1
|
Killeen PR, Russell VA, Sergeant JA. A behavioral neuroenergetics theory of ADHD. Neurosci Biobehav Rev 2013; 37:625-57. [PMID: 23454637 DOI: 10.1016/j.neubiorev.2013.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 02/02/2023]
Abstract
Energetic insufficiency in neurons due to inadequate lactate supply is implicated in several neuropathologies, including attention-deficit/hyperactivity disorder (ADHD). By formalizing the mechanism and implications of such constraints on function, the behavioral Neuroenergetics Theory (NeT) predicts the results of many neuropsychological tasks involving individuals with ADHD and kindred dysfunctions, and entails many novel predictions. The associated diffusion model predicts that response times will follow a mixture of Wald distributions from the attentive state, and ex-Wald distributions after attentional lapses. It is inferred from the model that ADHD participants can bring only 75-85% of the neurocognitive energy to bear on tasks, and allocate only about 85% of the cognitive resources of comparison groups. Parameters derived from the model in specific tasks predict performance in other tasks, and in clinical conditions often associated with ADHD. The primary action of therapeutic stimulants is to increase norepinephrine in active regions of the brain. This activates glial adrenoceptors, increasing the release of lactate from astrocytes to fuel depleted neurons. The theory is aligned with other approaches and integrated with more general theories of ADHD. Therapeutic implications are explored.
Collapse
Affiliation(s)
- Peter R Killeen
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104, USA.
| | | | | |
Collapse
|
2
|
Larach DB, Kofke WA, Le Roux P. Potential non-hypoxic/ischemic causes of increased cerebral interstitial fluid lactate/pyruvate ratio: a review of available literature. Neurocrit Care 2012; 15:609-22. [PMID: 21336786 DOI: 10.1007/s12028-011-9517-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microdialysis, an in vivo technique that permits collection and analysis of small molecular weight substances from the interstitial space, was developed more than 30 years ago and introduced into the clinical neurosciences in the 1990s. Today cerebral microdialysis is an established, commercially available clinical tool that is focused primarily on markers of cerebral energy metabolism (glucose, lactate, and pyruvate) and cell damage (glycerol), and neurotransmitters (glutamate). Although the brain comprises only 2% of body weight, it consumes 20% of total body energy. Consequently, the ability to monitor cerebral metabolism can provide significant insights during clinical care. Measurements of lactate, pyruvate, and glucose give information about the comparative contributions of aerobic and anaerobic metabolisms to brain energy. The lactate/pyruvate ratio reflects cytoplasmic redox state and thus provides information about tissue oxygenation. An elevated lactate pyruvate ratio (>40) frequently is interpreted as a sign of cerebral hypoxia or ischemia. However, several other factors may contribute to an elevated LPR. This article reviews potential non-hypoxic/ischemic causes of an increased LPR.
Collapse
Affiliation(s)
- Daniel B Larach
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
3
|
Hurd RE, Yen YF, Mayer D, Chen A, Wilson D, Kohler S, Bok R, Vigneron D, Kurhanewicz J, Tropp J, Spielman D, Pfefferbaum A. Metabolic imaging in the anesthetized rat brain using hyperpolarized [1-13C] pyruvate and [1-13C] ethyl pyruvate. Magn Reson Med 2010; 63:1137-43. [PMID: 20432284 DOI: 10.1002/mrm.22364] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Formulation, polarization, and dissolution conditions were developed to obtain a stable hyperpolarized solution of [1-(13)C]-ethyl pyruvate. A maximum tolerated concentration and injection rate were determined, and (13)C spectroscopic imaging was used to compare the uptake of hyperpolarized [1-(13)C]-ethyl pyruvate relative to hyperpolarized [1-(13)C]-pyruvate into anesthetized rat brain. Hyperpolarized [1-(13)C]-ethyl pyruvate and [1-(13)C]-pyruvate metabolic imaging in normal brain is demonstrated and quantified in this feasibility and range-finding study.
