory response through activation of the NF-κB pathway. The AMPK activator AICAR significantly alleviated BDL-induced inflammation in rats by mainly inhibiting the noncanonical NF-κB pathway and thus protecting against hepatic injury and fibrosis triggered by BDL.
Collapse
|
7
|
Bertoni S, Ballabeni V, Barocelli E, Tognolini M. Mesenteric ischemia-reperfusion: an overview of preclinical drug strategies. Drug Discov Today 2018; 23:1416-1425. [DOI: 10.1016/j.drudis.2018.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/27/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
|
8
|
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a major complication of liver surgery, including liver resection, liver transplantation, and trauma surgery. Much has been learned about the inflammatory injury response induced by I/R, including the cascade of proinflammatory mediators and recruitment of activated leukocytes. In this review, we discuss the complex network of events that culminate in liver injury after I/R, including cellular, protein, and molecular mechanisms. In addition, we address the known endogenous regulatory mediators that function to maintain homeostasis and resolve injury. Finally, we cover more recent insights into how the liver repairs and regenerates after I/R injury, a setting in which physical mass remains unchanged, but functional liver mass is greatly reduced. In this regard, we focus on recent work highlighting a novel role of CXC chemokines as important regulators of hepatocyte proliferation and liver regeneration after I/R injury.
Collapse
Affiliation(s)
- Takanori Konishi
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Alex B. Lentsch
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
9
|
Yuan M, Zhang L, You F, Zhou J, Ma Y, Yang F, Tao L. MiR-145-5p regulates hypoxia-induced inflammatory response and apoptosis in cardiomyocytes by targeting CD40. Mol Cell Biochem 2017; 431:123-131. [PMID: 28281187 DOI: 10.1007/s11010-017-2982-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/24/2017] [Indexed: 12/30/2022]
Abstract
An increasing body of evidence indicates that inflammation and apoptosis are involved in the development of acute myocardial infarction (AMI). In this study, we sought to investigate the specific role and the underlying regulatory mechanism of miR-145-5p in myocardial ischemic injury. H9c2 cardiac cells were exposed to hypoxia to establish a model of myocardial hypoxic/ischemic injury. We found that miR-145-5p was notably down-regulated, while CD40 expression was highly elevated in H9c2 cells following exposure to acute hypoxia. Additionally, hypoxia markedly enhanced the inflammatory response, as reflected by an increase in the secretion of the cytokines IL-1β, TNF-α, and IL-6, whereas the introduction of miR-145-5p effectively suppressed inflammatory factor production triggered by hypoxia. Furthermore, we observed hypoxia stimulation significantly augmented apoptosis accompanied by a decrease in the expression of Bcl-2 and an increase in the expression of Bax, Caspase-3, and Caspase-9. However, augmentation of miR-145-5p led to a dramatic prevention of hypoxia-induced apoptosis. Importantly, we identified CD40 as a direct target of miR-145-5p. Interestingly, the depletion of CD40 with small interfering RNAs (siRNAs) apparently repressed the production of inflammatory cytokines and apoptosis in the setting of acute hypoxic treated. Taken together, these data demonstrated that miR-145-5p may function as a cardiac-protective molecule in myocardial ischemic injury by ameliorating inflammation and apoptosis via negative regulation of CD40. The study gives evidence that miR-145-5p provides an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Ming Yuan
- Department of Cardiology, Xijing Hospital, Changle Xi 17, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Liwei Zhang
- Department of Cardiology, the First Affiliated Hospital of General Hospital of PLA, Beijing, 100048, People's Republic of China
| | - Fei You
- Department of Cardiology, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Jingyu Zhou
- Department of Cardiology, Xijing Hospital, Changle Xi 17, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yongjiang Ma
- Department of Cardiology, the First Affiliated Hospital of General Hospital of PLA, Beijing, 100048, People's Republic of China
| | - Feifei Yang
- Department of Cardiology, the First Affiliated Hospital of General Hospital of PLA, Beijing, 100048, People's Republic of China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Changle Xi 17, Xi'an, 710032, Shaanxi, People's Republic of China
| |
Collapse
|
10
|
Zhang LM, Liu JH, Xue CB, Li MQ, Xing S, Zhang X, He WT, Jiang FC, Lu X, Zhou P. Pharmacological inhibition of MyD88 homodimerization counteracts renal ischemia reperfusion-induced progressive renal injury in vivo and in vitro. Sci Rep 2016; 6:26954. [PMID: 27246399 PMCID: PMC4887891 DOI: 10.1038/srep26954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
The activation of innate immunity via myeloid differentiation factor 88 (MyD88) contributes to ischemia reperfusion (I/R) induced acute kidney injury (AKI) and chronic kidney injury. However, since there have not yet been any effective therapy, the exact pharmacological role of MyD88 in the prevention and treatment of renal ischemia reperfusion injury (IRI) is not known. We designed a small molecular compound, TJ-M2010-2, which inhibited MyD88 homodimerization. We used an established unilateral I/R mouse model. All mice undergoing 80 min ischemia through uninephrectomy died within five days without intervention. However, treatment with TJ-M2010-2 alone significantly improved the survival rate to 58.3%. Co-treatment of TJ-M2010-2 with the CD154 antagonist increased survival rates up to 100%. Twenty-eight days post-I/R of 60 min ischemia without nephrectomy, TJ-M2010-2 markedly attenuated renal interstitial and inhibited TGF-β1-induced epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells. Furthermore, TJ-M2010-2 remarkably inhibited TLR/MyD88 signaling in vivo and in vitro. In conclusion, our findings highlight the promising clinical potential of MyD88 inhibitor in preventing and treating acute or chronic renal I/R injuries, and the therapeutic functionality of dual-system inhibition strategy in IRI-induced AKI. Moreover, MyD88 inhibition ameliorates renal I/R injury-induced tubular interstitial fibrosis by suppressing EMT.
