1
|
Park M, Lee DE, Hong Y, Suh JK, Lee JA, Kim M, Park HJ. Telomere Length in Adolescent and Young Adult Survivors of Childhood Cancer. Cancers (Basel) 2024; 16:2344. [PMID: 39001406 PMCID: PMC11240481 DOI: 10.3390/cancers16132344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
We examined the leukocyte relative telomere length (RTL) in Korean adolescent and young adult (AYA) survivors of childhood cancer and evaluated the association of leukocyte RTL with multiple factors, including malignancy type, cancer treatment, age, and chronic health conditions (CHCs). Eighty-eight AYA survivors of childhood cancer with a median follow-up period of 73 months were recruited. RTL in pediatric cancer survivors was not significantly shorter than the predicted value for age-matched references. Neither age at diagnosis nor duration of therapy influenced the RTL. Among the 43 patients with hematologic malignancies, those who underwent allogeneic hematopoietic stem cell transplantation (HSCT) showed a significant shortening of the RTL compared with those who did not (p = 0.039). Among the 15 patients who underwent allogeneic HSCT, those who developed acute graft-versus-host disease (GVHD) of grade II or higher had significantly shorter RTL than those who did not (p = 0.012). Patients with grade II CHCs had significantly shorter RTL than those without CHCs or with grade I CHCs (p = 0.001). Survivors with ≥2 CHCs also exhibited shorter RTL (p = 0.027). Overall, pediatric cancer survivors had similar telomere lengths compared to age-matched references. HSCT recipients and patients with severe or multiple CHCs had shorter telomeres. GVHD augmented telomere attrition in HSCT recipients.
Collapse
Affiliation(s)
- Meerim Park
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Dong-Eun Lee
- Biostatic Collaboration Team, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yuna Hong
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin Kyung Suh
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Jun Ah Lee
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyeon Jin Park
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
2
|
Scala S, Ferrua F, Basso-Ricci L, Dionisio F, Omrani M, Quaranta P, Jofra Hernandez R, Del Core L, Benedicenti F, Monti I, Giannelli S, Fraschetta F, Darin S, Albertazzi E, Galimberti S, Montini E, Calabria A, Cicalese MP, Aiuti A. Hematopoietic reconstitution dynamics of mobilized- and bone marrow-derived human hematopoietic stem cells after gene therapy. Nat Commun 2023; 14:3068. [PMID: 37244942 DOI: 10.1038/s41467-023-38448-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/28/2023] [Indexed: 05/29/2023] Open
Abstract
Mobilized peripheral blood is increasingly used instead of bone marrow as a source of autologous hematopoietic stem/progenitor cells for ex vivo gene therapy. Here, we present an unplanned exploratory analysis evaluating the hematopoietic reconstitution kinetics, engraftment and clonality in 13 pediatric Wiskott-Aldrich syndrome patients treated with autologous lentiviral-vector transduced hematopoietic stem/progenitor cells derived from mobilized peripheral blood (n = 7), bone marrow (n = 5) or the combination of the two sources (n = 1). 8 out of 13 gene therapy patients were enrolled in an open-label, non-randomized, phase 1/2 clinical study (NCT01515462) and the remaining 5 patients were treated under expanded access programs. Although mobilized peripheral blood- and bone marrow- hematopoietic stem/progenitor cells display similar capability of being gene-corrected, maintaining the engineered grafts up to 3 years after gene therapy, mobilized peripheral blood-gene therapy group shows faster neutrophil and platelet recovery, higher number of engrafted clones and increased gene correction in the myeloid lineage which correlate with higher amount of primitive and myeloid progenitors contained in hematopoietic stem/progenitor cells derived from mobilized peripheral blood. In vitro differentiation and transplantation studies in mice confirm that primitive hematopoietic stem/progenitor cells from both sources have comparable engraftment and multilineage differentiation potential. Altogether, our analyses reveal that the differential behavior after gene therapy of hematopoietic stem/progenitor cells derived from either bone marrow or mobilized peripheral blood is mainly due to the distinct cell composition rather than functional differences of the infused cell products, providing new frames of references for clinical interpretation of hematopoietic stem/progenitor cell transplantation outcome.
