1
|
Haselden WD, Drew PJ, Church EW. Lessons for the pathogenesis of vasospasm from a patient with sickle cell disease, moyamoya disease, subarachnoid hemorrhage, and 1 month of persistent vasospasm: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 4:CASE2290. [PMID: 35855350 PMCID: PMC9257399 DOI: 10.3171/case2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND The mechanism of vasospasm post–subarachnoid hemorrhage (post-SAH) is a poorly understood yet devastating complication that can result in delayed ischemic neurological damage. High concentrations of free hemoglobin present in hemolytic conditions reduce nitric oxide (NO) availability which may disrupt vascular dynamics and contribute to the extent of vasospasm. OBSERVATIONS The authors describe the clinical course of a sickle cell disease (SCD) patient with spontaneous SAH who suffered an abnormally long duration of vasospasm. The authors then present a focused review of the pathology of intravascular hemolysis and discuss the potential key role of intravascular hemolysis in the pathogenesis of cerebral vasospasm as illustrated in this case lesson. LESSONS Abnormally prolonged and severe vasospasm in SCD with SAH may provide clues regarding the mechanisms of vasospasm. Intravascular hemolysis limits NO availability and may contribute to the development of vasospasm following SAH.
Collapse
Affiliation(s)
| | - Patrick J. Drew
- Center for Neural Engineering, Departments of Engineering Science and Mechanics and Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania; and
- Department of Neurosurgery, Penn State Health, Hershey, Pennsylvania
| | - Ephraim W. Church
- Department of Neurosurgery, Penn State Health, Hershey, Pennsylvania
| |
Collapse
|
2
|
Underlying mechanism of subcortical brain protection during hypoxia and reoxygenation in a sheep model - Influence of α1-adrenergic signalling. PLoS One 2018; 13:e0196363. [PMID: 29813077 PMCID: PMC5973577 DOI: 10.1371/journal.pone.0196363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/11/2018] [Indexed: 01/24/2023] Open
Abstract
While the cerebral autoregulation sufficiently protects subcortical brain regions during hypoxia or asphyxia, the cerebral cortex is not as adequately protected, which suggests that regulation of the cerebral blood flow (CBF) is area-specific. Hypoxia was induced by inhalation of 5% oxygen, for reoxygenation 100% oxygen was used. Cortical and subcortical CBF (by laser Doppler flowmetry), blood gases, mean arterial blood pressure (MABP), heart rate and renal blood flow were constantly monitored. Low dosed urapidil was used for α1A-adrenergic receptor blockade. Western blotting was used to determine adrenergic receptor signalling mediators in brain arterioles. During hypoxia cortical CBF decreased to 72 ± 11% (mean reduction 11 ± 3%, p < 0.001) of baseline, whereas subcortical CBF increased to 168±18% (mean increase 43 ± 5%, p < 0.001). Reoxygenation led to peak CBF of 194 ± 27% in the subcortex, and restored cortical CBF. α1A-Adrenergic blockade led to minor changes in cortical CBF, but massively reduced subcortical CBF during hypoxia and reoxygenation–almost aligning CBF in both brain regions. Correlation analyses revealed that α1A-adrenergic blockade renders all CBF-responses pressure-passive during hypoxia and reoxygenation, and confirmed the necessity of α1A-adrenergic signalling for coupling of CBF-responses to oxygen saturation. Expression levels and activation state of key signalling-mediators of α1-receptors (NOSs, CREB, ERK1/2) did not differ between cortex and subcortex. The dichotomy between subcortical and cortical CBF during hypoxia and reoxygenation critically depends on α1A-adrenergic receptors, but not on differential expression of signalling-mediators: signalling through the α1A-subtype is a prerequisite for cortical/subcortical redistribution of CBF.