Collapse
Affiliation(s)
- Li-Min Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
| | - Jian-Hua Liu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
| | - Cheng-Biao Xue
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University; Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | | | - Shuai Xing
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
| | - Xue Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
| | - Wen-Tao He
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng-Chao Jiang
- Academy of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xia Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China
| |
Collapse
|
11
|
CD154-CD40 T-cell co-stimulation pathway is a key mechanism in kidney ischemia-reperfusion injury. Kidney Int 2015; 88:538-49. [PMID: 25993320 PMCID: PMC4558568 DOI: 10.1038/ki.2015.146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 02/27/2015] [Accepted: 03/26/2015] [Indexed: 01/17/2023]
Abstract
Ischemia-reperfusion occurs in a great many clinical settings and contributes to organ failure or dysfunction. CD154-CD40 signaling in leukocyte–endothelial cell interactions or T-cell activation facilitates tissue inflammation and injury. Here we tested a siRNA anti-CD40 in rodent warm and cold ischemia models to check the therapeutic efficacy and anti-inflammatory outcome of in vivo gene silencing. In the warm ischemia model different doses were used, resulting in clear renal function improvement and a structural renoprotective effect. Renal ischemia activated the CD40 gene and protein expression, which was inhibited by intravenous siRNA administration. CD40 gene silencing improved renal inflammatory status, as seen by the reduction of CD68 and CD3 T-cell infiltrates, attenuated pro-inflammatory, and enhanced anti-inflammatory mediators. Furthermore, siRNA administration decreased a spleen pro-inflammatory monocyte subset and reduced TNFα secretion by splenic T cells. In the cold ischemia model with syngeneic and allogeneic renal transplantation, the most effective dose induced similar functional and structural renoprotective effects. Our data show the efficacy of our siRNA in modulating both the local and the systemic inflammatory milieu after an ischemic insult. Thus, CD40 silencing could emerge as a novel therapeutic strategy in solid organ transplantation.
Collapse
|
12
|
Dewitte A, Tanga A, Villeneuve J, Lepreux S, Ouattara A, Desmoulière A, Combe C, Ripoche J. New frontiers for platelet CD154. Exp Hematol Oncol 2015; 4:6. [PMID: 25763299 PMCID: PMC4355125 DOI: 10.1186/s40164-015-0001-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023] Open
Abstract
The role of platelets extends beyond hemostasis. The pivotal role of platelets in inflammation has shed new light on the natural history of conditions associated with acute or chronic inflammation. Beyond the preservation of vascular integrity, platelets are essential to tissue homeostasis and platelet-derived products are already used in the clinics. Unanticipated was the role of platelets in the adaptative immune response, allowing a renewed conceptual approach of auto-immune diseases. Platelets are also important players in cancer growth and dissemination. Platelets fulfill most of their functions through the expression of still incompletely characterized membrane-bound or soluble mediators. Among them, CD154 holds a peculiar position, as platelets represent a major source of CD154 and as CD154 contributes to most of these new platelet attributes. Here, we provide an overview of some of the new frontiers that the study of platelet CD154 is opening, in inflammation, tissue homeostasis, immune response, hematopoiesis and cancer.
Collapse
Affiliation(s)
- Antoine Dewitte
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France ; Service d'Anesthésie-Réanimation II, CHU de Bordeaux, F-33600 Pessac, France
| | - Annabelle Tanga
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France
| | - Julien Villeneuve
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain ; Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3200 USA
| | | | - Alexandre Ouattara
- Service d'Anesthésie-Réanimation II, CHU de Bordeaux, F-33600 Pessac, France
| | | | - Christian Combe
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France ; Service de Néphrologie Transplantation Dialyse, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Jean Ripoche
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
13
|
Shen HH, Bai BK, Wang YQ, Zhou GDE, Hou J, Hu Y, Zhao JM, Li BS, Huang HL, Mao PY. Serum soluble CD40 is associated with liver injury in patients with chronic hepatitis B. Exp Ther Med 2015; 9:999-1005. [PMID: 25667667 PMCID: PMC4316966 DOI: 10.3892/etm.2015.2182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/17/2014] [Indexed: 01/17/2023] Open
Abstract
Soluble cluster of differentiation 40 (sCD40) is proteolytically cleaved from membrane-bound CD40 and binds to CD154, thereby inhibiting CD40-CD154-mediated immune responses. The aim of the present study was to clarify the role of sCD40 in chronic hepatitis B (CHB). The sCD40 levels in sera from 132 patients with CHB and 33 healthy individuals were retrospectively measured. sCD40 concentrations in patients with CHB were higher than those in healthy controls, and sCD40 levels correlated positively with serum levels of the liver dysfunction biomarkers alanine transaminase (ALT) and aspartate transaminase (AST). sCD40 concentrations increased with a rise in the severity of liver necroinflammation and fibrosis. Patients with >75% liver tissue staining positive for hepatitis B virus (HBV) antigen expression showed significantly lower sCD40 levels than those who stained negative for the HBV antigen. The area under the receiver operating characteristic curve of sCD40 was greater than that of ALT and AST; thus, sCD40 levels have a high diagnostic accuracy for detecting severe liver inflammation in patients with CHB, and could serve as an immunological marker of hepatic tissue injury.