Collapse
Affiliation(s)
- Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maryam Omrani
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Department of Computer Science, Systems and Communication, University of Milano Bicocca, Milan, 20126, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Milan, 20132, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Luca Del Core
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- University of Groningen - Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Groningen, 9747, Netherlands
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Ilaria Monti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Federico Fraschetta
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Elena Albertazzi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Stefania Galimberti
- Center of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, Monza, 20900, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Milan, 20132, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.
| |
Collapse
|
3
|
Kelkar AH, Antin JH, Shapiro RM. Long-term health outcomes of allogeneic hematopoietic stem cell transplantation. Front Oncol 2023; 13:1175794. [PMID: 37124489 PMCID: PMC10130410 DOI: 10.3389/fonc.2023.1175794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Fifty years of hematopoietic cell transplantation (HCT) has ushered in an exciting era of cellular therapy and has led to enormous progress in improving the outcomes of patients with both malignant and non-malignant hematologic disease. As the survival of transplanted patients has increased, so has the recognition of long-term complications related to this therapy. Purpose The goal of this review is to highlight some of the most common long-term complications of HCT. Data sources To this end, we have conducted a review of the published literature on the long-term complications of HCT encompassing the past 50 years. Study selection We have endeavored to include long-term complications reported in research articles, case series and case reports, reviews, and abstracts. We have focused primarily on adult allogeneic HCT, but have included some data from studies of pediatric allogeneic HCT as well. We have also prioritized the literature published in the last 15 years. Data extraction Key data supporting the onset and prevalence of the most common long-term complications was extracted. Limitations While the list of long-term complications extracted and reported was comprehensive, it was not exhaustive. Conclusions We have endeavored to highlight some of the most common long-term complications of HCT, the recognition and management of which constitutes an important part of HCT survivorship care.
Collapse
Affiliation(s)
- Amar H. Kelkar
- Division of Stem Cell Transplantation and Cellular Therapies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Joseph H. Antin
- Division of Stem Cell Transplantation and Cellular Therapies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Roman M. Shapiro
- Division of Stem Cell Transplantation and Cellular Therapies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- *Correspondence: Roman M. Shapiro,
| |
Collapse
|
4
|
Sedrak MS, Gilmore NJ, Carroll JE, Muss HB, Cohen HJ, Dale W. Measuring Biologic Resilience in Older Cancer Survivors. J Clin Oncol 2021; 39:2079-2089. [PMID: 34043454 PMCID: PMC8260901 DOI: 10.1200/jco.21.00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Judith E. Carroll
- University of California, Los Angeles, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, Jane & Terry Semel Institute for Neuroscience & Human Behavior, Department of Psychiatry & Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Los Angeles, CA
| | - Hyman B. Muss
- Department of Medicine and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | | | - William Dale
- City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
5
|
De Padova S, Urbini M, Schepisi G, Virga A, Meggiolaro E, Rossi L, Fabbri F, Bertelli T, Ulivi P, Ruffilli F, Casadei C, Gurioli G, Rosti G, Grassi L, De Giorgi U. Immunosenescence in Testicular Cancer Survivors: Potential Implications of Cancer Therapies and Psychological Distress. Front Oncol 2021; 10:564346. [PMID: 33520693 PMCID: PMC7844142 DOI: 10.3389/fonc.2020.564346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023] Open
Abstract
Testicular cancer (TC) is the most frequent solid tumor diagnosed in young adult males. Although it is a curable tumor, it is frequently associated with considerable short-term and long-term morbidity. Both biological and psychological stress experienced during cancer therapy may be responsible for stimulating molecular processes that induce premature aging and deterioration of immune system (immunosenescence) in TC survivors, leading to an increased susceptibility to infections, cancer, and autoimmune diseases. Immunosenescence is a remodeling of immune cell populations with inversion of the CD4:CD8 ratio, accumulation of highly differentiated memory cells, shrinkage of telomeres, shift of T-cell response to Th2 type, and release of pro-inflammatory signals. TC survivors exposed to chemotherapy show features of immunological aging, including an increase in memory T-cells (CD4+ and CD8+) and high expression of the senescence biomarker p16INK4a in CD3+ lymphocytes. However, the plethora of factors involved in the premature aging of TC survivors make the situation more complex if we also take into account the psychological stress and hormonal changes experienced by patients, as well as the high-dose chemotherapy and hematopoietic stem cell transplantation that some individuals may be required to undergo. The relatively young age and the long life expectancy of TC patients bear witness to the importance of improving quality of life and of alleviating long-term side-effects of cancer treatments. Within this context, the present review takes an in-depth look at the molecular mechanisms of immunosenescence, describing experimental evidence of cancer survivor aging and highlighting the interconnected relationship between the many factors modulating the aging of the immune system of TC survivors.