Collapse
|
3
|
Benyó Z, Ruisanchez É, Leszl-Ishiguro M, Sándor P, Pacher P. Endocannabinoids in cerebrovascular regulation. Am J Physiol Heart Circ Physiol 2016; 310:H785-801. [PMID: 26825517 DOI: 10.1152/ajpheart.00571.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
The cerebral blood flow is tightly regulated by myogenic, endothelial, metabolic, and neural mechanisms under physiological conditions, and a large body of recent evidence indicates that inflammatory pathways have a major influence on the cerebral blood perfusion in certain central nervous system disorders, like hemorrhagic and ischemic stroke, traumatic brain injury, and vascular dementia. All major cell types involved in cerebrovascular control pathways (i.e., smooth muscle, endothelium, neurons, astrocytes, pericytes, microglia, and leukocytes) are capable of synthesizing endocannabinoids and/or express some or several of their target proteins [i.e., the cannabinoid 1 and 2 (CB1 and CB2) receptors and the transient receptor potential vanilloid type 1 ion channel]. Therefore, the endocannabinoid system may importantly modulate the regulation of cerebral circulation under physiological and pathophysiological conditions in a very complex manner. Experimental data accumulated since the late 1990s indicate that the direct effect of cannabinoids on cerebral vessels is vasodilation mediated, at least in part, by CB1 receptors. Cannabinoid-induced cerebrovascular relaxation involves both a direct inhibition of smooth muscle contractility and a release of vasodilator mediator(s) from the endothelium. However, under stress conditions (e.g., in conscious restrained animals or during hypoxia and hypercapnia), cannabinoid receptor activation was shown to induce a reduction of the cerebral blood flow, probably via inhibition of the electrical and/or metabolic activity of neurons. Finally, in certain cerebrovascular pathologies (e.g., subarachnoid hemorrhage, as well as traumatic and ischemic brain injury), activation of CB2 (and probably yet unidentified non-CB1/non-CB2) receptors appear to improve the blood perfusion of the brain via attenuating vascular inflammation.
Collapse
Affiliation(s)
- Zoltán Benyó
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Éva Ruisanchez
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Miriam Leszl-Ishiguro
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Péter Sándor
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KTS. The role of the nitric oxide pathway in brain injury and its treatment--from bench to bedside. Exp Neurol 2014; 263:235-43. [PMID: 25447937 DOI: 10.1016/j.expneurol.2014.10.017] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/09/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Nitric oxide (NO) is a key signalling molecule in the regulation of cerebral blood flow. This review summarises current evidence regarding the role of NO in the regulation of cerebral blood flow at rest, under physiological conditions, and after brain injury, focusing on subarachnoid haemorrhage, traumatic brain injury, and ischaemic stroke and following cardiac arrest. We also review the role of NO in the response to hypoxic insult in the developing brain. NO depletion in ischaemic brain tissue plays a pivotal role in the development of subsequent morbidity and mortality through microcirculatory disturbance and disordered blood flow regulation. NO derived from endothelial nitric oxide synthase (eNOS) appears to have neuroprotective properties. However NO derived from inducible nitric oxide synthase (iNOS) may have neurotoxic effects. Cerebral NO donor agents, for example sodium nitrite, appear to replicate the effects of eNOS derived NO, and therefore have neuroprotective properties. This is true in both the adult and immature brain. We conclude that these agents should be further investigated as targeted pharmacotherapy to protect against secondary brain injury.
Collapse
Affiliation(s)
- P S Garry
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - M Ezra
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - M J Rowland
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - J Westbrook
- Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - K T S Pattinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
5
|
Abstract
The cerebrovascular regulation involves highly complex mechanisms to assure that the brain is perfused at all times. These mechanisms depend on all components of the neurovascular units: neurons, glia, and vascular cells. All these cell types can produce nitric oxide (NO), a powerful vasodilator through different NO synthases. Many studies underlined the key role of NO in the maintenance of resting cerebral blood flow (CBF) as well as in the mechanisms that control cerebrovascular tone: autoregulation and neurovascular coupling. However, although the role of NO in the control of CBF has been largely investigated, the complexity of the NO system and the lack of specific NO synthase inhibitors led to still unresolved questions such as the origin of NO and the pathways by which it controls the vascular tone. In this chapter, the role of NO in the regulation of CBF is critically reviewed and discussed in the context of the neurovascular unit and the general principles of cerebrovascular regulation.
