1
|
Swatek AM, Parekh KR. Lung Xenotransplantation. Thorac Surg Clin 2023; 33:291-297. [PMID: 37414485 DOI: 10.1016/j.thorsurg.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Although efforts have been made to expand the pool of donor lung allografts for human lung transplantation, a shortage remains. Lung xenotransplantation has been proposed as an alternative approach, but lung xenotransplantation in humans has not yet been reported. In addition, significant biological and ethical barriers will have to be addressed before clinical trials can be undertaken. However, significant progress has been made toward addressing biological incompatibilities that present a barrier, and recent advances in genetic engineering tools promise to accelerate further progress.
Collapse
Affiliation(s)
- Anthony M Swatek
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, SE500GH, Iowa City, IA 52242, USA
| | - Kalpaj R Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, SE500GH, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Sun Z, Chen X, Liu J, Du Y, Duan C, Xiao S, Zhou Y, Fang L. PRRSV-induced inflammation in pulmonary intravascular macrophages (PIMs) and pulmonary alveolar macrophages (PAMs) contributes to endothelial barrier function injury. Vet Microbiol 2023; 281:109730. [PMID: 37068404 DOI: 10.1016/j.vetmic.2023.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a severe infectious disease currently devasting the global pig industry. PRRS is characterized by intense inflammation and severe damage to the alveolar-capillary barrier. Therefore, it is crucial to uncover the underlying mechanism by which the PRRS virus (PRRSV) induces inflammatory responses and barrier function damage. In addition to porcine alveolar macrophages (PAMs), the primary target cells of PRRSV infection in vivo, pulmonary intravascular macrophages (PIMs) are also susceptible to PRRSV infection. However, the poor isolation efficiency limits the study of PRRSV infection in PIMs. In this study, we optimized the isolation method to obtain PIMs with higher purity and yield and demonstrated that PRRSV's infection kinetics in PIMs were similar to those in PAMs. Notably, PIMs exhibited a more acute inflammation process during PRRSV infection than PAMs, as evidenced by the earlier upregulation and higher levels of pro-inflammatory cytokines, including TNF-α and IL-1β. More acute endothelial barrier disfunction upon PRRSV infection was also observed in PIMs compared to in PAMs. Mechanistically, PRRSV-induced TNF-α and IL-1β could cause endothelial barrier disfunction by dysregulating tight junction proteins, including claudin 1 (CLDN1), claudin 8 (CLDN8) and occludin (OCLN). Our findings revealed the crucial and novel roles of PIMs in facilitating the progression of inflammatory responses and endothelial barrier injury and provided new insights into the mechanisms of PRRSV's induction of interstitial pneumonia.
Collapse
|
3
|
Miura S, Habibabady ZA, Pollok F, Connolly M, Pratts S, Dandro A, Sorrells L, Karavi K, Phelps C, Eyestone W, Ayares D, Burdorf L, Azimzadeh A, Pierson RN. Effects of human TFPI and CD47 expression and selectin and integrin inhibition during GalTKO.hCD46 pig lung perfusion with human blood. Xenotransplantation 2022; 29:e12725. [PMID: 35234315 PMCID: PMC10207735 DOI: 10.1111/xen.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Loss of barrier function when GalTKO.hCD46 porcine lungs are perfused with human blood is associated with coagulation pathway dysregulation, innate immune system activation, and rapid sequestration of human formed blood elements. Here, we evaluate whether genetic expression of human tissue factor pathway inhibitor (hTFPI) and human CD47 (hCD47), alone or with combined selectin and integrin adhesion pathway inhibitors, delays GalTKO.hCD46 porcine lung injury or modulates neutrophil and platelet sequestration. METHODS In a well-established paired ex vivo lung perfusion model, GalTKO.hCD46.hTFPI.hCD47 transgenic porcine lungs (hTFPI.hCD47, n = 7) were compared to GalTKO.hCD46 lungs (reference, n = 5). All lung donor pigs were treated with a thromboxane synthase inhibitor, anti-histamine, and anti-GPIb integrin-blocking Fab, and were pre-treated with Desmopressin. In both genotypes, one lung of each pair was additionally treated with PSGL-1 and GMI-1271 (P- and E-selectin) and IB4 (CD11b/18 integrin) adhesion inhibitors (n = 6 hTFPI.hCD47, n = 3 reference). RESULTS All except for two reference lungs did not fail within 480 min when experiments were electively terminated. Selectin and integrin adhesion inhibitors moderately attenuated initial pulmonary vascular resistance (PVR) elevation in hTFPI.hCD47 lungs. Neutrophil sequestration was significantly delayed during the early time points following reperfusion and terminal platelet activation was attenuated in association with lungs expressing hTFPI.hCD47, but additional adhesion pathway inhibitors did not show further effects with either lung genotype. CONCLUSION Expression of hTFPI.hCD47 on porcine lung may be useful as part of an integrated strategy to prevent neutrophil adhesion and platelet activation that are associated with xenograft injury. Additionally, targeting canonical selectin and integrin adhesion pathways reduced PVR elevation associated with hTFPI.hCD47 expression, but did not significantly attenuate neutrophil or platelet sequestration. We conclude that other adhesive mechanisms mediate the residual sequestration of human formed blood elements to pig endothelium that occurs even in the context of the multiple genetic modifications and drug treatments tested here.