Collapse
Affiliation(s)
- Silvia De Padova
- Psycho-Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Milena Urbini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessandra Virga
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Elena Meggiolaro
- Psycho-Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Lorena Rossi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Tatiana Bertelli
- Psycho-Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Federica Ruffilli
- Psycho-Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Gurioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giovanni Rosti
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Luigi Grassi
- Institute of Psychiatry, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara and University Hospital Psychiatry Unit, Integrated Department of Mental Health S. Anna University Hospital and Health Authorities, Ferrara, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
6
|
Uziel O, Lahav M, Shargian L, Beery E, Pasvolsky O, Rozovski U, Raanani P, Yeshurun M. Premature ageing following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2020; 55:1438-1446. [PMID: 32094417 DOI: 10.1038/s41409-020-0839-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/09/2022]
Abstract
Survivors of hematopoietic cell transplantation (HCT) have been shown to exhibit both clinical and biological features of accelerated ageing. Most studies used frailty measures, comorbidities for clinical assessment and several biological assessment of premature ageing. However, these tests are less suitable for age determination of individual patients. Recently, DNA methylation has emerged as a novel test to measure cellular age. In the present study, we assessed ageing in a cohort of 26 survivors of allogeneic HCT by frailty tests comprising the handgrip and 6 min walk tests and by biological tests including DNA methylation, telomere length and expression of p16INK4A and serum levels of IL-6. DNA methylation was evaluated both in blood and buccal epithelial cells. Physiological reserve was markedly reduced in transplant survivors, reflected by 6 min walk test. Increased IL-6 serum levels and p16ink4A correlated with accelerated ageing. Overall, the measured age of donor blood cells was significantly higher than these blood cells residing in their respective donors, as reflected by DNA methylation and by buccal epithelium methylation status. These clinical and biological observations suggest that allogeneic HCT is associated with accelerated ageing.
Collapse
Affiliation(s)
- Orit Uziel
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel. .,Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Meir Lahav
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Bone Marrow Transplantation Unit, Institute of Hematology, Davidoff Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Liat Shargian
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Bone Marrow Transplantation Unit, Institute of Hematology, Davidoff Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Einat Beery
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Oren Pasvolsky
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Bone Marrow Transplantation Unit, Institute of Hematology, Davidoff Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Uri Rozovski
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Bone Marrow Transplantation Unit, Institute of Hematology, Davidoff Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Pia Raanani
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Bone Marrow Transplantation Unit, Institute of Hematology, Davidoff Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Moshe Yeshurun
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Bone Marrow Transplantation Unit, Institute of Hematology, Davidoff Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
7
|
Helby J, Petersen SL, Kornblit B, Nordestgaard BG, Mortensen BK, Bojesen SE, Sengeløv H. Mononuclear Cell Telomere Attrition Is Associated with Overall Survival after Nonmyeloablative Allogeneic Hematopoietic Cell Transplantation for Hematologic Malignancies. Biol Blood Marrow Transplant 2018; 25:496-504. [PMID: 30266676 DOI: 10.1016/j.bbmt.2018.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/20/2018] [Indexed: 11/25/2022]
Abstract
After allogeneic hematopoietic cell transplantation (allo-HCT), transplanted cells rapidly undergo multiple rounds of division. This may cause extensive telomere attrition, which could potentially prohibit further cell division and lead to increased mortality. We therefore characterized the development in telomere length after nonmyeloablative allo-HCT in 240 consecutive patients transplanted because of hematologic malignancies and tested the hypothesis that extensive telomere attrition post-transplant is associated with low overall survival. Telomere length was measured using quantitative PCR in mononuclear cells obtained from donors and recipients pretransplant and in follow-up samples from recipients post-transplant. Telomere attrition at 9 to 15 months post-transplant was calculated as the difference between recipient telomere length at 9 to 15 months post-transplant and donor pretransplant telomere length, divided by donor pretransplant telomere length. Although allo-HCT led to shorter mean telomere length in recipients when compared with donors, recipients had longer mean telomere length 9 to 15 months post-transplant than they had pretransplant. When compared with donor telomeres, recipients with extensive telomere attrition at 9 to 15 months post-transplant had low overall survival (10-year survival from 9 to 15 months post-transplant and onward: 68% in the tertile with least telomere attrition, 57% in the middle tertile, and 39% in the tertile with most attrition; log-rank P = .01). Similarly, after adjusting for potential confounders, recipients with extensive telomere attrition had high all-cause mortality (multivariable adjusted hazard ratio, 1.84 per standard deviation of telomere attrition at 9 to 15 months post-transplant; 95% confidence interval, 1.25 to 2.72; P = .002) and high relapse-related mortality (subhazard ratio, 2.07; 95% confidence interval, 1.14 to 3.76; P = .02). Taken together, telomere attrition may be a clinically relevant marker for identifying patients at high risk of mortality.
