1
|
Shishido Y, Tracy KM, Wu WK, Cortelli M, Petrovic M, Harris TR, Simon V, Francois S, Tucker WD, Petree BS, Cardwell NL, Ukita R, Demarest CT, Alexopoulos SP, Shaver CM, Bacchetta M. Characterization of Porcine Immunoglobulin Deposition in Human Livers Recovered Using a Xenogeneic Cross-Circulation. ASAIO J 2024:00002480-990000000-00557. [PMID: 39288356 DOI: 10.1097/mat.0000000000002311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Affiliation(s)
- Yutaka Shishido
- From the Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kaitlyn M Tracy
- From the Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - W Kelly Wu
- From the Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Cortelli
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark Petrovic
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Timothy R Harris
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Victoria Simon
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sean Francois
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - William D Tucker
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brandon S Petree
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nancy L Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Caitlin T Demarest
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sophoclis P Alexopoulos
- Division of Transplantation, Department of Surgery, University of California-Davis, Sacramento, California
| | - Ciara M Shaver
- Division of Allergy, Pulmonary, Critical Care, Medicine, Department of Medicine, Vanderbilt University, Medical Center, Nashville, Tennessee
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
2
|
Wu WK, Ukita R, Patel YJ, Cortelli M, Trinh VQ, Ziogas IA, Francois SA, Mentz M, Cardwell NL, Talackine JR, Grogan WM, Stokes JW, Lee YA, Kim J, Alexopoulos SP, Bacchetta M. Xenogeneic cross-circulation for physiological support and recovery of ex vivo human livers. Hepatology 2023; 78:820-834. [PMID: 36988383 PMCID: PMC10440302 DOI: 10.1097/hep.0000000000000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND AND AIMS The scarcity of suitable donor livers highlights a continuing need for innovation to recover organs with reversible injuries in liver transplantation. APPROACH AND RESULTS Explanted human donor livers (n = 5) declined for transplantation were supported using xenogeneic cross-circulation of whole blood between livers and xeno-support swine. Livers and swine were assessed over 24 hours of xeno-support. Livers maintained normal global appearance, uniform perfusion, and preservation of histologic and subcellular architecture. Oxygen consumption increased by 75% ( p = 0.16). Lactate clearance increased from -0.4 ± 15.5% to 31.4 ± 19.0% ( p = 0.02). Blinded histopathologic assessment demonstrated improved injury scores at 24 hours compared with 12 hours. Vascular integrity and vasoconstrictive function were preserved. Bile volume and cholangiocellular viability markers improved for all livers. Biliary structural integrity was maintained. CONCLUSIONS Xenogeneic cross-circulation provided multisystem physiological regulation of ex vivo human livers that enabled functional rehabilitation, histopathologic recovery, and improvement of viability markers. We envision xenogeneic cross-circulation as a complementary technique to other organ-preservation technologies in the recovery of marginal donor livers or as a research tool in the development of advanced bioengineering and pharmacologic strategies for organ recovery and rehabilitation.
Collapse
Affiliation(s)
- Wei Kelly Wu
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yatrik J. Patel
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael Cortelli
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vincent Q. Trinh
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ioannis A. Ziogas
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean A. Francois
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Meredith Mentz
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nancy L. Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer R. Talackine
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William M. Grogan
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John W. Stokes
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Youngmin A. Lee
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Sophoclis P. Alexopoulos
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University; Nashville, Tennessee, USA
| |
Collapse
|
3
|
Wu WK, Stier MT, Stokes JW, Ukita R, Patel YJ, Cortelli M, Landstreet SR, Talackine JR, Cardwell NL, Simonds EM, Mentz M, Lowe C, Benson C, Demarest CT, Alexopoulos SP, Shaver CM, Bacchetta M. Immune characterization of a xenogeneic human lung cross-circulation support system. SCIENCE ADVANCES 2023; 9:eade7647. [PMID: 37000867 PMCID: PMC10065447 DOI: 10.1126/sciadv.ade7647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Improved approaches to expanding the pool of donor lungs suitable for transplantation are critically needed for the growing population with end-stage lung disease. Cross-circulation (XC) of whole blood between swine and explanted human lungs has previously been reported to enable the extracorporeal recovery of donor lungs that declined for transplantation due to acute, reversible injuries. However, immunologic interactions of this xenogeneic platform have not been characterized, thus limiting potential translational applications. Using flow cytometry and immunohistochemistry, we demonstrate that porcine immune cell and immunoglobulin infiltration occurs in this xenogeneic XC system, in the context of calcineurin-based immunosuppression and complement depletion. Despite this, xenogeneic XC supported the viability, tissue integrity, and physiologic improvement of human donor lungs over 24 hours of xeno-support. These findings provide targets for future immunomodulatory strategies to minimize immunologic interactions on this organ support biotechnology.