Collapse
Affiliation(s)
- Shuhei Miura
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Cardiovascular Surgery, Teine Keijinkai Hospital, Sapporo, Japan
| | - Zahra A. Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Franziska Pollok
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Margaret Connolly
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shannon Pratts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | - Lars Burdorf
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Agnes Azimzadeh
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Spengler D, Rintz N, Krause MF. An Unsettled Promise: The Newborn Piglet Model of Neonatal Acute Respiratory Distress Syndrome (NARDS). Physiologic Data and Systematic Review. Front Physiol 2019; 10:1345. [PMID: 31736777 PMCID: PMC6831728 DOI: 10.3389/fphys.2019.01345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Despite great advances in mechanical ventilation and surfactant administration for the newborn infant with life-threatening respiratory failure no specific therapies are currently established to tackle major pro-inflammatory pathways. The susceptibility of the newborn infant with neonatal acute respiratory distress syndrome (NARDS) to exogenous surfactant is linked with a suppression of most of the immunologic responses by the innate immune system, however, additional corticosteroids applied in any severe pediatric lung disease with inflammatory background do not reduce morbidity or mortality and may even cause harm. Thus, the neonatal piglet model of acute lung injury serves as an excellent model to study respiratory failure and is the preferred animal model for reasons of availability, body size, similarities of porcine and human lung, robustness, and costs. In addition, similarities to the human toll-like receptor 4, the existence of intraalveolar macrophages, the sensitivity to lipopolysaccharide, and the production of nitric oxide make the piglet indispensable in anti-inflammatory research. Here we present the physiologic and immunologic data of newborn piglets from three trials involving acute lung injury secondary to repeated airway lavage (and others), mechanical ventilation, and a specific anti-inflammatory intervention via the intratracheal route using surfactant as a carrier substance. The physiologic data from many organ systems of the newborn piglet—but with preference on the lung—are presented here differentiating between baseline data from the uninjured piglet, the impact of acute lung injury on various parameters (24 h), and the follow up data after 72 h of mechanical ventilation. Data from the control group and the intervention groups are listed separately or combined. A systematic review of the newborn piglet meconium aspiration model and the repeated airway lavage model is finally presented. While many studies assessed lung injury scores, leukocyte infiltration, and protein/cytokine concentrations in bronchoalveolar fluid, a systematic approach to tackle major upstream pro-inflammatory pathways of the innate immune system is still in the fledgling stages. For the sake of newborn infants with life-threatening NARDS the newborn piglet model still is an unsettled promise offering many options to conquer neonatal physiology/immunology and to establish potent treatment modalities.
Collapse
Affiliation(s)
- Dietmar Spengler
- Department of Pediatrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Nele Rintz
- Department of Pediatrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Martin F Krause
- Department of Pediatrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
5
|
Zhang X, Li X, Yang Z, Tao K, Wang Q, Dai B, Qu S, Peng W, Zhang H, Cooper DKC, Dou K. A review of pig liver xenotransplantation: Current problems and recent progress. Xenotransplantation 2019; 26:e12497. [PMID: 30767272 DOI: 10.1111/xen.12497] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Pig liver xenotransplantation appears to be more perplexing when compared to heart or kidney xenotransplantation, even though great progress has been achieved. The relevant molecular mechanisms involved in xenogeneic rejection, including coagulopathy, and particularly thrombocytopenia, are complex, and need to be systematically investigated. The deletion of expression of Gal antigens in the liver graft highlights the injurious impact of nonGal antigens, which continue to induce humoral rejection. Innate immunity, particularly mediated by macrophages and natural killer cells, interplays with inflammation and coagulation disorders. Kupffer cells and liver sinusoidal endothelial cells (LSECs) together mediate leukocyte, erythrocyte, and platelet sequestration and phagocytosis, which can be exacerbated by increased cytokine production, cell desialylation, and interspecies incompatibilities. The coagulation cascade is activated by release of tissue factor which can be dependent or independent of the xenoreactive immune response. Depletion of endothelial anticoagulants and anti-platelet capacity amplify coagulation activation, and interspecies incompatibilities of coagulation-regulatory proteins facilitate dysregulation. LSECs involved in platelet phagocytosis and transcytosis, coupled with hepatocyte-mediated degradation, are responsible for thrombocytopenia. Adaptive immunity could also be problematic in long-term liver graft survival. Currently, relevant evidence and study results of various genetic modifications to the pig donor need to be fully determined, with the aim of identifying the ideal transgene combination for pig liver xenotransplantation. We believe that clinical trials of pig liver xenotransplantation should initially be considered as a bridge to allotransplantation.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Quancheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bin Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Peng
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
|
7
|
Watanabe H, Sahara H, Nomura S, Tanabe T, Ekanayake-Alper DK, Boyd LK, Louras NJ, Asfour A, Danton MA, Ho SH, Arn JS, Hawley RJ, Shimizu A, Nagayasu T, Ayares D, Lorber MI, Sykes M, Sachs DH, Yamada K. GalT-KO pig lungs are highly susceptible to acute vascular rejection in baboons, which may be mitigated by transgenic expression of hCD47 on porcine blood vessels. Xenotransplantation 2018; 25:e12391. [PMID: 29527745 PMCID: PMC6135720 DOI: 10.1111/xen.12391] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite recent progress in survival times of xenografts in non-human primates, there are no reports of survival beyond 5 days of histologically well-aerated porcine lung grafts in baboons. Here, we report our initial results of pig-to-baboon xeno-lung transplantation (XLTx). METHODS Eleven baboons received genetically modified porcine left lungs from either GalT-KO alone (n = 3), GalT-KO/humanCD47(hCD47)/hCD55 (n = 3), GalT-KO/hD47/hCD46 (n = 4), or GalT-KO/hCD39/hCD46/hCD55/TBM/EPCR (n = 1) swine. The first 2 XLTx procedures were performed under a non-survival protocol that allowed a 72-hour follow-up of the recipients with general anesthesia, while the remaining 9 underwent a survival protocol with the intention of weaning from ventilation. RESULTS Lung graft survivals in the 2 non-survival animals were 48 and >72 hours, while survivals in the other 9 were 25 and 28 hours, at 5, 5, 6, 7, >7, 9, and 10 days. One baboon with graft survival >7 days, whose entire lung graft remained well aerated, was euthanized on POD 7 due to malfunction of femoral catheters. hCD47 expression of donor lungs was detected in both alveoli and vessels only in the 3 grafts surviving >7, 9, and 10 days. All other grafts lacked hCD47 expression in endothelial cells and were completely rejected with diffuse hemorrhagic changes and antibody/complement deposition detected in association with early graft loss. CONCLUSIONS To our knowledge, this is the first evidence of histologically viable porcine lung grafts beyond 7 days in baboons. Our results indicate that GalT-KO pig lungs are highly susceptible to acute humoral rejection and that this may be mitigated by transgenic expression of hCD47.