Collapse
Affiliation(s)
- Jens Helby
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.
| | - Søren Lykke Petersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Brian Kornblit
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Kok Mortensen
- Department of Hematology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Sengeløv
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Relationship between Aging and Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2018; 24:1965-1970. [PMID: 30130587 DOI: 10.1016/j.bbmt.2018.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023]
Abstract
Hematopoietic cell transplantation (HCT) is increasingly utilized as a treatment for malignancies in the elderly population. At the same time, research has elucidated the impacts of HCT on bone marrow progenitor cells, one of which is accelerated aging. Clonal hematopoiesis has also been observed to occur in the aging population, both with and without HCT. The interplay between natural aging, clonal hemoatpoiesis, and the effects of HCT on the bone marrow, has not yet been addressed. Herein we explore this relationship, and its important clinical implications.
Collapse
|
9
|
Cupit-Link MC, Kirkland JL, Ness KK, Armstrong GT, Tchkonia T, LeBrasseur NK, Armenian SH, Ruddy KJ, Hashmi SK. Biology of premature ageing in survivors of cancer. ESMO Open 2017; 2:e000250. [PMID: 29326844 PMCID: PMC5757468 DOI: 10.1136/esmoopen-2017-000250] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/24/2022] Open
Abstract
Over 30 million cancer survivors exist worldwide. Survivors have an earlier onset and higher incidence of chronic comorbidities, including endocrinopathies, cardiac dysfunction, osteoporosis, pulmonary fibrosis, secondary cancers and frailty than the general population; however, the fundamental basis of these changes at the cellular level is unknown. An electronic search was performed on Embase, Medline In-Process & Other Non-Indexed Citations, and the Cochrane Central Register of Controlled Trials. Original articles addressing the cellular biology of ageing and/or the mechanisms of cancer therapies similar to ageing mechanisms were included, and references of these articles were reviewed for further search. We found multiple biological process of ageing at the cellular level and their association with cancer therapies, as well as with clinical effects. The direct effects of various chemotherapies and radiation on telomere length, senescent cells, epigenetic modifications and microRNA were found. We review the effects of cancer therapies on recognised hallmarks of ageing. Long-term comorbidities seen in cancer survivors mimic the phenotypes of ageing and likely result from the interaction between therapeutic exposures and the underlying biology of ageing. Long-term follow-up of cancer survivors and research on prevention strategies should be pursued to increase the length and quality of life among the growing population of cancer survivors.
Collapse
Affiliation(s)
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Saro H Armenian
- Department of Population Sciences, City of Hope National Medical Center, Duarte, California, USA
| | - Kathryn J Ruddy
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
10
|
Vega JN, Dumas J, Newhouse PA. Cognitive Effects of Chemotherapy and Cancer-Related Treatments in Older Adults. Am J Geriatr Psychiatry 2017; 25:1415-1426. [PMID: 28495470 PMCID: PMC5630507 DOI: 10.1016/j.jagp.2017.04.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022]
Abstract
Advances in cancer treatment are producing a growing number of cancer survivors; therefore, issues surrounding quality of life during and following cancer treatment have become increasingly important. Chemotherapy-related cognitive impairment (CRCI) is a problem that is commonly reported following the administration of chemotherapy treatment in patients with cancer. Research suggests that CRCI can persist for months to years after completing treatment, which has implications for the trajectory of normal and pathologic cognitive aging for the growing number of long-term cancer survivors. These problems are particularly relevant for older individuals, given that cancer is largely a disease of older age, and the number of patients with cancer who are aged 65 years or older will increase dramatically over the coming decades. This review will briefly summarize empirical findings related to CRCI, discuss CRCI in older patients with cancer, propose potential causative hypotheses, and provide a canonical patient case to illustrate how CRCI presents clinically. Finally, potential intervention strategies for CRCI will be highlighted and issues to consider when evaluating older patients with a history of cancer will be discussed.
Collapse
Affiliation(s)
- Jennifer N Vega
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Julie Dumas
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont Robert Larner M.D. College of Medicine, Burlington, VT
| | - Paul A Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN; Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN.