Collapse
Affiliation(s)
- Ralph E Hurd
- Global Applied Science Laboratory, GE Healthcare, Menlo Park, California 94025, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Lactate is a potential energy source for the brain. The aim of this study was to establish whether systemic lactate is a brain energy source. We measured in vivo cerebral lactate kinetics and oxidation rates in 6 healthy individuals at rest with and without 90 mins of intravenous lactate infusion (36 mumol per kg bw per min), and during 30 mins of cycling exercise at 75% of maximal oxygen uptake while the lactate infusion continued to establish arterial lactate concentrations of 0.89+/-0.08, 3.9+/-0.3, and 6.9+/-1.3 mmol/L, respectively. At rest, cerebral lactate utilization changed from a net lactate release of 0.06+/-0.01 to an uptake of 0.16+/-0.07 mmol/min during lactate infusion, with a concomitant decrease in the net glucose uptake. During exercise, the net cerebral lactate uptake was further increased to 0.28+/-0.16 mmol/min. Most (13)C-label from cerebral [1-(13)C]lactate uptake was released as (13)CO(2) with 100%+/-24%, 86%+/-15%, and 87%+/-30% at rest with and without lactate infusion and during exercise, respectively. The contribution of systemic lactate to cerebral energy expenditure was 8%+/-2%, 19%+/-4%, and 27%+/-4% for the respective conditions. In conclusion, systemic lactate is taken up and oxidized by the human brain and is an important substrate for the brain both under basal and hyperlactatemic conditions.
Collapse
|
5
|
Dienel GA, Cruz NF. Imaging brain activation: simple pictures of complex biology. Ann N Y Acad Sci 2009; 1147:139-70. [PMID: 19076439 DOI: 10.1196/annals.1427.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elucidation of biochemical, physiological, and cellular contributions to metabolic images of brain is important for interpretation of images of brain activation and disease. Discordant brain images obtained with [(14)C]deoxyglucose and [1- or 6-(14)C]glucose were previously ascribed to increased glycolysis and rapid [(14)C]lactate release from tissue, but direct proof of [(14)C]lactate release from activated brain structures is lacking. Analysis of factors contributing to images of focal metabolic activity evoked by monotonic acoustic stimulation of conscious rats reveals that labeled metabolites of [1- or 6-(14)C]glucose are quickly released from activated cells as a result of decarboxylation reactions, spreading via gap junctions, and efflux via lactate transporters. Label release from activated tissue accounts for most of the additional [(14)C]glucose consumed during activation compared to rest. Metabolism of [3,4-(14)C]glucose generates about four times more [(14)C]lactate compared to (14)CO(2) in extracellular fluid, suggesting that most lactate is not locally oxidized. In brain slices, direct assays of lactate uptake from extracellular fluid demonstrate that astrocytes have faster influx and higher transport capacity than neurons. Also, lactate transfer from a single astrocyte to other gap junction-coupled astrocytes exceeds astrocyte-to-neuron lactate shuttling. Astrocytes and neurons have excess capacities for glycolysis, and oxidative metabolism in both cell types rises during sensory stimulation. The energetics of brain activation is quite complex, and the proportion of glucose consumed by astrocytes and neurons, lactate generation by either cell type, and the contributions of both cell types to brain images during brain activation are likely to vary with the stimulus paradigm and activated pathways.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
6
|
Abstract
The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho-physiological tasks within 50 to 200 ms, and perception of conscious experience requires 0.5 to 2 s. Activation of cerebral oxygen consumption starts after at least 100 ms and increases of local blood flow become maximal after about 1 s. Current imaging technologies are unable to detect rapid physiological brain functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking, consciousness and self-consciousness are so fast that their execution depends primarily on fast neurotransmission (in the millisecond range) and action-potentials. In other words: brain functioning requires primarily maximal potential energy. Metabolic brain energy is necessary to restore and maintain the potential energy.