Collapse
Affiliation(s)
- Hong-Hui Shen
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Bing-Ke Bai
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Ya-Qing Wang
- Department of Gastroenterology, Beijing 305 Hospital, Beijing 100017, P.R. China
| | - Guang-DE Zhou
- Department of Pathology, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Jun Hou
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Yan Hu
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Jing-Min Zhao
- Department of Pathology, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Bao-Sen Li
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Hai-Li Huang
- Department of Gastroenterology, General Hospital of PLA, Beijing 100853, P.R. China
| | - Pan-Yong Mao
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing 100039, P.R. China
| |
Collapse
|
14
|
Shuh M, Bohorquez H, Loss GE, Cohen AJ. Tumor Necrosis Factor-α: Life and Death of Hepatocytes During Liver Ischemia/Reperfusion Injury. Ochsner J 2013; 13:119-30. [PMID: 23531747 PMCID: PMC3603175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Tumor necrosis factor-α (TNF-α) is a potent proinflammatory cytokine involved in a variety of disease pathologies, including ischemia/reperfusion (I/R) injuries in transplantation. The interaction of TNF-α with its cognate receptor TNF receptor I (TNFRI) results in the activation of signal transduction pathways that regulate either cell survival or cell death. Hepatocytes express TNFRI and respond to TNF-α released by resident Kupffer cells as well as leukocytes that migrate to the liver during I/R injury. Upon binding TNF-α, the hepatocyte proliferates or undergoes apoptosis or necroptosis. The decision by the cell to commit to one path or the other is not understood. The damaged tissue exhibits cell death and hemorrhaging from the influx of immune mediators. TNF-α inhibitors ameliorate the injury in animal models, suggesting that lowering (but not eliminating) TNF-α levels shifts the balance of TNF-α toward its beneficial functions. METHODS We review TNF-α signal transduction pathways and the role of TNF-α in liver I/R injury. CONCLUSIONS Because TNF-α plays an important role in hepatocyte proliferation, complete inhibition of TNF-α is not desirable in treating liver I/R injury. The strategy for developing pharmacological therapies may be the identification of specific intermediates in the TNF-α/TNFR1 signal transduction pathway and directed targeting of proapoptotic and pronecroptotic events.
Collapse
Affiliation(s)
- Maureen Shuh
- Laboratory of Transplant Research, Institute of Translational Research, and
| | - Humberto Bohorquez
- Multi-Organ Transplant Center, Ochsner Clinic Foundation, and
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| | - George E. Loss
- Multi-Organ Transplant Center, Ochsner Clinic Foundation, and
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| | - Ari J. Cohen
- Laboratory of Transplant Research, Institute of Translational Research, and
- Multi-Organ Transplant Center, Ochsner Clinic Foundation, and
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| |
Collapse
|
15
|
Zhang Y, Ji H, Shen X, Cai J, Gao F, Koenig KM, Batikian CM, Busuttil RW, Kupiec-Weglinski JW. Targeting TIM-1 on CD4 T cells depresses macrophage activation and overcomes ischemia-reperfusion injury in mouse orthotopic liver transplantation. Am J Transplant 2013; 13:56-66. [PMID: 23137033 PMCID: PMC3535503 DOI: 10.1111/j.1600-6143.2012.04316.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/31/2012] [Indexed: 01/25/2023]
Abstract
Hepatic injury due to cold storage followed by reperfusion remains a major cause of morbidity and mortality after orthotopic liver transplantation (OLT). CD4 T cell TIM-1 signaling costimulates a variety of immune responses in allograft recipients. This study analyzes mechanisms by which TIM-1 affects liver ischemia-reperfusion injury (IRI) in a murine model of prolonged cold storage followed by OLT. Livers from C57BL/6 mice, preserved at 4°C in the UW solution for 20 h, were transplanted to syngeneic recipients. There was an early (1 h) increased accumulation of TIM-1+ activated CD4 T cells in the ischemic OLTs. Disruption of TIM-1 signaling with a blocking mAb (RMT1-10) ameliorated liver damage, evidenced by reduced sALT levels and well-preserved architecture. Unlike in controls, TIM-1 blockade diminished OLT expression of Tbet/IFN-γ, but amplified IL-4/IL-10/IL-22; abolished neutrophil and macrophage infiltration/activation and inhibited NF-κB while enhancing Bcl-2/Bcl-xl. Although adoptive transfer of CD4 T cells triggered liver damage in otherwise IR-resistant RAG(-/-) mice, adjunctive TIM-1 blockade reduced Tbet transcription and abolished macrophage activation, restoring homeostasis in IR-stressed livers. Further, transfer of TIM-1(Hi) CD4+, but not TIM-1(Lo) CD4+ T cells, recreated liver IRI in RAG(-/-) mice. Thus, TIM-1 expressing CD4 T cells are required in the mechanism of innate immune-mediated hepatic IRI in OLTs.
Collapse
Affiliation(s)
- Yu Zhang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haofeng Ji
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Xiuda Shen
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Jinzhen Cai
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Transplantation, Tianjin First Center Hospital, Tianjin, China
| | - Feng Gao
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Kevin M. Koenig
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Christine M. Batikian
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Masri AAA, Eter EE. Agmatine induces gastric protection against ischemic injury by reducing vascular permeability in rats. World J Gastroenterol 2012; 18:2188-96. [PMID: 22611311 PMCID: PMC3351768 DOI: 10.3748/wjg.v18.i18.2188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/04/2012] [Accepted: 03/09/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of administration of agmatine (AGM) on gastric protection against ischemia reperfusion (I/R) injury.
METHODS: Three groups of rats (6/group); sham, gastric I/R injury, and gastric I/R + AGM (100 mg/kg, i.p. given 15 min prior to gastric ischemia) were recruited. Gastric injury was conducted by ligating celiac artery for 30 min and reperfusion for another 30 min. Gastric tissues were histologically studied and immunostained with angiopoietin 1 (Ang-1) and Ang-2. Vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) were measured in gastric tissue homogenate. To assess whether AKt/phosphatidyl inositol-3-kinase (PI3K) mediated the effect of AGM, an additional group was pretreated with Wortmannin (WM) (inhibitor of Akt/PI3K, 15 μg/kg, i.p.), prior to ischemic injury and AGM treatment, and examined histologically and immunostained. Another set of experiments was run to study vascular permeability of the stomach using Evan’s blue dye.