| |
Collapse
|
11
|
Mandelblatt JS, Hurria A, McDonald BC, Saykin AJ, Stern RA, VanMeter JW, McGuckin M, Traina T, Denduluri N, Turner S, Howard D, Jacobsen PB, Ahles T. Cognitive effects of cancer and its treatments at the intersection of aging: what do we know; what do we need to know? Semin Oncol 2013; 40:709-25. [PMID: 24331192 PMCID: PMC3880205 DOI: 10.1053/j.seminoncol.2013.09.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is a fairly consistent, albeit non-universal body of research documenting cognitive declines after cancer and its treatments. While few of these studies have included subjects aged 65 years and older, it is logical to expect that older patients are at risk of cognitive decline. Here, we use breast cancer as an exemplar disease for inquiry into the intersection of aging and cognitive effects of cancer and its therapies. There are a striking number of common underlying potential biological risks and pathways for the development of cancer, cancer-related cognitive declines, and aging processes, including the development of a frail phenotype. Candidate shared pathways include changes in hormonal milieu, inflammation, oxidative stress, DNA damage and compromised DNA repair, genetic susceptibility, decreased brain blood flow or disruption of the blood-brain barrier, direct neurotoxicity, decreased telomere length, and cell senescence. There also are similar structure and functional changes seen in brain imaging studies of cancer patients and those seen with "normal" aging and Alzheimer's disease. Disentangling the role of these overlapping processes is difficult since they require aged animal models and large samples of older human subjects. From what we do know, frailty and its low cognitive reserve seem to be a clinically useful marker of risk for cognitive decline after cancer and its treatments. This and other results from this review suggest the value of geriatric assessments to identify older patients at the highest risk of cognitive decline. Further research is needed to understand the interactions between aging, genetic predisposition, lifestyle factors, and frailty phenotypes to best identify the subgroups of older patients at greatest risk for decline and to develop behavioral and pharmacological interventions targeting this group. We recommend that basic science and population trials be developed specifically for older hosts with intermediate endpoints of relevance to this group, including cognitive function and trajectories of frailty. Clinicians and their older patients can advance the field by active encouragement of and participation in research designed to improve the care and outcomes of the growing population of older cancer patients.
Collapse
Affiliation(s)
- Jeanne S Mandelblatt
- Departments of Oncology and Population Sciences, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC.
| | - Arti Hurria
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Brenna C McDonald
- Center for Neuroimaging, Department of Radiology and Imaging Sciences and the Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences and the Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| | - Robert A Stern
- Departments of Neurology and Neurosurgery and Director, Clinical Core, BU Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA
| | - John W VanMeter
- Department of Neurology, Georgetown University Medical Center, Georgetown University, Washington, DC
| | - Meghan McGuckin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Tiffani Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neelima Denduluri
- Department of Medicine, Georgetown University; Virginia Cancer Specialists, US Oncology, Arlington, VA
| | - Scott Turner
- Department of Neurology, Georgetown University Medical Center, Georgetown University, Washington, DC
| | - Darlene Howard
- Department of Psychology, Georgetown University, Washington, DC
| | - Paul B Jacobsen
- Division of Population Science, Moffitt Cancer Center, Tampa, FL
| | - Tim Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY; Department of Psychiatry, Weill Cornell Medical College, New York, NY
| |
Collapse
|
12
|
Diker-Cohen T, Uziel O, Szyper-Kravitz M, Shapira H, Natur A, Lahav M. The effect of chemotherapy on telomere dynamics: clinical results and possible mechanisms. Leuk Lymphoma 2013; 54:2023-9. [PMID: 23240911 DOI: 10.3109/10428194.2012.757765] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Telomeres are the chromosomal end components, and their length in hematopoietic stem cells correlates with the bone marrow proliferative reserve. There are few data regarding telomere dynamics in hematopoietic stem cells after exposure to chemotherapy. We show that the attrition of telomeres after cytotoxic treatment correlates with the intensity of chemotherapy. Using cytotoxic drugs with differential effects on hematopoietic stem cells, our data imply that chemotherapy-induced telomere shortening results from direct damage to hematopoietic stem cells and/or the induction of proliferative stress on bone marrow while sparing repopulating stem cells. These results gain importance considering the current long survival of patients with cancer.
Collapse
Affiliation(s)
- Talia Diker-Cohen
- Medicine A, Rabin Medical Center, Beilinson Campus, Petah-Tikva, Israel
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Telomeres are long (TTAGGG)(n) nucleotide repeats and an associated protein complex located at the end of the chromosomes. They shorten with every cell division and, thus are markers for cellular aging, senescence, and replicative capacity. Telomere dysfunction is linked to several bone marrow disorders, including dyskeratosis congenita, aplastic anemia, myelodysplastic syndrome, and hematopoietic malignancies. Hematopoietic stem cell transplantation (HSCT) provides an opportunity in which to study telomere dynamics in a high cell proliferative environment. Rapid telomere shortening of donor cells occurs in the recipient shortly after HSCT; the degree of telomere attrition does not appear to differ by graft source. As expected, telomeres are longer in recipients of grafts with longer telomeres (e.g., cord blood). Telomere attrition may play a role in, or be a marker of, long term outcome after HSCT, but these data are limited. In this review, we discuss telomere biology in normal and abnormal hematopoiesis, including HSCT.