Collapse
|
6
|
Chapman AC, Cipolla MJ, Chan SL. Effect of pregnancy and nitric oxide on the myogenic vasodilation of posterior cerebral arteries and the lower limit of cerebral blood flow autoregulation. Reprod Sci 2013; 20:1046-54. [PMID: 23420820 DOI: 10.1177/1933719112473661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemorrhage during parturition can lower blood pressure beyond the lower limit of cerebral blood flow (CBF) autoregulation that can cause ischemic brain injury. However, the impact of pregnancy on the lower limit of CBF autoregulation is unknown. We measured myogenic vasodilation, a major contributor of CBF autoregulation, in isolated posterior cerebral arteries (PCAs) from nonpregnant and late-pregnant rats (n = 10/group) while the effect of pregnancy on the lower limit of CBF autoregulation was studied in the posterior cerebral cortex during controlled hemorrhage (n = 8). Pregnancy enhanced myogenic vasodilation in PCA and shifted the lower limit of CBF autoregulation to lower pressures. Inhibition of nitric oxide synthase (NOS) prevented the enhanced myogenic vasodilation during pregnancy but did not affect the lower limit of CBF autoregulation. The shift in the autoregulatory curve to lower pressures during pregnancy is likely protective of ischemic injury during hemorrhage and appears to be independent of NOS.
Collapse
Affiliation(s)
- Abbie C Chapman
- Neuroscience Graduate Program, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | |
Collapse
|
7
|
Atochin DN, Huang PL. Role of endothelial nitric oxide in cerebrovascular regulation. Curr Pharm Biotechnol 2012; 12:1334-42. [PMID: 21235451 DOI: 10.2174/138920111798280974] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/01/2010] [Accepted: 08/08/2010] [Indexed: 11/22/2022]
Abstract
Endothelial nitric oxide (NO) plays important roles in the vascular system. Animal models that show vascular dysfunction demonstrate the protective role of endothelial NO dependent pathways. This review focuses on the role of endothelial NO in the regulation of cerebral blood flow and vascular tone. We will discuss the importance of NO in cerebrovascular function using animal models with altered endothelial NO production under normal, ischemic and reperfusion conditions, as well as in hyperoxia. Pharmacological and genetic manipulations of the endothelial NO system demonstrate the essential roles of endothelial NO synthase in maintenance of vascular tone and cerebral perfusion under normal and pathological conditions.
Collapse
Affiliation(s)
- Dmitriy N Atochin
- Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | | |
Collapse
|
8
|
Greene NH, Lee LA. Modern and Evolving Understanding of Cerebral Perfusion and Autoregulation. Adv Anesth 2012; 30:97-129. [PMID: 28275288 DOI: 10.1016/j.aan.2012.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nathaniel H Greene
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195-6540, USA
| | - Lorri A Lee
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195-6540, USA; Department of Neurological Surgery, University of Washington, Seattle, WA 98195-6540, USA
| |
Collapse
|
9
|
Abstract
The mechanisms responsible for vascular autoregulation in the brain during changes in mean arterial blood pressure are ambiguous. Potentially, adenosine, a purine nucleoside and potent vasodilator, may be involved as earlier studies have documented an increase in brain adenosine concentrations with cerebral ischemia and hypotension. Consequently, we tested the hypothesis that adenosine is involved in vasodilatation during hypotension within the autoregulatory range (>50 mm Hg) by exposing adenosine 2a receptor (A2aR) knockout and wild type (WT) mice to short (2 to 5 mins) periods of hypotension. We found that autoregulation was significantly (P<0.05) impaired by 29% in A2a knockout mice as compared with WT animals. Furthermore, the A2R antagonist (A2a>A2b:10-85>1), ZM-241385, in a dose (1, 5, 10 mg/kg, intraperitoneally)-related manner, attenuated autoregulation in WT mice. In knockout mice treated with ZM-2413585 (5 and 10 mg/kg), autoregulation was further impaired indicating that A2b receptors also participated in cerebral vasodilatation. Treatment with dipyridamole (1.0 mg/kg) that increases extracellular concentrations of adenosine improved autoregulation in the A2aR knockout mice. We would conclude that adenosine through both A2a and A2b receptors is involved in physiologic vascular regulation during hypotension even within the autoregulatory range.