Collapse
Affiliation(s)
- Hironosuke Watanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Hisashi Sahara
- Division of Organ Replacement and Xenotransplantation Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima University, Kagoshima, Japan
| | - Shunichiro Nomura
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Tatsu Tanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | | | - Lennan K. Boyd
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Nathan J. Louras
- Transplantation Biology Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Arsenoi Asfour
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Makenzie A. Danton
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - J. Scott Arn
- Transplantation Biology Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Robert J. Hawley
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Akira Shimizu
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - David H. Sachs
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
- Transplantation Biology Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| |
Collapse
|
8
|
Porcine Alveolar Macrophage-like cells are pro-inflammatory Pulmonary Intravascular Macrophages that produce large titers of Porcine Reproductive and Respiratory Syndrome Virus. Sci Rep 2018; 8:10172. [PMID: 29977043 PMCID: PMC6033929 DOI: 10.1038/s41598-018-28234-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Lung inflammation is frequently involved in respiratory conditions and it is strongly controlled by mononuclear phagocytes (MNP). We previously studied porcine lung MNP and described a new population of cells presenting all the features of alveolar macrophages (AM) except for their parenchymal location, that we named AM-like cells. Herein we showed that AM-like cells are macrophages phagocytosing blood-borne particles, in agreement with a pulmonary intravascular macrophages (PIM) identity. PIM have been described microscopically long time ago in species from the Laurasiatheria superorder such as bovine, swine, cats or cetaceans. We observed that PIM were more inflammatory than AM upon infection with the porcine reproductive and respiratory syndrome virus (PRRSV), a major swine pathogen. Moreover, whereas PRRSV was thought to mainly target AM, we observed that PIM were a major producer of virus. The PIM infection was more correlated with viremia in vivo than AM infection. Finally like AM, PIM-expressed genes were characteristic of an embryonic monocyte-derived macrophage population, whose turnover is independent of bone marrow-derived hematopoietic precursors. This last observation raised the interesting possibility that AM and PIM originate from the same lung precursor.
Collapse
|
9
|
Wang L, Cooper DKC, Burdorf L, Wang Y, Iwase H. Overcoming Coagulation Dysregulation in Pig Solid Organ Transplantation in Nonhuman Primates: Recent Progress. Transplantation 2018; 102:1050-1058. [PMID: 29538262 PMCID: PMC7228622 DOI: 10.1097/tp.0000000000002171] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 01/17/2023]
Abstract
There has recently been considerable progress in the results of pig organ transplantation in nonhuman primates, largely associated with the availability of (i) pigs genetically engineered to overcome coagulation dysregulation, and (ii) novel immunosuppressive agents. The barriers of thrombotic microangiopathy and/or consumptive coagulation were believed to be associated with (i) activation of the graft vascular endothelial cells by a low level of antipig antibody binding and/or complement deposition and/or innate immune cell activity, and (ii) molecular incompatibilities between the nonhuman primate and pig coagulation-anticoagulation systems. The introduction of a human coagulation-regulatory transgene, for example, thrombomodulin, endothelial protein C receptor, into the pig vascular endothelial cells has contributed to preventing a procoagulant state from developing, resulting in a considerable increase in graft survival. In the heterotopic (non-life-supporting) heart transplant model, graft survival has increased from a maximum of 179 days in 2005 to 945 days. After life-supporting kidney transplantation, survival has been extended from 90 days in 2004 to 499 days. In view of the more complex coagulation dysfunction seen after pig liver and, particularly, lung transplantation, progress has been less dramatic, but the maximum survival of a pig liver has been increased from 7 days in 2010 to 29 days, and of a pig lung from 4 days in 2007 to 9 days. There is a realistic prospect that the transplantation of a kidney or heart, in combination with a conventional immunosuppressive regimen, will enable long-term recipient survival.