RESULTS: AGM markedly reduced Evan’s blue dye extravasation (3.58 ± 0.975 μg/stomach vs 1.175 ± 0.374 μg/stomach, P < 0.05), VEGF (36.87 ± 2.71 pg/100 mg protein vs 48.4 ± 6.53 pg/100 mg protein, P < 0.05) and MCP-1 tissue level (29.5 ± 7 pg/100 mg protein vs 41.17 ± 10.4 pg/100 mg protein, P < 0.01). It preserved gastric histology and reduced congestion. Ang-1 and Ang-2 immunostaining were reduced in stomach sections of AGM-treated animals. The administration of WM abolished the protective effects of AGM and extensive hemorrhage and ulcerations were seen.
CONCLUSION: AGM protects the stomach against I/R injury by reducing vascular permeability and inflammation. This protection is possibly mediated by Akt/PI3K.
Collapse
|
17
|
Bhogal RH, Weston CJ, Curbishley SM, Adams DH, Afford SC. Activation of CD40 with platelet derived CD154 promotes reactive oxygen species dependent death of human hepatocytes during hypoxia and reoxygenation. PLoS One 2012; 7:e30867. [PMID: 22295117 PMCID: PMC3266283 DOI: 10.1371/journal.pone.0030867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/29/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Hypoxia and hypoxia-reoxygenation (H-R) are pathogenic factors in many liver diseases that lead to hepatocyte death as a result of reactive oxygen species (ROS) accumulation. The tumor necrosis factor super-family member CD154 can also induce hepatocyte apoptosis via activation of its receptor CD40 and induction of autocrine/paracrine Fas Ligand/CD178 but the relationship between CD40 activation, ROS generation and apoptosis is poorly understood. We hypothesised that CD40 activation and ROS accumulation act synergistically to drive human hepatocyte apoptosis. METHODS Human hepatocytes were isolated from liver tissue and exposed to an in vitro model of hypoxia and H-R in the presence or absence of CD154 and/or various inhibitors. Hepatocyte ROS production, apoptosis and necrosis were determined by labelling cells with 2',7'-dichlorofluorescin, Annexin-V and 7-AAD respectively in a three-colour reporter flow cytometry assay. RESULTS Exposure of human hepatocytes to recombinant CD154 or platelet-derived soluble CD154 augments ROS accumulation during H-R resulting in NADPH oxidase-dependent apoptosis and necrosis. The inhibition of c-Jun N-terminal Kinase and p38 attenuated CD154-mediated apoptosis but not necrosis. CONCLUSIONS CD154-mediated apoptosis of hepatocytes involves ROS generation that is amplified during hypoxia-reoxygenation. This finding provides a molecular mechanism to explain the role of platelets in hepatocyte death during ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ricky H Bhogal
- Centre for Liver Research, School of Infection and Immunity, Institute of Biomedical Research, The Medical School, The University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | | | | | | | | |
Collapse
|
18
|
Timsit MO, Yuan X, Floerchinger B, Ge X, Tullius SG. Consequences of transplant quality on chronic allograft nephropathy. Kidney Int 2011:S54-8. [PMID: 21116319 DOI: 10.1038/ki.2010.424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using kidneys from expanded-criteria donors to alleviate organ shortage has raised concern on reduced transplant outcomes. In this paper, we review how critical donor-related factors such as donor age, brain death, and consequences of ischemia-reperfusion injury (IRI) determine graft quality and impact chronic allograft nephropathy. We propose that combinatorial effects of organ-intrinsic features associated with increasing age and unspecific injuries related to brain death and IRI will impact innate and adaptive immune responses. Future research will need to explore avenues to optimize donor management, organ preservation, adapted immunosuppressive strategies, as well as modifications of the allocation of suboptimal allografts.
Collapse
Affiliation(s)
- Marc-Olivier Timsit
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
19
|
Ji H, Shen X, Gao F, Ke B, Freitas MCS, Uchida Y, Busuttil RW, Zhai Y, Kupiec-Weglinski JW. Programmed death-1/B7-H1 negative costimulation protects mouse liver against ischemia and reperfusion injury. Hepatology 2010; 52:1380-9. [PMID: 20815020 PMCID: PMC2947605 DOI: 10.1002/hep.23843] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Programmed death-1 (PD-1)/B7-H1 costimulation acts as a negative regulator of host alloimmune responses. Although CD4 T cells mediate innate immunity-dominated ischemia and reperfusion injury (IRI) in the liver, the underlying mechanisms remain to be elucidated. This study focused on the role of PD-1/B7-H1 negative signaling in liver IRI. We used an established mouse model of partial liver warm ischemia (90 minutes) followed by reperfusion (6 hours). Although disruption of PD-1 signaling after anti-B7-H1 monoclonal antibody treatment augmented hepatocellular damage, its stimulation following B7-H1 immunoglobulin (B7-H1Ig) fusion protected livers from IRI, as evidenced by low serum alanine aminotransferase levels and well-preserved liver architecture. The therapeutic potential of B7-H1 engagement was evident by diminished intrahepatic T lymphocyte, neutrophil, and macrophage infiltration/activation; reduced cell necrosis/apoptosis but enhanced anti-necrotic/apoptotic Bcl-2/Bcl-xl; and decreased proinflammatory chemokine/cytokine gene expression in parallel with selectively increased interleukin (IL)-10. Neutralization of IL-10 re-created liver IRI and rendered B7-H1Ig-treated hosts susceptible to IRI. These findings were confirmed in T cell-macrophage in vitro coculture in which B7-H1Ig diminished tumor necrosis factor-α/IL-6 levels in an IL-10-dependent manner. Our novel findings document the essential role of the PD-1/B7-H1 pathway in liver IRI. CONCLUSION This study is the first to demonstrate that stimulating PD-1 signals ameliorated liver IRI by inhibiting T cell activation and Kupffer cell/macrophage function. Harnessing mechanisms of negative costimulation by PD-1 upon T cell-Kupffer cell cross-talk may be instrumental in the maintenance of hepatic homeostasis by minimizing organ damage and promoting IL-10-dependent cytoprotection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jerzy W. Kupiec-Weglinski