Collapse
|
10
|
Czambel RK, Kharlamov A, Jones SC. Variations of brain endothelial nitric oxide synthase concentration in rat and mouse cortex. Nitric Oxide 2010; 22:51-7. [PMID: 19948238 PMCID: PMC2818859 DOI: 10.1016/j.niox.2009.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 11/24/2022]
Abstract
No information exists on the differences of eNOS concentration in brain tissue, [eNOS](br), between animals during normal and hypotensive blood pressure and both between and within animals during moderate hypotension. To address these questions, we modified a commercially available enzyme-linked immunosorbent assay (ELISA) kit for determining murine [eNOS](br) since no method exists to measure [eNOS](br). Optimization of the kit ELISA procedure using brain cortex homogenates from 3 normotensive rats and 1 wild-type and 1 eNOS(-/-) (ko) mouse included recovery evaluation for each sample and the use of an "eNOS-free" homogenate calibrator diluent obtained from a mutant eNOS-ko mouse. Initial spike-and-recovery values of 12.5-27% suggesting a substantial sample matrix effect were improved with lipid removal treatment to 37.3% and to 70% with 1:20 dilution of the sample. Calibration standards prepared using eNOS-free buffer increased recovery values to 78% in micro-punch samples. The optimized ELISA was used in micro-punch (<1mg) brain cortex samples from 6 hypotensive rats. Whole brain [eNOS](br) varied considerably from 5-11fmol/mg wet weight and was different between normo- and hypotensive animals (p=0.023). The variability of [eNOS](br) due to moderate hypotension in micro-punch rat brain cortex samples was composed of both between (24%) and within (76%) animal components. The differences and variability of [eNOS](br) between normo- and hypotensive animals, and between and within hypotensive animals suggests the potential utility of its measurement for investigations of cerebrovascular physiology and that [eNOS](br) itself could be an important factor in cerebrovascular regulation.
Collapse
Affiliation(s)
- R. Kenneth Czambel
- Department of Anesthesiology, Allegheny-Singer Research Institute, Pittsburgh, PA 15212, USA
| | - Alexander Kharlamov
- Department of Anesthesiology, Allegheny-Singer Research Institute, Pittsburgh, PA 15212, USA
| | - Stephen C. Jones
- Department of Anesthesiology, Allegheny-Singer Research Institute, Pittsburgh, PA 15212, USA
- Department of Neurology, Allegheny-Singer Research Institute, Pittsburgh, PA 15212, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
11
|
Brady KM, Lee JK, Kibler KK, Easley RB, Koehler RC, Czosnyka M, Smielewski P, Shaffner DH. The Lower Limit of Cerebral Blood Flow Autoregulation Is Increased with Elevated Intracranial Pressure. Anesth Analg 2009; 108:1278-83. [DOI: 10.1213/ane.0b013e3181964848] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Hare GMT, Tsui AKY, McLaren AT, Ragoonanan TE, Yu J, Mazer CD. Anemia and cerebral outcomes: many questions, fewer answers. Anesth Analg 2008; 107:1356-70. [PMID: 18806052 DOI: 10.1213/ane.0b013e318184cfe9] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A number of clinical studies have associated acute anemia with cerebral injury in perioperative patients. Evidence of such injury has been observed near the currently accepted transfusion threshold (hemoglobin [Hb] concentration, 7-8 g/dL), and well above the threshold for cerebral tissue hypoxia (Hb 3-4 g/dL). However, hypoxic and nonhypoxic mechanisms of anemia-induced cerebral injury have not been clearly elucidated. In addition, protective mechanisms which may minimize cerebral injury during acute anemia have not been well defined. Vasodilatory mechanisms, including nitric oxide (NO), may help to maintain cerebral oxygen delivery during anemia as all three NO synthase (NOS) isoforms (neuronal, endothelial, and inducible NOS) have been shown to be up-regulated in different experimental models of acute hemodilutional anemia. Recent experimental evidence has also demonstrated an increase in an important transcription factor, hypoxia inducible factor (HIF)-1alpha, in the cerebral cortex of anemic rodents at clinically relevant Hb concentrations (Hb 6-7 g/dL). This suggests that cerebral oxygen homeostasis may be in jeopardy during acute anemia. Under hypoxic conditions, cytoplasmic HIF-1alpha degradation is inhibited, thereby allowing it to accumulate, dimerize, and translocate into the nucleus to promote transcription of a number of hypoxic molecules. Many of these molecules, including erythropoietin, vascular endothelial growth factor, and inducible NOS have also been shown to be up-regulated in the anemic brain. In addition, HIF-1alpha transcription can be increased by nonhypoxic mediators including cytokines and vascular hormones. Furthermore, NOS-derived NO may also stabilize HIF-1alpha in the absence of tissue hypoxia. Thus, during anemia, HIF-1alpha has the