Collapse
Affiliation(s)
- Liaoran Wang
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham AL
- Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham AL
| | - Lars Burdorf
- Division of Cardiac Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - Yi Wang
- Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham AL
| |
Collapse
|
10
|
Jing L, Yao L, Zhao M, Peng LP, Liu M. Organ preservation: from the past to the future. Acta Pharmacol Sin 2018; 39:845-857. [PMID: 29565040 DOI: 10.1038/aps.2017.182] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/31/2017] [Indexed: 12/13/2022] Open
Abstract
Organ transplantation is the most effective therapy for patients with end-stage disease. Preservation solutions and techniques are crucial for donor organ quality, which is directly related to morbidity and survival after transplantation. Currently, static cold storage (SCS) is the standard method for organ preservation. However, preservation time with SCS is limited as prolonged cold storage increases the risk of early graft dysfunction that contributes to chronic complications. Furthermore, the growing demand for the use of marginal donor organs requires methods for organ assessment and repair. Machine perfusion has resurfaced and dominates current research on organ preservation. It is credited to its dynamic nature and physiological-like environment. The development of more sophisticated machine perfusion techniques and better perfusates may lead to organ repair/reconditioning. This review describes the history of organ preservation, summarizes the progresses that has been made to date, and discusses future directions for organ preservation.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This article reviews recent progress in the field of lung xenotransplantation, including mechanisms of xenograft injury, and the influence of mechanism-directed genetic modifications and other interventions that may soon enable therapeutic use of pig lungs in humans. RECENT FINDINGS An extensive series of lung xenotransplantation experiments demonstrates that multiple genetic modifications targeting known xenogeneic lung injury mechanisms are associated with incremental improvements in lung survival or function. Addition of human complement (hCD46, hCD55), coagulation (hEPCR, hTBM, hTFPI, hCD39), or anti-inflammatory pathway regulatory genes (HO-1, HLA-E), and GalT and Neu5Gc gene knockout has each demonstrated protective effects on lung survival or function. In addition, drug treatments targeting key inflammatory and clotting pathways have been shown to attenuate residual mechanisms of lung injury. Work with other pig organs in primate models show that regimens based on costimulatory pathway blocking antibodies prolong xenograft function for months to years, suggesting that once initial lung inflammation mechanisms are fully controlled, clinically useful application of pig lung xenografts may soon be feasible. SUMMARY Genetic modification of pigs coupled with drugs targeting complement activation, coagulation, and inflammation have significantly increased duration of pig lung function in ex-vivo human blood perfusion models, and life-supporting lung xenograft survival in vivo.
Collapse
Affiliation(s)
- Chris Laird
- aDivision of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine bVA Maryland Healthcare System, Baltimore, Maryland, USA
| | | | | |
Collapse
|
12
|
French BM, Sendil S, Pierson RN, Azimzadeh AM. The role of sialic acids in the immune recognition of xenografts. Xenotransplantation 2017; 24. [PMID: 29057592 PMCID: PMC10167934 DOI: 10.1111/xen.12345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/05/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
Presentation of sialic acid (Sia) varies among different tissues and organs within each species, and between species. This diversity has biologically important consequences regarding the recognition of cells by "xeno" antibodies (Neu5Gc vs Neu5Ac). Sia also plays a central role in inflammation by influencing binding of the asialoglycoprotein receptor 1 (ASGR-1), Siglec-1 (Sialoadhesin), and cellular interactions mediated by the selectin, integrin, and galectin receptor families. This review will focus on what is known about basic Sia structure and function in association with xenotransplantation, how changes in sialylation may occur in this context (through desialylation or changes in sialyltransferases), and how this fundamental pathway modulates adhesive and cell activation pathways that appear to be particularly crucial to homeostasis and inflammation for xenografts.
Collapse
Affiliation(s)
- Beth M French
- Division of Cardiac Surgery, University of Maryland Baltimore, School of Medicine, and VAMC, Baltimore, MD, USA
| | - Selin Sendil
- Division of Cardiac Surgery, University of Maryland Baltimore, School of Medicine, and VAMC, Baltimore, MD, USA
| | - Richard N Pierson
- Division of Cardiac Surgery, University of Maryland Baltimore, School of Medicine, and VAMC, Baltimore, MD, USA
| | - Agnes M Azimzadeh
- Division of Cardiac Surgery, University of Maryland Baltimore, School of Medicine, and VAMC, Baltimore, MD, USA
| |
Collapse
|
13
|
Kubicki N, Laird C, Burdorf L, Pierson RN, Azimzadeh AM. Current status of pig lung xenotransplantation. Int J Surg 2015; 23:247-254. [PMID: 26278663 DOI: 10.1016/j.ijsu.2015.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
Abstract
Human organ transplantation has improved duration and quality of life for many people, but its full potential is critically limited by short supply of available organs. One solution is xenotransplantation, although this comes with its own set of challenges. Lungs in particular are highly sensitive to injury, during the transplantation process generally, and to multiple immune rejection mechanisms. Using pig lung donors, our lab has been working on lung transplants into baboons as a surrogate for a human recipient. Several ex vivo human blood perfusion models have also proven useful. The combination of these experiments allows us to test large animal models as well as whole organ or isolated endothelial reactions to perfusion with human blood. We have found that a multi-modality therapeutic approach to prevent various pathogenic cascades - such as antibody-driven complement activation, other immune pathway activation, thrombosis, and tissue ischemia-reperfusion injury - has met with progressively greater success to protect the xeno lung from injury. Pig gene knockout and human gene transfer has been perhaps the greatest contributor. This review will discuss mechanisms of xeno lung injury, relevant experimental models, as well as recent results and future targets for research.
