1
|
Arcos J, Grunenwald F, Sepulveda D, Jerez C, Urbina V, Huerta T, Troncoso-Escudero P, Tirado D, Perez A, Diaz-Espinoza R, Nova E, Kubitscheck U, Rodriguez-Gatica JE, Hetz C, Toledo J, Ahumada P, Rojas-Rivera D, Martín-Montañez E, Garcia-Fernandez M, Vidal RL. IGF2 prevents dopaminergic neuronal loss and decreases intracellular alpha-synuclein accumulation in Parkinson's disease models. Cell Death Discov 2023; 9:438. [PMID: 38042807 PMCID: PMC10693583 DOI: 10.1038/s41420-023-01734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Parkinson's disease (PD) is the second most common late-onset neurodegenerative disease and the predominant cause of movement problems. PD is characterized by motor control impairment by extensive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). This selective dopaminergic neuronal loss is in part triggered by intracellular protein inclusions called Lewy bodies, which are composed mainly of misfolded alpha-synuclein (α-syn) protein. We previously reported insulin-like growth factor 2 (IGF2) as a key protein downregulated in PD patients. Here we demonstrated that IGF2 treatment or IGF2 overexpression reduced the α-syn aggregates and their toxicity by IGF2 receptor (IGF2R) activation in cellular PD models. Also, we observed IGF2 and its interaction with IGF2R enhance the α-syn secretion. To determine the possible IGF2 neuroprotective effect in vivo we used a gene therapy approach in an idiopathic PD model based on α-syn preformed fibrils intracerebral injection. IGF2 gene therapy revealed a significantly preventing of motor impairment in idiopathic PD model. Moreover, IGF2 expression prevents dopaminergic neuronal loss in the SN together with a decrease in α-syn accumulation (phospho-α-syn levels) in the striatum and SN brain region. Furthermore, the IGF2 neuroprotective effect was associated with the prevention of synaptic spines loss in dopaminergic neurons in vivo. The possible mechanism of IGF2 in cell survival effect could be associated with the decrease of the intracellular accumulation of α-syn and the improvement of dopaminergic synaptic function. Our results identify to IGF2 as a relevant factor for the prevention of α-syn toxicity in both in vitro and preclinical PD models.
Collapse
Affiliation(s)
- Javiera Arcos
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Felipe Grunenwald
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Denisse Sepulveda
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Carolina Jerez
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Valentina Urbina
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Tomas Huerta
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Paulina Troncoso-Escudero
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Molecular Diagnostic and Biomarkers Laboratory, Department of Pathology, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Daniel Tirado
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Escuela de Tecnología Médica, Universidad Mayor, Santiago, Chile
| | - Angela Perez
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Escuela de Tecnología Médica, Universidad Mayor, Santiago, Chile
| | - Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Esteban Nova
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Jorge Toledo
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
| | - Pablo Ahumada
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Diego Rojas-Rivera
- Escuela de Tecnología Médica, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Universidad Mayor, Santiago, Chile
- Center for Biomedicine, Universidad Mayor, Santiago, Chile
| | - Elisa Martín-Montañez
- Department of Pharmacology, Faculty of Medicine, Biomedical Research Institute of Malaga, University of Malaga, Malaga, Spain
| | - María Garcia-Fernandez
- Department of Human Physiology, Faculty of Medicine, Biomedical Research Institute of Malaga, University of Malaga, Malaga, Spain
| | - René L Vidal
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile.
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
- Escuela de Tecnología Médica, Universidad Mayor, Santiago, Chile.