- Address correspondence to: Jerzy W. Kupiec-Weglinski, MD, PhD. Dumont-UCLA Transplant Center, 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Phone: (310) 825-4196; Fax: (310) 267-2358;
| |
Collapse
|
20
|
Abu-Amara M, Yang SY, Tapuria N, Fuller B, Davidson B, Seifalian A. Liver ischemia/reperfusion injury: processes in inflammatory networks--a review. Liver Transpl 2010; 16:1016-32. [PMID: 20818739 DOI: 10.1002/lt.22117] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver ischemia/reperfusion (IR) injury is typified by an inflammatory response. Understanding the cellular and molecular events underpinning this inflammation is fundamental to developing therapeutic strategies. Great strides have been made in this respect recently. Liver IR involves a complex web of interactions between the various cellular and humoral contributors to the inflammatory response. Kupffer cells, CD4+ lymphocytes, neutrophils, and hepatocytes are central cellular players. Various cytokines, chemokines, and complement proteins form the communication system between the cellular components. The contribution of the danger-associated molecular patterns and pattern recognition receptors to the pathophysiology of liver IR injury are slowly being elucidated. Our knowledge on the role of mitochondria in generating reactive oxygen and nitrogen species, in contributing to ionic disturbances, and in initiating the mitochondrial permeability transition with subsequent cellular death in liver IR injury is continuously being expanded. Here, we discuss recent findings pertaining to the aforementioned factors of liver IR, and we highlight areas with gaps in our knowledge, necessitating further research.
Collapse
Affiliation(s)
- Mahmoud Abu-Amara
- Liver Transplantation and Hepatobiliary Unit, Royal Free Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
21
|
Shen X, Wang Y, Gao F, Ren F, Busuttil RW, Kupiec-Weglinski JW, Zhai Y. CD4 T cells promote tissue inflammation via CD40 signaling without de novo activation in a murine model of liver ischemia/reperfusion injury. Hepatology 2009; 50:1537-46. [PMID: 19670423 PMCID: PMC2805281 DOI: 10.1002/hep.23153] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Although the role of CD4 T cells in tissue inflammation and organ injury resulting from ischemia and reperfusion injury (IRI) has been well documented, it remains unclear how CD4 T cells are activated and function in the absence of a specific antigen (Ag). We used a murine liver warm IRI model to determine first whether de novo Ag-specific CD4 T cell activation was required and then what its functional mechanism was. The critical role of CD4 T cells in liver immune activation against ischemia and reperfusion (IR) was confirmed in CD4 knockout mice and CD4 depleted wild-type mice. Interestingly, the inhibition of CD4 T cell activation without target cell depletion failed to protect livers against IRI, and this suggested that T cells function in liver IRI without Ag-specific de novo activation. To dissect the T cell functional mechanism, we found that CD154 blockade, but not interferon gamma (IFN-gamma) neutralization, inhibited local immune activation and protected livers from IRI. Furthermore, agonist anti-CD40 antibodies restored liver IRI in otherwise protected CD4-deficient hosts. Finally, fluorescence-activated cell sorting analysis of liver CD4 T cells revealed the selective infiltration of effector cells, which constitutively expressed a higher level of CD154 in comparison with their peripheral counterparts. IR triggered a significant liver increase in CD40 expression but not CD154 expression, and macrophages responded to toll-like receptor 4 and type I IFN stimulation to up-regulate CD40 expression. CONCLUSION These novel findings provide evidence that CD4 T cells function in liver IRI via CD154 without de novo Ag-specific activation, and innate immunity-induced CD40 up-regulation may trigger the engagement of CD154-CD40 to facilitate tissue inflammation and injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuan Zhai
- Address correspondence to: Yuan Zhai, MD, PhD. Dumont-UCLA Transplant Center 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Phone: (310) 825-9426; Fax: (310) 267-2367;
| |
Collapse
|
22
|
Lu L, Li G, Rao J, Pu L, Yu Y, Wang X, Zhang F. In vitro induced CD4+CD25+Foxp3+ Tregs attenuate hepatic ischemia–reperfusion injury. Int Immunopharmacol 2009; 9:549-52. [DOI: 10.1016/j.intimp.2009.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 11/27/2022]
|
23
|
Abstract
Ischemia reperfusion injury (IRI) is a common and important clinical problem in many different organ systems, including kidney, brain, heart, liver, lung, and intestine. IRI occurs during all deceased donor organ transplants. IRI is a highly complex cascade of events that includes interactions between vascular endothelium, interstitial compartments, circulating cells, and numerous biochemical entities. It is well established that the innate immune system, such as complement, neutrophils, cytokines, chemokines, and macrophages participate in IRI. Recent data demonstrates an important role for lymphocytes, particularly T cells but also B cells in IRI. Lymphocytes not only participate in augmenting injury responses after IRI, but could also be playing a protective role depending on the cell type and stage of injury. Furthermore, lymphocytes appear to be participating in the healing response from IRI. These new data open the possibility for lymphocyte targeted therapeutics to improve the short and long term outcomes from IRI.