Collapse
Affiliation(s)
- Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20852, USA.
| | | |
Collapse
|
14
|
Wang YV, Leblanc M, Fox N, Mao JH, Tinkum KL, Krummel K, Engle D, Piwnica-Worms D, Piwnica-Worms H, Balmain A, Kaushansky K, Wahl GM. Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity. Genes Dev 2011; 25:1426-38. [PMID: 21724834 DOI: 10.1101/gad.2024411] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cell cycle regulation in hematopoietic stem cells (HSCs) is tightly controlled during homeostasis and in response to extrinsic stress. p53, a well-known tumor suppressor and transducer of diverse stress signals, has been implicated in maintaining HSC quiescence and self-renewal. However, the mechanisms that control its activity in HSCs, and how p53 activity contributes to HSC cell cycle control, are poorly understood. Here, we use a genetically engineered mouse to show that p53 C-terminal modification is critical for controlling HSC abundance during homeostasis and HSC and progenitor proliferation after irradiation. Preventing p53 C-terminal modification renders mice exquisitely radiosensitive due to defects in HSC/progenitor proliferation, a critical determinant for restoring hematopoiesis after irradiation. We show that fine-tuning the expression levels of the cyclin-dependent kinase inhibitor p21, a p53 target gene, contributes significantly to p53-mediated effects on the hematopoietic system. These results have implications for understanding cell competition in response to stresses involved in stem cell transplantation, recovery from adverse hematologic effects of DNA-damaging cancer therapies, and development of radioprotection strategies.
Collapse
Affiliation(s)
- Yunyuan V Wang
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wiseman DH. Donor cell leukemia: a review. Biol Blood Marrow Transplant 2010; 17:771-89. [PMID: 20951819 DOI: 10.1016/j.bbmt.2010.10.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
Relapse of acute leukemia following hematopoietic stem cell transplantation (HSCT) usually represents return of an original disease clone, having evaded eradication by pretransplant chemo-/radiotherapy, conditioning, or posttransplant graft-versus-leukemia (GVL) effect. Rarely, acute leukemia can develop de novo in engrafted cells of donor origin. Donor cell leukemia (DCL) was first recognized in 1971, but for many years, the paucity of reported cases suggested it to be a rare phenomenon. However, in recent years, an upsurge in reported cases (in parallel with advances in molecular chimerism monitoring) suggest that it may be significantly more common than previously appreciated; emerging evidence suggests that DCL might represent up to 5% of all posttransplant leukemia "relapses." Recognition of DCL is important for several reasons. Donor-derivation of the leukemic clone has implications when selecting appropriate therapy, because seeking to enhance an allogeneic GVL effect would intuitively not have the same role as in standard recipient-derived relapses. There are also broader implications for donor selection and workup, particularly given the growing popularity of nonmyeloblative HSCT and corresponding rising age of the potential donor pool. Identification of DCL raises potential concerns over future health of the donor, posing ethical dilemmas regarding responsibilities toward donor notification (particularly in the context of cord blood transplantation). The entity of DCL is also of research interest, because it might provide a unique human model for studying the mechanisms of leukemogenesis in vivo. This review presents and collates all reported cases of DCL, and discusses the various strategies, controversies, and pitfalls when investigating origin of posttransplant relapse. Putative etiologic factors and mechanisms are proposed, and attempts made to address the difficult ethical questions posed by discovery of donor-derived malignancy within a HSCT recipient.
Collapse
Affiliation(s)
- Daniel H Wiseman
- Haematology Department, Manchester Royal Infirmary, Manchester, United Kingdom.
| |
Collapse
|
16
|
Dietrich J. Chemotherapy associated central nervous system damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 678:77-85. [PMID: 20738009 DOI: 10.1007/978-1-4419-6306-2_11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemotherapy is commonly associated with harmful effects to multiple organ systems, including the central nervous system (CNS). Neurotoxicity may manifest as both acute and delayed complications, which is particularly a concern for long-term survivors. Patients may experience a wide range of neurotoxic syndromes, ranging from neuro-vascular complications and focal neurological deficits to generalized neurological decline with cognitive impairment, cortical atrophy and white matter abnormalities. Along with the use of more aggressive and combined treatment modalities and prolonged survival of cancer patients, neurological complications have been observed with increasing frequency. The mechanisms by which cancer therapy, including chemotherapy and radiation, result in neurological complications, have been poorly understood. Recent studies have now started to unravel the cell-biological basis for commonly seen neurotoxic syndromes and have provided compelling explanations for delayed neurological complications, such as cognitive decline, progressive myelin disruption and brain atrophy.