Collapse
Affiliation(s)
- Natalia Kubicki
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States.
| | - Christopher Laird
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - Lars Burdorf
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - Richard N Pierson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - Agnes M Azimzadeh
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
14
|
Harris DG, Quinn KJ, French BM, Schwartz E, Kang E, Dahi S, Phelps CJ, Ayares DL, Burdorf L, Azimzadeh AM, Pierson RN. Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood. Xenotransplantation 2015; 22:102-11. [PMID: 25470239 PMCID: PMC4390422 DOI: 10.1111/xen.12149] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/01/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Genetically modified pigs are a promising potential source of lung xenografts. Ex vivo xenoperfusion is an effective platform for testing the effect of new modifications, but typical experiments are limited by testing of a single genetic intervention and small sample sizes. The purpose of this study was to analyze the individual and aggregate effects of donor genetic modifications on porcine lung xenograft survival and injury in an extensive pig lung xenoperfusion series. METHODS Data from 157 porcine lung xenoperfusion experiments using otherwise unmodified heparinized human blood were aggregated as either continuous or dichotomous variables. Lungs were wild type in 17 perfusions (11% of the study group), while 31 lungs (20% of the study group) had one genetic modification, 40 lungs (39%) had 2, and 47 lungs (30%) had 3 or more modifications. The primary endpoint was functional lung survival to 4 h of perfusion. Secondary analyses evaluated previously identified markers associated with known lung xenograft injury mechanisms. In addition to comparison among all xenografts grouped by survival status, a subgroup analysis was performed of lungs incorporating the GalTKO.hCD46 genotype. RESULTS Each increase in the number of genetic modifications was associated with additional prolongation of lung xenograft survival. Lungs that exhibited survival to 4 h generally had reduced platelet activation and thrombin generation. GalTKO and the expression of hCD46, HO-1, hCD55, or hEPCR were associated with improved survival. hTBM, HLA-E, and hCD39 were associated with no significant effect on the primary outcome. CONCLUSION This meta-analysis of an extensive lung xenotransplantation series demonstrates that increasing the number of genetic modifications targeting known xenogeneic lung injury mechanisms is associated with incremental improvements in lung survival. While more detailed mechanistic studies are needed to explore the relationship between gene expression and pathway-specific injury and explore why some genes apparently exhibit neutral (hTBM, HLA-E) or inconclusive (CD39) effects, GalTKO, hCD46, HO-1, hCD55, and hEPCR modifications were associated with significant lung xenograft protection. This analysis supports the hypothesis that multiple genetic modifications targeting different known mechanisms of xenograft injury will be required to optimize lung xenograft survival.
Collapse
Affiliation(s)
- Donald G. Harris
- Department of Surgery, University of Maryland School of Medicine. Baltimore, MD
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine. Baltimore, MD
| | - Kevin J. Quinn
- Department of Surgery, University of Maryland School of Medicine. Baltimore, MD
| | - Beth M. French
- Department of Surgery, University of Maryland School of Medicine. Baltimore, MD
| | - Evan Schwartz
- Department of Surgery, University of Maryland School of Medicine. Baltimore, MD
| | - Elizabeth Kang
- Department of Surgery, University of Maryland School of Medicine. Baltimore, MD
| | - Siamak Dahi
- Department of Surgery, University of Maryland School of Medicine. Baltimore, MD
| | | | | | - Lars Burdorf
- Department of Surgery, University of Maryland School of Medicine. Baltimore, MD
| | - Agnes M. Azimzadeh
- Department of Surgery, University of Maryland School of Medicine. Baltimore, MD
| | - Richard N. Pierson
- Department of Surgery, University of Maryland School of Medicine. Baltimore, MD
- Surgical Care Clinical Center, VA Maryland Health Care Center. Baltimore, MD
| |
Collapse
|
15
|
Csukás D, Urbanics R, Wéber G, Rosivall L, Szebeni J. Pulmonary intravascular macrophages: prime suspects as cellular mediators of porcine CARPA. EUROPEAN JOURNAL OF NANOMEDICINE 2015. [DOI: 10.1515/ejnm-2015-0008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPigs provide a highly sensitive and quantitative in vivo model for complement (C) activation-related pseudoallergy (CARPA), a hypersensitivity reaction caused by some state-of-art nanomedicines. In an effort to understand the mechanism of the pigs’ unique sensitivity for CARPA, this review focuses on pulmonary intravascular macrophages (PIMs), which are abundantly present in the lung of pigs. These cells represent a macrophage subpopulation whose unique qualities explain the characteristic symptoms of CARPA in this species, most importantly the rapidly (within minutes) developing pulmonary vasoconstriction, leading to elevation of pulmonary arterial pressure. The unique qualities of PIM cells include the following; 1) they are strongly adhered to the capillary walls via desmosome-like intercellular adhesion plaques, which secure stable and lasting direct exposition of the bulk of these cells to the blood stream; 2) their ruffled surface engaged in intense phagocytic activity ensures efficient binding and phagocytosis of nanoparticles; 3) PIM cells express anaphylatoxin receptors, this way C activation can trigger these cells, 4) they also express pattern recognition molecules on their surface, whose engagement with certain coated nanoparticles may also activate these cells or act in synergy with anaphylatoxins and, finally 5) their high metabolic activity and capability for immediate secretion of vasoactive mediators upon stimulation explain the circulatory blockage and other robust physiological effects that their stimulation may cause. These qualities taken together with reports on liposome uptake by PIM cells during CARPA and the possible presence of these cells in human lung suggests that PIM cells may be a potential therapeutic target against CARPA.