Collapse
Affiliation(s)
- Wei K. Wu
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew T. Stier
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John W. Stokes
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yatrik J. Patel
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Cortelli
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stuart R. Landstreet
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer R. Talackine
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy L. Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Simonds
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meredith Mentz
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cindy Lowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clayne Benson
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caitlin T. Demarest
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sophoclis P. Alexopoulos
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciara M. Shaver
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Corresponding author. (M.B.); (C.M.S.)
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Corresponding author. (M.B.); (C.M.S.)
| |
Collapse
|
4
|
Higginbotham L, Ford ML, Newell KA, Adams AB. Preventing T cell rejection of pig xenografts. Int J Surg 2015; 23:285-290. [PMID: 26306770 DOI: 10.1016/j.ijsu.2015.07.722] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022]
Abstract
Xenotransplantation is a potential solution to the limited supply of donor organs. While early barriers to xenograft acceptance, such as hyperacute rejection, are now largely avoided through genetic engineering, the next frontier in successful xenograft survival will require prevention of T cell-mediated rejection. Most successful immunosuppressive regimens in xenotransplantation utilize T cell depletion with antibody therapy. Additionally, the use of T cell costimulatory blockade - specifically blockade of the CD40-CD154 pathway - shows promise with several reports of long-term xenograft survival. Additional therapies, such as transgenic expression of T cell coinhibitory molecules or transfer of immunomodulatory cells to promote tolerance, may be necessary to achieve reliable long-term xenograft acceptance. Further studies in pre-clinical models are essential in order to optimize these regimens prior to trials in patients.
Collapse
Affiliation(s)
- Laura Higginbotham
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L Ford
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kenneth A Newell
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew B Adams
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Higginbotham L, Mathews D, Breeden CA, Song M, Farris AB, Larsen CP, Ford ML, Lutz AJ, Tector M, Newell KA, Tector AJ, Adams AB. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model. Xenotransplantation 2015; 22:221-30. [PMID: 25847130 DOI: 10.1111/xen.12166] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/08/2015] [Indexed: 12/13/2022]
Abstract
Xenotransplantation has the potential to alleviate the organ shortage that prevents many patients with end-stage renal disease from enjoying the benefits of kidney transplantation. Despite significant advances in other models, pig-to-primate kidney xenotransplantation has met limited success. Preformed anti-pig antibodies are an important component of the xenogeneic immune response. To address this, we screened a cohort of 34 rhesus macaques for anti-pig antibody levels. We then selected animals with both low and high titers of anti-pig antibodies to proceed with kidney transplant from galactose-α1,3-galactose knockout/CD55 transgenic pig donors. All animals received T-cell depletion followed by maintenance therapy with costimulation blockade (either anti-CD154 mAb or belatacept), mycophenolate mofetil, and steroid. The animal with the high titer of anti-pig antibody rejected the kidney xenograft within the first week. Low-titer animals treated with anti-CD154 antibody, but not belatacept exhibited prolonged kidney xenograft survival (>133 and >126 vs. 14 and 21 days, respectively). Long-term surviving animals treated with the anti-CD154-based regimen continue to have normal kidney function and preserved renal architecture without evidence of rejection on biopsies sampled at day 100. This description of the longest reported survival of pig-to-non-human primate kidney xenotransplantation, now >125 days, provides promise for further study and potential clinical translation.