Collapse
Affiliation(s)
- Jörg Dietrich
- Department of Neurology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street Yawkey 9E, Boston, Massachusetts 02114, USA.
| |
Collapse
|
17
|
Comparative assessment of telomere length before and after hematopoietic SCT: role of grafted cells in determining post-transplant telomere status. Bone Marrow Transplant 2009; 45:505-12. [PMID: 19838219 DOI: 10.1038/bmt.2009.297] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Our objective was to characterize the role of grafted cells in determining telomere length (TL) after hematopoietic SCT (HSCT). A total of 20 patients undergoing autografts had PBSC collected after two sequential mobilization courses: TL in the first collection was significantly longer than in the second. For their autografts, 10 patients used PBSC from the first collection and 10 from the second. TL was also investigated before and after HSCT and on the graft in 10 allogeneic HSCT. After autografting, patients receiving PBSC from the first collection had BM TL reflecting that of grafted cells (median bp: 7730 on PBSC vs 7610 on post-HSCT BM, P=NS) and significantly longer than TL of the second collection; analogously, patients autografted with PBSC from the second collection had BM TL reflecting that of grafted cells (7360 on PBSC vs 7120 on post-HSCT BM, P=NS) and significantly shorter compared with the first collection. In the allograft setting, eight patients had their pre-transplant TL significantly shorter than donor PBSC (5960 vs 7110; P=0.0005); following HSCT, BM TL (median 7380 bp) was identical to that of the graft (P=NS). We conclude that grafted cells have a major role in determining TL after HSCT.
Collapse
|
18
|
Dietrich J, Kesari S. Effect of cancer treatment on neural stem and progenitor cells. Cancer Treat Res 2009; 150:81-95. [PMID: 19834663 DOI: 10.1007/b109924_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jörg Dietrich
- Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
19
|
Savage SA, Alter BP. The role of telomere biology in bone marrow failure and other disorders. Mech Ageing Dev 2007; 129:35-47. [PMID: 18160098 DOI: 10.1016/j.mad.2007.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/07/2007] [Accepted: 11/10/2007] [Indexed: 10/22/2022]
Abstract
Telomeres, consisting of nucleotide repeats and a protein complex at chromosome ends, are essential in maintaining chromosomal integrity. Dyskeratosis congenita (DC) is the inherited bone marrow failure syndrome (IBMFS) that epitomizes the effects of abnormal telomere biology. Patients with DC have extremely short telomere lengths (<1st percentile) and many have mutations in telomere biology genes. Interpretation of telomere length in other IBMFSs is less straightforward. Abnormal telomere shortening has been reported in patients with apparently acquired hematologic disorders, including aplastic anemia, myeolodysplasia, paroxysmal nocturnal hemoglobinuria, and leukemia. In these disorders, the shortest-lived cells have the shortest telomeres, suggestive of increased hematopoietic stress. Telomeres are also markers of replicative and/or oxidative stress in other complex disease pathways, such as inflammation, stress, and carcinogenesis. The spectrum of related disorders caused by mutations in telomere biology genes extends beyond classical DC to include marrow failure that does not respond to immunosuppression, idiopathic pulmonary fibrosis, and possibly other syndromes. We suggest that such patients be categorized as having an inherited disorder of telomere biology. Longitudinal studies of patients with very short telomeres but without classical DC are necessary to further understand the long-term sequelae, such as malignancy, osteonecrosis/osteoporosis, and pulmonary and liver disease.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20892, United States.
| | | |
Collapse
|
20
|
DNA repair in stem cell maintenance and conversion to cancer stem cells. ERNST SCHERING FOUNDATION SYMPOSIUM PROCEEDINGS 2007. [PMID: 17939304 DOI: 10.1007/2789_2007_053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Genomic stability is essential for cell and organism longevity. Without genomic stability, replication errors and external stress as well as direct forms of DNA damage can induce mutations, which decrease cell survival, cause altered gene expression, and can lead to cellular transformation. All represent the antithesis of maintenance of normal stem cell function. We argue here that genomic stability is essential for stem cell maintenance and longevity. This concept is supported by human diseases associated with premature aging and animal models of DNA damage repair abnormalities all of which lead to abnormalities of stem cell survival. Furthermore, with competitive repopulation, hematopoietic stem cell survival can be assessed in the face of DNA repair defects, and results from these studies support the general conclusion that chemotherapy and other forms of DNA damage lead to stem cell failure syndromes and malignant transformation most commonly along the myeloid and lymphoid pathways. Thus one origin of the cancer stem cell phenotype is the inability to maintain genomic stability among the stem cell population leading to mutational alterations and transformation. Capturing stem cells at this transition point represents an exciting field of discovery possibly leading to early detection and therapeutic interventions.