Collapse
Affiliation(s)
- Douglas Linfert
- Nephrology Division, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
24
|
Abstract
Until recently, research on transplantation rejection and tolerance has been directed toward deciphering the mechanisms of the adaptive immune system. However, the emergence that the innate immune system, the body's first-line defense against pathogens, has a strong influence on adaptive immunity has galvanized interest in elucidating the interplay between these two arms of the immune system. The discovery of Toll-like receptors and the characterization of the cellular mediators involved in innate immunity have provided growing evidence that innate immunity affects the adaptive immune response. Emerging evidence has also shown that early "danger signals"' associated with ischemia-reperfusion injury or brain death contribute to innate immune activation, promoting rejection, and inhibiting tolerance induction. In addition, nonspecific stimuli such as increased donor age or patient disease may also serve to exert a synergistic influence on innate immune activation. Ultimately, controlling the events in innate immune activation may help drive tolerance induction and reduce the rate of rejection.
Collapse
|
25
|
Devey L, Festing MFW, Wigmore SJ. Effect of temperature control upon a mouse model of partial hepatic ischaemia/reperfusion injury. Lab Anim 2008; 42:12-8. [PMID: 18348762 DOI: 10.1258/la.2007.06009e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vivo models of hepatic ischaemia/reperfusion injury (IRI) are widely used to study both the mechanisms of hepatic ischaemic injury and to seek means of hepatic protection. Achieving high-quality reproducible data are essential if the results of multiple studies are to be compared and reconciled. This paper presents our findings concerning the effect of intraoperative thermoregulation upon signal to noise ratios of hepatic IRI experiments in mice. Four experiments were conducted, using three different strategies for core temperature maintenance. Animals underwent hepatic IRI and euthanized 24 h postoperatively for measurement of plasma alanine aminotransferase (ALT). Duration of ischaemia was used to adjust the severity of injury. Experiment 1 utilized a constant output heating system and resulted in rising postoperative ALTs following increasing durations of hepatic ischaemia. Experiment 2, using the same constant output heating system confirmed a difference between ischaemic and sham-operated animals. Experiment 3 used a thermostatically controlled heating system and resulted in highly variable results with a small, but statistically significant correlation between ALT levels and rectal temperature readings. Experiment 4 used a homeothermic warming system and demonstrated highly reproducible data from increasing durations of ischaemia. High-quality data from hepatic ischaemia/reperfusion models are dependent upon careful control of intraoperative temperature. The use of homeothermic warming systems is recommended and conversely, the use of thermostatically controlled warming mats is to be avoided in these models.
Collapse
Affiliation(s)
- L Devey
- Liver Research Group, Institute of Biomedical Research, University of Birmingham, 5th Floor, Wolfson Drive, Edgbaston, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
26
|
Comparison of Fenestra VC Contrast-enhanced computed tomography imaging with gadopentetate dimeglumine and ferucarbotran magnetic resonance imaging for the in vivo evaluation of murine liver damage after ischemia and reperfusion. Invest Radiol 2008; 43:77-91. [PMID: 18197060 DOI: 10.1097/rli.0b013e318155aa2e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Comparison of intravenous Fenestra VC-enhanced computed tomography (CT) with gadopentetate dimeglumine and Ferucarbotran contrast-enhanced magnetic resonance imaging (MRI) for the in vivo imaging of hepatic ischemia/reperfusion injury (IRI) in a murine model. MATERIAL AND METHODS After induction of hepatic IRI by left liver lobe (LLL) ischemia (30, 45, and 75 minutes) and reperfusion (4 hours and 24 hours), a total of 130 mice were imaged either by Fenestra VC-enhanced 3-D CT or by dynamic, T1-weighed gadopentetate dimeglumine or static, T2*-weighed Ferucarbotran 2-D MRI (4.7 T). RESULTS Detection of liver tissue damage as a consequence of IRI was not possible by CT or MRI without the use of contrast media. (1) Mice subjected to liver IRI (45 minutes of ischemia) and injected with Fenestra VC showed a distinct liver enhancement of the viable liver tissue or a nonenhancement of the necrotic tissue. The Fenestra VC CT-unenhanced liver volume increased as a function of time of ischemia and reperfusion. The unenhanced liver volume also correlated positively with serum liver enzyme activities and damage scores from liver histology. (2) The signal intensities (SI) between normal liver tissue and livers subjected to 30 minutes of ischemia were not different on dynamic gadopentetate dimeglumine-enhanced magnetic resonance images. More severe IRI as induced by 45 or 75 minutes of ischemia was characterized by (a) early hyperenhancement of regions in the LLL with rapid increase of SI higher than that observed in the undamaged liver within the first few minutes and (b) delayed hyperenhancement in the later course after gadopentetate dimeglumine injection, respectively. (3) Ferucarbotran MRI detected signs of IRI after only 30 minutes of liver ischemia and hence detected IRI earlier than Fenestra VC or gadopentetate dimeglumine. With longer duration of ischemia, Ferucarbotran SI increased in the LLL, but viable and necrotic tissues were not clearly distinguishable. CONCLUSIONS MicroCT with Fenestra VC enhancement and MRI using either gadopentetate dimeglumine or Ferucarbotran enhancement of the liver revealed that all techniques allow in vivo determination of hepatic IRI as a function of the duration of ischemia and reperfusion of the liver. However, Fenestra VC-enhanced CT of the murine liver is superior to gadopentetate dimeglumine and Ferucarbotran for localization, quantification, and differentiation of viable from metabolically inactive/damaged liver tissue after hepatic ischemia/reperfusion but Fenestra VC is less sensitive than Ferucarbotran to detect the early onset of subtle consequences of hepatic IRI.