Collapse
|
16
|
Harris DG, Quinn KJ, Dahi S, Burdorf L, Azimzadeh AM, Pierson RN. Lung xenotransplantation: recent progress and current status. Xenotransplantation 2014; 21:496-506. [PMID: 25040467 DOI: 10.1111/xen.12116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Xenotransplantation has undergone important progress in controlling initial hyperacute rejection in many preclinical models, with some cell, tissue, and organ xenografts advancing toward clinical trials. However, acute injury, driven primarily by innate immune and inflammatory responses, continues to limit results in lung xenograft models. The purpose of this article is to review the current status of lung xenotransplantation--including the seemingly unique challenges posed by this organ-and summarize proven and emerging means of overcoming acute lung xenograft injury.
Collapse
Affiliation(s)
- Donald G Harris
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Lung transplantation may be the only intervention that can prolong survival and improve quality of life for those individuals with advanced lung disease who are acceptable candidates for the procedure. However, these candidates may be extremely ill and require ventilator and/or circulatory support as a bridge to transplantation, and lung transplantation recipients are at risk of numerous post-transplant complications that include surgical complications, primary graft dysfunction, acute rejection, opportunistic infection, and chronic lung allograft dysfunction (CLAD), which may be caused by chronic rejection. Many advances in pre- and post-transplant management have led to improved outcomes over the past decade. These include the creation of sound guidelines for candidate selection, improved surgical techniques, advances in donor lung preservation, an improving ability to suppress and treat allograft rejection, the development of prophylaxis protocols to decrease the incidence of opportunistic infection, more effective therapies for treating infectious complications, and the development of novel therapies to treat and manage CLAD. A major obstacle to prolonged survival beyond the early post-operative time period is the development of bronchiolitis obliterans syndrome (BOS), which is the most common form of CLAD. This manuscript discusses recent and evolving advances in the field of lung transplantation.
Collapse
|
18
|
Brock LG, Delputte PL, Waldman JP, Nauwynck HJ, Rees MA. Porcine sialoadhesin: a newly identified xenogeneic innate immune receptor. Am J Transplant 2012; 12:3272-82. [PMID: 22958948 PMCID: PMC3513673 DOI: 10.1111/j.1600-6143.2012.04247.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Extracorporeal porcine liver perfusion is being developed as a bridge to liver allotransplantation for patients with fulminant hepatic failure. This strategy is limited by porcine Kupffer cell destruction of human erythrocytes, mediated by lectin binding of a sialic acid motif in the absence of antibody and complement. Sialoadhesin, a macrophage restricted lectin that binds sialic acid, was originally described as a sheep erythrocyte binding receptor. Given similarities between sialoadhesin and the unidentified macrophage lectin in our model, we hypothesized porcine sialoadhesin contributed to recognition of human erythrocytes. Two additional types of macrophages were identified to bind human erythrocytes-spleen and alveolar. Expression of sialoadhesin was confirmed by immunofluorescence in porcine tissues and by flow cytometry on primary macrophages. A stable transgenic cell line expressing porcine sialoadhesin (pSn CHO) bound human erythrocytes, while a sialoadhesin mutant cell line did not. Porcine macrophage and pSn CHO recognition of human erythrocytes was inhibited approximately 90% by an antiporcine sialoadhesin monoclonal antibody and by human erythrocyte glycoproteins. Furthermore, this binding was substantially reduced by sialidase treatment of erythrocytes. These data support the hypothesis that porcine sialoadhesin is a xenogeneic receptor that mediates porcine macrophage binding of human erythrocytes in a sialic acid-dependent manner.