potential to regulate cerebral cellular responses under both hypoxic and normoxic conditions. Experimental studies have demonstrated that HIF-1alpha may have either neuroprotective or neurotoxic capacity depending on the cell type in which it is up-regulated. In the current review, we characterize these cellular processes to promote a clearer understanding of anemia-induced cerebral injury and protection. Potential mechanisms of anemia-induced injury include cerebral emboli, tissue hypoxia, inflammation, reactive oxygen species generation, and excitotoxicity. Potential mechanisms of cerebral protection include NOS/NO-dependent optimization of cerebral oxygen delivery and cytoprotective mechanisms including HIF-1alpha, erythropoietin, and vascular endothelial growth factor. The overall balance of these activated cellular mechanisms may dictate whether or not their up-regulation leads to cytoprotection or cellular injury during anemia. A clearer understanding of these mechanisms may help us target therapies that will minimize anemia-induced cerebral injury in perioperative patients.
Collapse
Affiliation(s)
- Gregory M T Hare
- Department of Anesthesia, University of Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Patients with acute liver failure (ALF) display impairment of cerebral blood flow (CBF) autoregulation, which may contribute to the development of fatal intracranial hypertension, but the pathophysiological mechanism remains unclear. In this study, we examined whether loss of liver mass causes impairment of CBF autoregulation. Four rat models were chosen, each representing different aspects of ALF: galactosamine (GlN) intoxication represented liver necrosis, 90% hepatectomy (PHx90) represented reduction in liver mass, portacaval anastomosis (PCA) represented shunting of blood/toxins into the systemic circulation thus mimicking intrahepatic shunting in ALF, PCA+NH(3) provided information about the additional effects of hyperammonemia Rats were intubated and sedated with pentobarbital. We measured CBF with laser Doppler, intracranial pressure (ICP) was measured in the fossa posterior and registered with a pressure transducer, brain water was measured using the wet-to-dry method, and cerebral glutamine/glutamate was measured enzymatically. The CBF autoregulatory index in both the GlN and PHx90 groups differed significantly from the control group. Conversely, CBF autoregulation was intact in the PCA and PCA+NH(3) groups despite high arterial ammonia, high cerebral glutamine concentration, and increased CBF and ICP. Increased water content of the brainstem or cerebellum was not associated with defective CBF autoregulation. In conclusion, impairment of CBF autoregulation is not caused by brain edema/high ICP. Nor does portacaval shunting or hyperammonemia impair autoregulation. Rather, massive liver necrosis and reduced liver mass are associated with loss of CBF autoregulation.
Collapse
|
14
|
Bauser-Heaton HD, Bohlen HG. Cerebral microvascular dilation during hypotension and decreased oxygen tension: a role for nNOS. Am J Physiol Heart Circ Physiol 2007; 293:H2193-201. [PMID: 17630350 DOI: 10.1152/ajpheart.00190.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial (eNOS) and neuronal nitric oxide synthase (nNOS) are implicated as important contributors to cerebral vascular regulation through nitric oxide (NO). However, direct in vivo measurements of NO in the brain have not been used to dissect their relative roles, particularly as related to oxygenation of brain tissue. We found that, in vivo, rat cerebral arterioles had increased NO concentration ([NO]) and diameter at reduced periarteriolar oxygen tension (Po(2)) when either bath oxygen tension or arterial pressure was decreased. Using these protocols with highly selective blockade of nNOS, we tested the hypothesis that brain tissue nNOS could donate NO to the arterioles at rest and during periods of reduced perivascular oxygen tension, such as during hypotension or reduced local availability of oxygen. The decline in periarteriolar Po(2) by bath manipulation increased [NO] and vessel diameter comparable with responses at similarly decreased Po(2) during hypotension. To determine whether the nNOS provided much of the vascular wall NO, nNOS was locally suppressed with the highly selective inhibitor N-(4S)-(4-amino-5-[aminoethyl]aminopentyl)-N'-nitroguanidine. After blockade, resting [NO], Po(2), and diameters decreased, and the increase in [NO] during reduced Po(2) or hypotension was completely absent. However, flow-mediated dilation during occlusion of a collateral arteriole did remain intact after nNOS blockade and the vessel wall [NO] increased to approximately 80% of normal. Therefore, nNOS predominantly increased NO during decreased periarteriolar oxygen tension, such as that during hypotension, but eNOS was the dominant source of NO for flow shear mechanisms.