Collapse
Affiliation(s)
- Jakob Korf
- Department of Psychiatry and Graduate School of Behavioural and Cognitive Neurosciences, Groningen University, Groningen, The Netherlands.
| | | |
Collapse
|
7
|
Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 2007; 27:1766-91. [PMID: 17579656 PMCID: PMC2094104 DOI: 10.1038/sj.jcbfm.9600521] [Citation(s) in RCA: 577] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucose is the obligate energetic fuel for the mammalian brain, and most studies of cerebral energy metabolism assume that the majority of cerebral glucose utilization fuels neuronal activity via oxidative metabolism, both in the basal and activated state. Glucose transporter (GLUT) proteins deliver glucose from the circulation to the brain: GLUT1 in the microvascular endothelial cells of the blood-brain barrier (BBB) and glia; GLUT3 in neurons. Lactate, the glycolytic product of glucose metabolism, is transported into and out of neural cells by the monocarboxylate transporters (MCT): MCT1 in the BBB and astrocytes and MCT2 in neurons. The proposal of the astrocyte-neuron lactate shuttle hypothesis suggested that astrocytes play the primary role in cerebral glucose utilization and generate lactate for neuronal energetics, especially during activation. Since the identification of the GLUTs and MCTs in brain, much has been learned about their transport properties, that is capacity and affinity for substrate, which must be considered in any model of cerebral glucose uptake and utilization. Using concentrations and kinetic parameters of GLUT1 and -3 in BBB endothelial cells, astrocytes, and neurons, along with the corresponding kinetic properties of the MCTs, we have successfully modeled brain glucose and lactate levels as well as lactate transients in response to neuronal stimulation. Simulations based on these parameters suggest that glucose readily diffuses through the basal lamina and interstitium to neurons, which are primarily responsible for glucose uptake, metabolism, and the generation of the lactate transients observed on neuronal activation.
Collapse
Affiliation(s)
- Ian A Simpson
- Department of Neural and Behavioral Sciences College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
8
|
Aubert A, Costalat R. Compartmentalization of brain energy metabolism between glia and neurons: insights from mathematical modeling. Glia 2007; 55:1272-1279. [PMID: 17659526 DOI: 10.1002/glia.20360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We review the contribution of mathematical modeling of metabolic pathways to the study of the compartmentalization of brain energy metabolism between neurons and glia. We especially focus on the role of lactate in the relationship between glia and neurons and the possible presence of an astrocyte-neuron lactate shuttle (ANLS). We first discuss models of glucose, pyruvate, and lactate kinetics, which are relevant to neuron-glia interactions. We then review models of compartmentalized energy metabolism, which deal with the concepts of 'red' and 'white' stimulations, and the ANLS hypothesis. We next show the contribution of a study of model robustness to the debate about the potential role of lactate in metabolic interactions between glia and neurons. Finally, we discuss the possible implications of modeling for further experimental studies.
Collapse
Affiliation(s)
- Agnès Aubert
- Département de Physiologie, Université de Lausanne, Lausanne, Switzerland
| | - Robert Costalat
- Laboratoire d'Imagerie Fonctionnelle, Université Pierre et Marie Curie-Paris6, INSERM U678, Paris, France
| |
Collapse
|
9
|
Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ. Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia 2007; 55:1251-1262. [PMID: 17659524 DOI: 10.1002/glia.20528] [Citation(s) in RCA: 579] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate-induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte-neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron-glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte-neuron coupled energetics.