Collapse
Affiliation(s)
- Linda G. Brock
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH USA
| | - Peter L. Delputte
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joshua P. Waldman
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH USA
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Michael A. Rees
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH USA
| |
Collapse
|
19
|
Cooper DKC, Ekser B, Burlak C, Ezzelarab M, Hara H, Paris L, Tector AJ, Phelps C, Azimzadeh AM, Ayares D, Robson SC, Pierson RN. Clinical lung xenotransplantation--what donor genetic modifications may be necessary? Xenotransplantation 2012; 19:144-58. [PMID: 22702466 PMCID: PMC3775598 DOI: 10.1111/j.1399-3089.2012.00708.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Barriers to successful lung xenotransplantation appear to be even greater than for other organs. This difficulty may be related to several macro anatomic factors, such as the uniquely fragile lung parenchyma and associated blood supply that results in heightened vulnerability of graft function to segmental or lobar airway flooding caused by loss of vascular integrity (also applicable to allotransplants). There are also micro-anatomic considerations, such as the presence of large numbers of resident inflammatory cells, such as pulmonary intravascular macrophages and natural killer (NK) T cells, and the high levels of von Willebrand factor (vWF) associated with the microvasculature. We have considered what developments would be necessary to allow successful clinical lung xenotransplantation. We suggest this will only be achieved by multiple genetic modifications of the organ-source pig, in particular to render the vasculature resistant to thrombosis. The major problems that require to be overcome are multiple and include (i) the innate immune response (antibody, complement, donor pulmonary and recipient macrophages, monocytes, neutrophils, and NK cells), (ii) the adaptive immune response (T and B cells), (iii) coagulation dysregulation, and (iv) an inflammatory response (e.g., TNF-α, IL-6, HMGB1, C-reactive protein). We propose that the genetic manipulation required to provide normal thromboregulation alone may include the introduction of genes for human thrombomodulin/endothelial protein C-receptor, and/or tissue factor pathway inhibitor, and/or CD39/CD73; the problem of pig vWF may also need to be addressed. It would appear that exploration of every available therapeutic path will be required if lung xenotransplantation is to be successful. To initiate a clinical trial of lung xenotransplantation, even as a bridge to allotransplantation (with a realistic possibility of survival long enough for a human lung allograft to be obtained), significant advances and much experimental work will be required. Nevertheless, with the steadily increasing developments in techniques of genetic engineering of pigs, we are optimistic that the goal of successful clinical lung xenotransplantation can be achieved within the foreseeable future. The optimistic view would be that if experimental pig lung xenotransplantation could be successfully managed, it is likely that clinical application of this and all other forms of xenotransplantation would become more feasible.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu G, Duan K, Ma H, Niu Z, Peng J, Zhao Y. An instructive role of donor macrophages in mixed chimeras in the induction of recipient CD4(+)Foxp3(+) Treg cells. Immunol Cell Biol 2011; 89:827-35. [PMID: 21844881 DOI: 10.1038/icb.2011.65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The immune regulatory function of macrophages (Møs) in mixed chimeras has not been determined. In the present study, with a multi-lineage B6-to-BALB/c mixed chimeric model, we examined the ability of donor-derived splenic Møs in the induction of regulatory T cells (Treg). B6 splenic Møs from mixed chimeras induced significantly less cell proliferation, more IL-10 and TGF-β, and less IL-2 and IFN-γ productions of CD4(+) T cells from BALB/c mice than naive B6 Møs did, whereas they showed similar stimulatory activity to the third part C3H CD4(+) T cells. Importantly, highly purified donor F4/80(+)CD11c(-) Møs efficiently induced recipient CD4(+)Foxp3(+) Treg cells from CD4(+)CD25(-)Foxp3(-) T cells. Furthermore, donor Møs of mixed chimeras produced more IL-10 and less IFN-γ than those of naive mice when cultured with BALB/c but not the third party C3H CD4(+) T cells. Induction of recipient CD4(+) Treg cells by donor Møs was significantly blocked by anti-IL-10, but not by anti-TGF-β mAb. Therefore, donor Møs have the ability to induce recipient CD4(+)Foxp3(+) Treg cells in a donor antigen-specific manner, at least partially, via an IL-10-dependent pathway. This study for the first time showed that, in mixed allogeneic chimeras, donor Møs could be specifically tolerant to recipients and gained the ability to induce recipient but not the third party Foxp3(+) Treg cells. Whether this approach is involved in transplant immune tolerance needs to be determined.
Collapse
Affiliation(s)
- Guangwei Liu
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
21
|
Nguyen BNH, Azimzadeh AM, Schroeder C, Buddensick T, Zhang T, Laaris A, Cochrane M, Schuurman HJ, Sachs DH, Allan JS, Pierson RN. Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection. Xenotransplantation 2011; 18:94-107. [PMID: 21496117 DOI: 10.1111/j.1399-3089.2011.00633.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Galactosyl transferase gene knock-out (GalTKO) swine offer a unique tool to evaluate the role of the Gal antigen in xenogenic lung hyperacute rejection. METHODS We perfused GalTKO miniature swine lungs with human blood. Results were compared with those from previous studies using wild-type and human decay-accelerating factor-transgenic (hDAF(+/+) ) pig lungs. RESULTS GalTKO lungs survived 132 ± 52 min compared to 10 ± 9 min for wild-type lungs (P = 0.001) and 45 ± 60 min for hDAF(+/+) lungs (P = 0.18). GalTKO lungs displayed stable physiologic flow and pulmonary vascular resistance (PVR) until shortly before graft demise, similar to autologous perfusion, and unlike wild-type or hDAF(+/+) lungs. Early (15 and 60 min) complement (C3a) and platelet activation and intrapulmonary platelet deposition were significantly diminished in GalTKO lungs relative to wild-type or hDAF(+/+) lungs. However, GalTKO lungs adsorbed cytotoxic anti-non-Gal antibody and elaborated high levels of thrombin; their demise was associated with increased PVR, capillary congestion, intravascular thrombi and strong CD41 deposition not seen at earlier time points. CONCLUSIONS In summary, GalTKO lungs are substantially protected from injury but, in addition to anti-non-Gal antibody and complement, platelet adhesion and non-physiologic intravascular coagulation contribute to Gal-independent lung injury mechanisms.