Collapse
Affiliation(s)
- Laura Higginbotham
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Dave Mathews
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Cynthia A Breeden
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mingqing Song
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Alton Brad Farris
- Anatomic Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christian P Larsen
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L Ford
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew J Lutz
- Department of Surgery, Indiana University Health Transplant Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew Tector
- Indiana University Health Transplant Department, Indianapolis, IN, USA
| | - Kenneth A Newell
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - A Joseph Tector
- Department of Surgery, Indiana University Health Transplant Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew B Adams
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
El-Charabaty E, Geara AS, Ting C, El-Sayegh S, Azzi J. Belatacept: a new era of immunosuppression? Expert Rev Clin Immunol 2014; 8:527-36. [DOI: 10.1586/eci.12.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Koshika T, Phelps C, Fang J, Lee SE, Fujita M, Ayares D, Cooper DKC, Hara H. Relative efficiency of porcine and human cytotoxic T-lymphocyte antigen 4 immunoglobulin in inhibiting human CD4+ T-cell responses co-stimulated by porcine and human B7 molecules. Immunology 2012; 134:386-97. [PMID: 22043861 DOI: 10.1111/j.1365-2567.2011.03496.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
α1,3-Galactosyltransferase gene-knockout pigs transgenic for porcine cytotoxic T-lymphocyte antigen 4 immunoglobulin (pCTLA4-Ig) have been produced to reduce T-cell-mediated rejection following xenotransplantation. The level of soluble pCTLA4-Ig in their blood was greatly in excess of the therapeutic level in patients, rendering the pigs immune-incompetent. Soluble pCTLA4-Ig produced by these transgenic pigs was evaluated for binding to porcine and human (h) B7 molecules, and for its inhibitory effect on allogeneic and xenogeneic human T-cell responses. Porcine CTLA4-Ig-expressing peripheral blood mononuclear cells (PBMCs) and aortic endothelial cells (AECs) were evaluated for their direct inhibitory effect on hCD4+ T-cell responses. Soluble pCTLA4-Ig and purified hCTLA4-Ig showed similar binding to pB7 molecules, but pCTLA4-Ig showed significantly less binding to hB7 molecules. The pCTLA4-Ig and hCTLA4-Ig inhibited the response of hCD4+ T cells to pAECs equally, but pCTLA4-Ig was less successful in inhibiting the human allogeneic response. The hCD4+ T-cell response to PBMCs from pCTLA4-Ig pigs was significantly lower than that of non-pCTLA4-Ig pigs. Although pCTLA4-Ig was detected in the cytoplasm of pCTLA4-Ig-expressing pAECs, only a minimal level of soluble pCTLA4-Ig was detected in the supernatant during culture, and pCTLA4-Ig-expressing pAECs did not inhibit the xenogeneic direct human T-cell response. High-level tissue-specific production of pCTLA4-Ig may be required for sufficient immunosuppression for organ or cell (e.g., islets) transplantation.
Collapse
Affiliation(s)
- Tadatsura Koshika
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
O'Reilly Zwald F, Brown M. Skin cancer in solid organ transplant recipients: advances in therapy and management: part II. Management of skin cancer in solid organ transplant recipients. J Am Acad Dermatol 2011; 65:263-279. [PMID: 21763562 DOI: 10.1016/j.jaad.2010.11.063] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/30/2010] [Accepted: 11/20/2010] [Indexed: 12/13/2022]
Abstract
The management of skin cancer in solid organ transplant recipients is a challenge to both the dermatologist and transplant physician. Part II of this continuing medical education review offers an approach to the management of this increasing problem. The importance of specialty dermatology clinics providing access to transplant patients, frequent skin cancer screening, patient education, and multidisciplinary care is discussed. The management of low risk squamous cell carcinoma with topical therapies, photodynamic therapy, systemic retinoids, and capecitabine is reviewed. Revision of immunosuppression in the management of high-risk patients is discussed in association with the potential role of sentinel lymph node biopsy for aggressive disease. Finally, management of in-transit and metastatic squamous cell carcinoma is reviewed, with a discussion of the role of more recent innovative therapies, including epidermal growth factor receptor inhibitors in advanced squamous cell carcinoma in solid organ transplant recipients.
Collapse
Affiliation(s)
- Fiona O'Reilly Zwald
- Department of Dermatology and Division of Transplantation, Department of Surgery, Emory University, Atlanta, Georgia.
| | - Marc Brown
- Department of Dermatology and Oncology, University of Rochester, Rochester, New York
| |
Collapse
|
9
|
Gupta G, Womer KL. Profile of belatacept and its potential role in prevention of graft rejection following renal transplantation. Drug Des Devel Ther 2010; 4:375-82. [PMID: 21151624 PMCID: PMC2998809 DOI: 10.2147/dddt.s10432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The last several decades have witnessed a substantial decrease in the incidence of acute allograft rejection following kidney transplantation, although commensurate improvements in long-term graft function have not been realized. As a result, the primary focus of new immunosuppressive drug development has expanded to include ease of use and improved side effect profile, including reduced nephrotoxicity, in addition to the more traditional goal of improved short-term outcomes. A number of novel drugs are currently under investigation in Phase I, II, or III clinical trials, primarily to replace the nephrotoxic but highly effective calcineurin inhibitors. Belatacept is a humanized antibody that inhibits T cell costimulation and has shown encouraging results in multiple Phase II and III trials. This article reviews the mechanism of action of belatacept, as well as published and preliminary results of the Phase I-III clinical trials involving this novel immunosuppressive agent.
Collapse
Affiliation(s)
- Gaurav Gupta
- Division of Nephrology, Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Karl L Womer
- Division of Nephrology, Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
|