Collapse
|
27
|
Wang R, Wang J, Han G, Song L, Chen G, Xu R, Yu M, Qian J, Shen B, Li Y. Mechanisms underlying B-cell tolerance induction by antigen-immunoglobulin G gene transfer. J Int Med Res 2007; 35:781-9. [PMID: 18034991 DOI: 10.1177/147323000703500606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Previous studies on the mechanisms underlying tolerance induction in diabetes have mainly focused on T cells, however B cells also have an important role in diabetes. Based on our previous studies that splenocytes, transduced with glutamic acid decarboxylase (GAD) 65 fused to immunoglobulin (Ig) G carrier, reduced antibody-mediated response in non-obese diabetic (NOD) mice, here we examined the mechanisms underlying B-cell tolerance in this system. We found that GAD-IgG-transduced splenocytes did not reduce CD40 expression on B-cells in NOD mice, but they did downregulate CD40 ligand (CD40L) expression. Furthermore, anti-CD40L injection reduced autoantibody levels in NOD mice and in vitro experiments demonstrated that CD40L blockade reduced the antigenpresenting capability of B-cells. In conclusion, the results of this study suggest that downregulation of CD40L may be one mechanism underlying the induction of B-cell tolerance in GAD-IgG-treated NOD mice.
Collapse
Affiliation(s)
- R Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Huang Y, Rabb H, Womer KL. Ischemia-reperfusion and immediate T cell responses. Cell Immunol 2007; 248:4-11. [PMID: 17942086 DOI: 10.1016/j.cellimm.2007.03.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/30/2007] [Indexed: 12/12/2022]
Abstract
The pathogenesis of ischemia-reperfusion injury (IRI) is complex and not well understood. Inflammation plays an important role in IRI, with involvement of leukocytes, adhesion molecules, chemokines and cytokines. Emerging data suggest a role of T cells as mediators of IRI both in renal and extra-renal organs. Divergent roles of T cell subsets have also been elucidated, suggesting a more complicated role of T cells in the different phases of IRI. This review presents recent evidence from various animal models that advances our understanding of the role T cells play in IRI. These findings entertain the possibility of using immunotherapeutic agents for the prevention and treatment of IRI.
Collapse
Affiliation(s)
- Yanfei Huang
- Division of Nephrology, Johns Hopkins University School of Medicine, Ross 965, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
29
|
Cursio R, Miele C, Filippa N, Van Obberghen E, Gugenheim J. Alterations in protein tyrosine kinase pathways in rat liver following normothermic ischemia-reperfusion. Transplant Proc 2007; 38:3362-5. [PMID: 17175272 DOI: 10.1016/j.transproceed.2006.10.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Indexed: 10/23/2022]
Abstract
The phosphoregulation of signal transduction pathways is a complex series of reactions that modulate the cellular response to ischemia-reperfusion (I-R). The aim of this study was to evaluate the effect of normothermic liver I-R on protein tyrosine phosphorylation, production of angiogenic growth factors, and activation of signal proteins in tyrosine kinase pathways. A segmental normothermic ischemia of the liver was induced in rats by occluding the blood vessels (including the bile duct) to the median and left lateral lobes for 120 minutes. Liver extracts from either ischemic or nonischemic lobes were prepared at 0, 1, 3, and 6 hours after reperfusion. Liver tyrosine phosphorylation of proteins was examined by Western blot analysis, whereas vascular endothelial growth factor (VEGF) mRNA was analyzed by Northern blot. In ischemic liver lobes, VEGF mRNA and total protein levels increased at 1 and 3 hours after reperfusion. Tyrosine phosphorylation of the VEGF receptor Flk-1 and the platelet-derived growth factor receptor (PDGF-R) was increased only at 1 hour after reperfusion, while c-Src tyrosine phosphorylation remained increased at 3 hours and remained up to 6 hours after reperfusion. In conclusion, 1-R led to alterations in protein tyrosine phosphorylation and increased expression of VEGF in rat liver.
Collapse
Affiliation(s)
- R Cursio
- Laboratoire de Recherches Chirurgicales, IFR 50, Faculté de Médecine, Université de Nice Sophia Antipolis, Nice, France.
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Mokuno Y, Berthiaume F, Tanimura Y, Yarmush ML. Heat shock preconditioning inhibits CD4+ T lymphocyte activation in transplanted fatty rat livers. J Surg Res 2006; 135:92-9. [PMID: 16600305 DOI: 10.1016/j.jss.2006.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/19/2006] [Accepted: 02/06/2006] [Indexed: 01/22/2023]
Abstract
Heat shock preconditioning (HPc) of fatty donor livers significantly increases recipient survival in rats. We investigated to what extent the blockade of Kupffer cells by gadolinium chloride (GdCl3) can mimic the effect of HPc and the involvement of liver CD4+ T lymphocytes in HPc. Fatty liver was experimentally induced in Lewis rats by a choline- and methionine-deficient diet. Fatty liver donors were pretreated with HPc (42.5 degrees C for 10 min), the Kupffer cell inhibitor GdCl3, or placebo (sham group). Donors were then harvested, stored in University of Wisconsin preservation solution for 12 h at 4 degrees C, and transplanted into normal syngeneic rats. Hepatic injury (alanine aminotransferase) and serum cytokines (interleukin-12p70, tumor necrosis factor-alpha, and interleukin-10) of recipients increased at 3 h, then decreased, and increased again at 24 h after transplantation. HPc treatment diminished both the early and later phases of this biphasic response and improved recipient survival. GdCl3 reduced these cytokines in the early but not the later phase and did not reduce neutrophil accumulation or improve the recipient survival. HPc, but not GdCl3 treatment, also reduced the number of liver CD4+ T lymphocytes and their interferon-gamma production. We conclude that HPc, but not GdCl3 treatment, prevents biphasic liver injury and the activation of liver CD4+ T lymphocytes in transplanted fatty donor livers.