Collapse
Affiliation(s)
- Luc Pellerin
- Département de Physiologie, Université de Lausanne, Switzerland
| | - Anne-Karine Bouzier-Sore
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Agnès Aubert
- Département de Physiologie, Université de Lausanne, Switzerland
| | - Sébastien Serres
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Michel Merle
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Robert Costalat
- INSERM U678, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Pierre J Magistretti
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne and Centre de Neurosciences Psychiatriques, Hôpital de Cery, Prilly, Switzerland
| |
Collapse
|
10
|
Korf J. Is brain lactate metabolized immediately after neuronal activity through the oxidative pathway? J Cereb Blood Flow Metab 2006; 26:1584-6. [PMID: 16639423 DOI: 10.1038/sj.jcbfm.9600321] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jakob Korf
- P6.11 Department of Psychiatry, UMCG, Groningen, The Netherlands
| |
Collapse
|
11
|
Levasseur JE, Alessandri B, Reinert M, Clausen T, Zhou Z, Altememi N, Bullock MR. LACTATE, NOT GLUCOSE, UP-REGULATES MITOCHONDRIAL OXYGEN CONSUMPTION BOTHIN SHAM AND LATERAL FLUID PERCUSSED RAT BRAINS. Neurosurgery 2006; 59:1122-30; discussion 1130-1. [PMID: 17143246 DOI: 10.1227/01.neu.0000245581.00908.af] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Failure of energy metabolism after traumatic brain injury may be a major factor limiting outcome. Although glucose is the primary metabolic substrate in the healthy brain, the well documented surge in tissue lactate after traumatic brain injury suggests that lactate may provide an energy need that cannot be met by glucose. We hypothesized, therefore, that administration of lactate or the combination of lactate and supraphysiological oxygen may improve mitochondrial oxidative respiration in the brain after rat fluid percussion injury. We measured oxygen consumption (VO2) to determine what effects glucose, lactate, oxygen, and the combination of lactate and oxygen have on mitochondrial respiration in both injured and uninjured rat brain tissue. METHODS Anesthetized Sprague-Dawley rats were intubated and ventilated with either 0.21 or 1.0 fraction of inspired oxygen (FIO2). Brain tissue from acute sham animals was subjected in vitro to 1.1 mM, 12 mM and 100 mM concentrations of glucose and L-lactate. In another group, injury (fluid percussion injury of 2.5 +/- 0.02 atmospheres) was induced over the left hemisphere. The VO2 of mug amounts of brain tissues were measured in a microrespirometry system (Cartesian diver). RESULTS The VO2 was found to be independent of glucose concentrations, but dose-dependent for lactate. Moreover, the lactate dependent VO2s were all significantly higher than those generated by glucose. Injured rats on FIO2 0.21 had brain tissue VO2 rates that were significantly lower than those of shams or preinjury levels. In injured rats treated with FIO2 1.0, the reduction in VO2 levels was prevented. Injured rats that received an intravenous infusion of 100 mM lactate had VO2 rates that were significantly higher than those obtained with FIO2 1.0. Combined treatment further boosted the lactate generated VO2 rates by approximately 15%. CONCLUSION Glucose sustains mitochondrial respiration at a low level "fixed" rate because, despite increasing its concentration nearly 100-fold, it cannot up-regulate VO2 after fluid percussion injury. Lactate produces a dose-dependent VO2 response, possibly enabling mitochondria to meet the increased energy needs of the injured brain.
Collapse
Affiliation(s)
- Joseph E Levasseur
- Department of Neurosurgery, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Aubert A, Costalat R, Magistretti PJ, Pellerin L. Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation. Proc Natl Acad Sci U S A 2005; 102:16448-53. [PMID: 16260743 PMCID: PMC1297516 DOI: 10.1073/pnas.0505427102] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A critical issue in brain energy metabolism is whether lactate produced within the brain by astrocytes is taken up and metabolized by neurons upon activation. Although there is ample evidence that neurons can efficiently use lactate as an energy substrate, at least in vitro, few experimental data exist to indicate that it is indeed the case in vivo. To address this question, we used a modeling approach to determine which mechanisms are necessary to explain typical brain lactate kinetics observed upon activation. On the basis of a previously validated model that takes into account the compartmentalization of energy metabolism, we developed a mathematical model of brain lactate kinetics, which was applied to published data describing the changes in extracellular lactate levels upon activation. Results show that the initial dip in the extracellular lactate concentration observed at the onset of stimulation can only be satisfactorily explained by a rapid uptake within an intraparenchymal cellular compartment. In contrast, neither blood flow increase, nor extracellular pH variation can be major causes of the lactate initial dip, whereas tissue lactate diffusion only tends to reduce its amplitude. The kinetic properties of monocarboxylate transporter isoforms strongly suggest that neurons represent the most likely compartment for activation-induced lactate uptake and that neuronal lactate utilization occurring early after activation onset is responsible for the initial dip in brain lactate levels observed in both animals and humans.
Collapse
Affiliation(s)
- Agnès Aubert
- Département de Physiologie, Université de Lausanne, 1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|