Collapse
Affiliation(s)
- Holly D Bauser-Heaton
- Department of Cellular and Integrative Physiology, Indiana University Medical School, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
15
|
Mazer CD, Briet F, Blight KR, Stewart DJ, Robb M, Wang Z, Harrington AM, Mak W, Li X, Hare GMT. Increased cerebral and renal endothelial nitric oxide synthase gene expression after cardiopulmonary bypass in the rat. J Thorac Cardiovasc Surg 2007; 133:13-20. [PMID: 17198775 DOI: 10.1016/j.jtcvs.2006.06.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 05/17/2006] [Accepted: 06/13/2006] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Hemodilution and endothelial nitric oxide synthase genetic polymorphism may contribute to cerebral and renal injury after cardiopulmonary bypass. This study tested the hypothesis that cardiopulmonary bypass and anemia stimulate an increase in cerebral and renal endothelial nitric oxide synthase gene expression in an experimental model of cardiopulmonary bypass. METHODS Anesthetized rats underwent a sham procedure without cardiopulmonary bypass (sham, n = 5), normothermic bypass for 1 hour (CPB, n = 7), or bypass plus hemodilutional anemia (CPB anemia, n = 9). After 24 hours of recovery, RNA was extracted from the cerebral cortex, renal cortex, and renal medulla. Quantitative reverse transcriptase polymerase chain reaction was used to assess endothelial nitric oxide synthase messenger RNA levels in brain and kidney tissues. RESULTS The hemoglobin concentration of anemic CPB rats was significantly lower than that of nonanemic rats on bypass (64 +/- 5 vs 99 +/- 8 g x L(-1), P < .001). Cerebral cortical endothelial nitric oxide synthase messenger RNA levels were increased after cardiopulmonary bypass relative to those of the sham group (11.2 +/- 4.2 vs 6.3 +/- 1.5 fg, P = .031), without a further increase in anemic rats. Renal medullary endothelial nitric oxide synthase messenger RNA levels were significantly higher in the CPB anemia group than in the sham and CPB groups (7.1 +/- 4.4 fg vs 1.8 +/- 0.4 fg vs 3.0 +/- 0.6 fg, P < .001). Renal cortical endothelial nitric oxide synthase messenger RNA levels did not change significantly. CONCLUSIONS Normothermic cardiopulmonary bypass was associated with higher endothelial nitric oxide synthase messenger RNA levels in kidney and brain than was the sham procedure 24 hours after cardiopulmonary bypass. Anemia accentuated the increase in renal medullary, but not cerebral cortical, endothelial nitric oxide synthase expression. These data provide an approach for exploring potential mechanisms by which endothelial nitric oxide synthase may contribute to renal and cerebral dysfunction after cardiopulmonary bypass and anemia.