Collapse
Affiliation(s)
- Bao-Ngoc H Nguyen
- Department of Surgery, University of Maryland and Baltimore VAMC, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bush EL, Barbas AS, Holzknecht ZE, Byrne GW, McGregor CG, Parker W, Davis RD, Lin SS. Coagulopathy in α-galactosyl transferase knockout pulmonary xenotransplants. Xenotransplantation 2011; 18:6-13. [PMID: 21342283 DOI: 10.1111/j.1399-3089.2011.00621.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND After substantial progress on many fronts, one of the remaining barriers still opposing the clinical application of xenotransplantation is a disseminated intravascular coagulopathy (DIC) that is observed in the pre-clinical model of porcine-to-primate transplantation. The onset of DIC is particularly rapid in recipients of pulmonary xenografts, usually occurring within the first days or even hours of reperfusion. METHODS In this study, we describe the results of two porcine-to-baboon transplants utilizing porcine lungs depleted of macrophages, deficient in the α-1,3-galactosyltransferase gene, and with the expression of human decay-accelerating factor, a complement regulatory protein. RESULTS In both cases, evidence of DIC was observed within 48 h of reperfusion, with thrombocytopenia and increases in levels of thrombin-antithrombin complex evident in both cases. Depletion of fibrinogen was observed in one graft, whereas elevation of D-dimer levels was observed in the other. One graft, which showed focal lymphocytic infiltrates pre-operatively, failed within 3 h. CONCLUSIONS The results indicate that further efforts to address the coagulopathy associated with pulmonary xenotransplantation are needed. Further, evidence suggests that resident porcine immune cells can play an important role in the coagulopathy associated with xenotransplantation.
Collapse
Affiliation(s)
- Errol L Bush
- Department of Surgery, Duke University, Durham, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Molina RM, Brain JD. IN VIVO COMPARISON OF CAT ALVEOLAR AND PULMONARY INTRAVASCULAR MACROPHAGES: PHAGOCYTOSIS, PARTICLE CLEARANCE, AND CYTOPLASMIC MOTILITY. Exp Lung Res 2009; 33:53-70. [PMID: 17454102 DOI: 10.1080/01902140701198542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The phagocytic and particle clearance function as well as the intracellular motility of cat pulmonary intravascular macrophages (PIMs) and pulmonary alveolar macrophages (PAMs) in situ were compared using ferrimagnetic gammaFe2O3 tracer particles and magnetometry. Submicrometric particles were injected intravenously (phagocytized by PIMs) or inhaled as respirable aerosols (phagocytized by PAMs). At various times post administration, the particles were magnetized with an external magnet. Then, the rate of decay of the remanent magnetic field (relaxation) reflecting the motion of particle-containing phagosomes was measured. There was a gradual increase in relaxation in PAMs, but a decrease in PIMs over the initial 7 hours, suggesting differences in rates of phagocytosis. From 7 to 42 days, relaxation parameters were constant in both cell types although faster in PAMs than in PIMs. Disappearance of retained particles in PIMs depended on the administered dose. Particles in PAMs cleared faster than particles in PIMs. Particle clearance from PIMs, but not from PAMs, was accompanied by translocation of particles to the liver and elsewhere. Our data show that PAMs have a slower rate of in vivo phagocytosis, higher cell motility, and faster particle clearance than PIMs.
Collapse
Affiliation(s)
- Ramon M Molina
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
24
|
Le Bas-Bernardet S, Blancho G. Current cellular immunological hurdles in pig-to-primate xenotransplantation. Transpl Immunol 2009; 21:60-4. [DOI: 10.1016/j.trim.2008.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/09/2008] [Indexed: 12/13/2022]
|
25
|
|
26
|
Cantu E, Balsara KR, Li B, Lau C, Gibson S, Wyse A, Baig K, Gaca J, Gonzalez-Stawinski GV, Nichols T, Parker W, Davis RD. Prolonged function of macrophage, von Willebrand factor-deficient porcine pulmonary xenografts. Am J Transplant 2007; 7:66-75. [PMID: 17109734 DOI: 10.1111/j.1600-6143.2006.01603.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Porcine von Willebrand factor (vWF) activates human and primate platelets. Having determined the importance of pulmonary intravascular macrophages (PIMs) in pulmonary xenotransplantation, we evaluated whether, in the absence of PIMs, vWF might play a role in pulmonary xenograft dysfunction. Utilizing a left single-lung transplant model, baboons depleted of anti-alphaGal antibodies received lungs from either vWF-deficient (n = 2); MCP-expressing (n = 5); MCP PIM-depleted (n = 5); or vWF-deficient PIM-depleted swine (n = 3). Two out of three of the PIM-depleted, pvWF deficient grafts survived longer than any previously reported pulmonary xenografts, including PIM-depleted xenografts expressing human complement regulatory proteins. Depletion of PIM's from vWF-deficient lungs, like depletion of PIM's from hMCP lungs, resulted in abrogation of the coagulopathy associated with pulmonary xenotransplantation. Thus, in terms of pulmonary graft survival, control of adverse reactions involving pvWF appears to be equally or even more important than is complement regulation using hMCP expression. However, based on the rapid failure of PIM-sufficient, pvWF-deficient pulmonary xenografts, pVWF-deficient pulmonary xenografts appear to be particularly sensitive to macrophage-mediated damage. These data provide initial evidence that vWF plays a role in the 'delayed' (24 h) dysfunction observed in pulmonary xenotransplantation using PIM depleted hMCP organs.
Collapse
Affiliation(s)
- E Cantu
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|