Collapse
|
21
|
Abstract
The mechanism(s) for chemotherapy-induced cognitive changes are largely unknown; however, several candidate mechanisms have been identified. We suggest that shared genetic risk factors for the development of cancer and cognitive problems, including low-efficiency efflux pumps, deficits in DNA-repair mechanisms and/or a deregulated immune response, coupled with the effect of chemotherapy on these systems, might contribute to cognitive decline in patients after chemotherapy. Furthermore, the genetically modulated reduction of capacity for neural repair and neurotransmitter activity, as well as reduced antioxidant capacity associated with treatment-induced reduction in oestrogen and testosterone levels, might interact with these mechanisms and/or have independent effects on cognitive function.
Collapse
Affiliation(s)
- Tim A Ahles
- Department of Psychiatry and Behavioural Sciences, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | |
Collapse
|
22
|
Brümmendorf TH, Balabanov S. Telomere length dynamics in normal hematopoiesis and in disease states characterized by increased stem cell turnover. Leukemia 2006; 20:1706-16. [PMID: 16888616 DOI: 10.1038/sj.leu.2404339] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Telomeres both reflect and limit the replicative lifespan of normal somatic cells. Immature sub-populations of human CD34+38- hematopoietic stem cell (HSC) can be identified in vitro based on their growth kinetics and telomere length. Fluorescence in situ hybridization and flow cytometry (flow-FISH) has been used to characterize telomere length dynamics as a surrogate marker for HSC turnover in vivo. Investigations in normal steady-state hematopoiesis provided the basis for follow-up studies in model scenarios characterized by increased HSC turnover. Disorders with underlying malignant transformation of HSC (e.g., chronic myeloid leukemia (CML)) can be discriminated from disease states with increased HSC turnover rates secondary to depletion of the stem cell compartment, for example, as in defined bone marrow failure syndromes. In some of these model scenarios, the degree of telomere shortening can be correlated with disease duration, disease stage and severity as well as with response to disease-modifying treatment strategies. Whether increased telomere shortening represents a causal link between HSC turnover, replicative senescence and/or the induction of genetic instability in acquired HSC disorders remains to be shown. However, data from congenital disorders, like dyskeratosis congenita (DKC), suggest that disturbed telomere maintenance may play a role for replicative exhaustion of the HSC pool in vivo.
Collapse
Affiliation(s)
- T H Brümmendorf
- Department of Oncology and Hematology with Sections Bone Marrow Transplantation and Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
23
|
Maccormick RE. Possible acceleration of aging by adjuvant chemotherapy: a cause of early onset frailty? Med Hypotheses 2006; 67:212-5. [PMID: 16546325 DOI: 10.1016/j.mehy.2006.01.045] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
Cancer chemotherapy has three main applications. It is curative for a small number of malignancies including childhood leukemia, Hodgkin's and non-Hodgkin's lymphoma, and germ cell malignancies. It has a palliative role for most metastatic epithelial malignancies. Finally, it has an adjuvant role in several types of resected epithelial malignancies particularly breast cancer. First successfully employed in the mid 1970s, adjuvant chemotherapy is associated with up to a 30% relative improvement in long-term overall survival in high risk breast cancer but demonstrates significantly less absolute improvement. Now that adjuvant chemotherapy is being used in lower risk disease, both the relative and absolute improvement in overall survival is even less impressive. With a growing number of long-term survivors, we are only now able to define the delayed implications of adjuvant chemotherapy. These long-term side effects include acceleration of neurocognitive decline, musculoskeletal complications such as early onset osteoporosis, premature skin and ocular changes and the most common long-term complaint; mild to profound fatigue. This complex of problems is suggestive of early onset frailty. This paper explores various potential mechanisms of aging including accumulation of free-radical damage, accumulation of DNA damage, telomere shortening with accompanying decline in telomerase activity and finally a decline in neuroendocrine/immune function. The impact of chemotherapy, particularly those agents used in the adjuvant setting, in relationship to these aging mechanisms is explored. There is good evidence that chemotherapy can effect all these aging mechanisms leading to early onset frailty. The implications of this hypothesis are quite profound. Whereas short-term toxicity of chemotherapy can usually be considered acceptable even for a small improvement in survival, long-term toxicity such as early onset frailty can have an impact on quality of life that could last for years. This possible effect on aging could have implications on the decision to take adjuvant chemo, what agents to use, means to minimize the aging effect and the need to monitor for early onset frailty.
Collapse
Affiliation(s)
- Ronald Eric Maccormick
- Dalhousie University, Cape Breton Cancer Clinic, 1482 George Street, Sydney, NS, Canada B1P 1P3.
| |
Collapse
|