Collapse
Affiliation(s)
- Yasuji Mokuno
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
32
|
Tsuchihashi SI, Livhits M, Zhai Y, Busuttil RW, Araujo JA, Kupiec-Weglinski JW. Basal Rather Than Induced Heme Oxygenase-1 Levels Are Crucial in the Antioxidant Cytoprotection. THE JOURNAL OF IMMUNOLOGY 2006; 177:4749-57. [PMID: 16982915 DOI: 10.4049/jimmunol.177.7.4749] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heme oxygenase-1 (HO-1) overexpression protects against tissue injury in many inflammatory processes, including ischemia/reperfusion injury (IRI). This study evaluated whether genetically decreased HO-1 levels affected susceptibility to liver IRI. Partial warm ischemia was produced in hepatic lobes for 90 min followed by 6 h of reperfusion in heterozygous HO-1 knockout (HO-1(+/-)) and HO-1(+/+) wild-type (WT) mice. HO-1(+/-) mice demonstrated reduced HO-1 mRNA/protein levels at baseline and postreperfusion. This corresponded with increased hepatocellular damage in HO-1(+/-) mice, compared with WT. HO-1(+/-) mice revealed enhanced neutrophil infiltration and proinflammatory cytokine (TNF-alpha, IL-6, and IFN-gamma) induction, as well as an increase of intrahepatic apoptotic TUNEL(+) cells with enhanced expression of proapoptotic genes (Bax/cleaved caspase-3). We used cobalt protoporphyrin (CoPP) treatment to evaluate the effect of increased baseline HO-1 levels in both WT and HO-1(+/-) mice. CoPP treatment increased HO-1 expression in both animal groups, which correlated with a lower degree of hepatic damage. However, HO-1 mRNA/protein levels were still lower in HO-1(+/-) mice, which failed to achieve the degree of antioxidant hepatoprotection seen in CoPP-treated WT. Although the baseline and postreperfusion HO-1 levels correlated with the degree of protection, the HO-1 fold induction correlated instead with the degree of damage. Thus, basal HO-1 levels are more critical than the ability to up-regulate HO-1 in response to the IRI and may also predict the success of pharmacologically induced cytoprotection. This model provides an opportunity to further our understanding of HO-1 in stress defense mechanisms and design new regimens to prevent IRI.
Collapse
Affiliation(s)
- Sei-ichiro Tsuchihashi
- Division of Liver and Pancreas Transplantation, Department of Surgery, Dumont-University of California Los Angeles Transplant Center, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
33
|
Qi S, Xu D, Ma A, Zhang X, Chida N, Sudo Y, Tamura K, Daloze P, Chen H. Effect of a novel inducible nitric oxide synthase inhibitor, FR260330, in prevention of renal ischemia/reperfusion injury in vervet monkeys. Transplantation 2006; 81:627-31. [PMID: 16495814 DOI: 10.1097/01.tp.0000199282.05021.0c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cytotoxic nitric oxide (NO) is produced during ischemia/reperfusion (I/R) injury by the expression of inducible NO synthase (iNOS). Therefore, continuous iNOS inhibition might prevent early graft dysfunction. FR260330, a potent and selective inhibitor of iNOS activity, impedes the dimmerization of iNOS monomer. In this study, the effect of FR260330 in the prevention of renal I/R injury was evaluated in the model of one kidney ischemia in Vervet monkeys. A total of 18 male Vervet monkeys were randomly assigned to two equal groups (n=9). Transient (60 min) left renal ischemia was produced by simultaneous contralateral nephrectomy in treated (FR260330 20 mg/kg/day) and placebo control groups. Renal function and other biochemical parameters as well as FR260330 concentrations were studies until day 15 after I/R injury. All monkeys survived after 60 min I/R injury until sacrifice on day 15. Serum creatinine in the untreated controls increased significantly in comparison to the FR260330-treated group on days 2, 3, 4, and 7 (P<0.05). Plasma FR260330 concentration after oral administration showed that C(max) was 3.251+/-2.526 microg/ml, and T(max) was 4 hr. This study thus finds that FR260330, as a selective iNOS inhibitor, effectively prevents renal I/R injury in Vervet monkeys.
Collapse
Affiliation(s)
- Shijie Qi
- Laboratory of Experimental Surgery, Research Center, Centre Hospitalier de l'Université de Montréal, Notre-Dame Hospital, University of Montreal, Montreal, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tsuchihashi SI, Ke B, Kaldas F, Flynn E, Busuttil RW, Briscoe DM, Kupiec-Weglinski JW. Vascular endothelial growth factor antagonist modulates leukocyte trafficking and protects mouse livers against ischemia/reperfusion injury. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:695-705. [PMID: 16436682 PMCID: PMC1780159 DOI: 10.2353/ajpath.2006.050759] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although hypoxia stimulates the expression of vascular endothelial growth factor (VEGF), little is known of the role or mechanism by which VEGF functions after ischemia and reperfusion (I/R) injury. In this report, we first evaluated the expression of VEGF in a mouse model of liver warm ischemia. We found that the expression of VEGF increased after ischemia but peaked between 2 and 6 hours after reperfusion. Mice were treated with a neutralizing anti-mouse VEGF antiserum (anti-VEGF) or control serum daily from day -1 (1 day before the initiation of ischemia). Treatment with anti-VEGF significantly reduced serum glutaminic pyruvic transaminase levels and reduced histological evidence of hepatocellular damage compared with controls. Anti-VEGF also markedly decreased T-cell, macrophage, and neutrophil accumulation within livers and reduced the frequency of intrahepatic apoptotic terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive cells. Moreover, there was a reduction in the expression of pro-inflammatory cytokines (tumor necrosis factor-alpha and interferon-gamma), chemokines (interferon-inducible protein-10 and monocyte chemoattractant protein-1) and adhesion molecules (E-selectin) in parallel with enhanced expression of anti-apoptotic genes (Bcl-2/Bcl-xl and heme oxygenase-1) in anti-VEGF-treated animals. In conclusion, hypoxia-inducible VEGF expression by hepatocytes modulates leukocyte trafficking and leukocyte-induced injury in a mouse liver model of warm I/R injury, demonstrating the importance of endogenous VEGF production in the pathophysiology of hepatic I/R injury.
Collapse
|