Collapse
Affiliation(s)
- C David Mazer
- Department of Anesthesia, University of Toronto, St. Michael's Hospital, Seneca College, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Prisby RD, Wilkerson MK, Sokoya EM, Bryan RM, Wilson E, Delp MD. Endothelium-dependent vasodilation of cerebral arteries is altered with simulated microgravity through nitric oxide synthase and EDHF mechanisms. J Appl Physiol (1985) 2006; 101:348-53. [PMID: 16627679 DOI: 10.1152/japplphysiol.00941.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cephalic elevations in arterial pressure associated with microgravity and prolonged bed rest alter cerebrovascular autoregulation in humans. Using the head-down tail-suspended (HDT) rat to chronically induce headward fluid shifts and elevate cerebral artery pressure, previous work has likewise shown cerebral perfusion to be diminished. The purpose of this study was to test the hypothesis that 2 wk of HDT reduces cerebral artery vasodilation. To test this hypothesis, dose-response relations for endothelium-dependent (2-methylthioadenosine triphosphate and bradykinin) and endothelium-independent (nitroprusside) vasodilation were determined in vitro in middle cerebral arteries (MCAs) from HDT and control rats. All in vitro measurements were done in the presence and absence of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (10(-5) M) and cyclooxygenase inhibitor indomethacin (10(-5) M). MCA caveolin-1 protein content was measured by immunoblot analysis. Endothelium-dependent vasodilation to 2-methylthioadenosine triphosphate and bradykinin were both lower in MCAs from HDT rats. These lower vasodilator responses were abolished with N(G)-nitro-L-arginine methyl ester but were unaffected by indomethacin. In addition, HDT was associated with lower levels of MCA caveolin-1 protein. Endothelium-independent vasodilation was not altered by HDT. These results indicate that chronic cephalic fluid shifts diminish endothelium-dependent vasodilation through alterations in the endothelial nitric oxide synthase signaling mechanism. Such decrements in endothelium-dependent vasodilation of cerebral arteries could contribute to the elevations in cerebral vascular resistance and reductions in cerebral perfusion that occur after conditions of simulated microgravity in HDT rats.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Wilkerson MK, Lesniewski LA, Golding EM, Bryan RM, Amin A, Wilson E, Delp MD. Simulated microgravity enhances cerebral artery vasoconstriction and vascular resistance through endothelial nitric oxide mechanism. Am J Physiol Heart Circ Physiol 2005; 288:H1652-61. [PMID: 15576439 DOI: 10.1152/ajpheart.00925.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevations in arterial pressure associated with hypertension, microgravity, and prolonged bed rest alter cerebrovascular autoregulation in humans. Using head-down tail suspension (HDT) in rats to induce cephalic fluid shifts and elevate arterial pressure, this study tested the hypothesis that 2-wk HDT enhances cerebral artery vasoconstriction and that an enhanced vasoconstriction described in vitro will alter regional cerebral blood flow (CBF) and vascular resistance (CVR) during standing and head-up tilt. To test this hypothesis, basal tone and vasoconstrictor responses to increases in transmural pressure, shear stress, and K+ were determined in vitro in middle cerebral arteries (MCAs) from HDT and control rats. All in vitro measurements were done in the presence and absence of the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 10−5 M) and with endothelium removal. Endothelial NOS (eNOS) mRNA and protein expression levels were measured by RT-PCR and immunoblot, respectively. Regional CBF and CVR were determined with a radiolabeled tracer technique and quantitative autoradiography. Basal tone and all vasoconstrictor responses were greater in MCAs from HDT rats. l-NAME and endothelium removal abolished these differences between groups, and HDT was associated with lower levels of MCA eNOS protein. CBF in select regions was lower and CVR higher during standing and head-up tilt in HDT rats. These results indicate that chronic cephalic fluid shifts enhanced basal tone and vasoconstriction through alterations in the eNOS signaling mechanism. The functional consequence of these vascular alterations with HDT is regional elevations in CVR and corresponding reductions in cerebral perfusion.
Collapse
Affiliation(s)
- M Keith Wilkerson
- Dept. of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Yuan S, Devor A, Boas DA, Dunn AK. Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging. APPLIED OPTICS 2005; 44:1823-30. [PMID: 15813518 DOI: 10.1364/ao.44.001823] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Laser speckle contrast imaging is becoming an established method for full-field imaging of cerebral blood flow dynamics in animal models. The sensitivity and noise in the measurement of blood flow changes depend on the camera exposure time. The relation among sensitivity, noise, and camera exposure time was investigated experimentally by imaging the speckle contrast changes in the brain after electrical forepaw stimulation in rats. The sensitivity to relative changes in speckle contrast was found to increase at longer exposure times and to reach a plateau for exposure times greater than approximately 2 ms. However, the speckle contrast noise also increases with exposure time and thus the contrast-to-noise ratio was found to peak at an exposure time of approximately 5 ms. Our results suggests that approximately 5 ms is an optimal exposure time for imaging of stimulus-induced changes in cerebral blood flow in rodents.
Collapse
Affiliation(s)
- Shuai Yuan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|