- Escuela de Biotecnología, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
2
|
Silva-Reis SC, Sampaio-Dias IE, Costa VM, Correia XC, Costa-Almeida HF, García-Mera X, Rodríguez-Borges JE. Concise Overview of Glypromate Neuropeptide Research: From Chemistry to Pharmacological Applications in Neurosciences. ACS Chem Neurosci 2023; 14:554-572. [PMID: 36735764 PMCID: PMC9936549 DOI: 10.1021/acschemneuro.2c00675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative diseases of the central nervous system (CNS) pose a serious health concern worldwide, with a particular incidence in developed countries as a result of life expectancy increase and the absence of restorative treatments. Presently, treatments for these neurological conditions are focused on managing the symptoms and/or slowing down their progression. As so, the research on novel neuroprotective drugs is of high interest. Glypromate (glycyl-l-prolyl-l-glutamic acid, also known as GPE), an endogenous small peptide widespread in the brain, holds great promise to tackle neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's, s well as other CNS-related disorders like Rett and Down's syndromes. However, the limited pharmacokinetic properties of Glypromate hinder its clinical application. As such, intense research has been devoted to leveraging the pharmacokinetic profile of this neuropeptide. This review aims to offer an updated perspective on Glypromate research by exploring the vast array of chemical derivatizations of more than 100 analogs described in the literature over the past two decades. The collection and discussion of the most relevant structure-activity relationships will hopefully guide the discovery of new Glypromate-based neuroprotective drugs.
Collapse
Affiliation(s)
- Sara C. Silva-Reis
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal,UCIBIO/REQUIMTE,
Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ivo E. Sampaio-Dias
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal,
| | - Vera M. Costa
- UCIBIO/REQUIMTE,
Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal,Associate
Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Xavier Cruz Correia
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
| | - Hugo F. Costa-Almeida
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
| | - Xerardo García-Mera
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Arjunan A, Sah DK, Woo M, Song J. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci 2023; 13:16. [PMID: 36691085 PMCID: PMC9872444 DOI: 10.1186/s13578-023-00966-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Neurodegenerative disorders are accompanied by neuronal degeneration and glial dysfunction, resulting in cognitive, psychomotor, and behavioral impairment. Multiple factors including genetic, environmental, metabolic, and oxidant overload contribute to disease progression. Recent evidences suggest that metabolic syndrome is linked to various neurodegenerative diseases. Metabolic syndrome (MetS) is known to be accompanied by symptoms such as hyperglycemia, abdominal obesity, hypertriglyceridemia, and hypertension. Despite advances in knowledge about the pathogenesis of neurodegenerative disorders, effective treatments to combat neurodegenerative disorders caused by MetS have not been developed to date. Insulin growth factor-1 (IGF-1) deficiency has been associated with MetS-related pathologies both in-vivo and in-vitro. IGF-1 is essential for embryonic and adult neurogenesis, neuronal plasticity, neurotropism, angiogenesis, metabolic function, and protein clearance in the brain. Here, we review the evidence for the potential therapeutic effects of IGF-1 in the neurodegeneration related to metabolic syndrome. We elucidate how IGF-1 may be involved in molecular signaling defects that occurs in MetS-related neurodegenerative disorders and highlight the importance of IGF-1 as a potential therapeutic target in MetS-related neurological diseases.
Collapse
Affiliation(s)
- Archana Arjunan
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea
| | - Dhiraj Kumar Sah
- grid.14005.300000 0001 0356 9399Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| | - Minna Woo
- grid.17063.330000 0001 2157 2938Division of Endocrinology and Metabolism, University Health Network and and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON Canada
| | - Juhyun Song
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| |
Collapse
|
4
|
Insulin-like growth factor 2 and autophagy gene expression alteration arise as potential biomarkers in Parkinson's disease. Sci Rep 2022; 12:2038. [PMID: 35132125 PMCID: PMC8821705 DOI: 10.1038/s41598-022-05941-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) and autophagy-related genes have been proposed as biomolecules of interest related to idiopathic Parkinson’s disease (PD). The objective of this study was to determine the IGF2 and IGF1 levels in plasma and peripheral blood mononuclear cells (PBMCs) from patients with moderately advanced PD and explore the potential correlation with autophagy-related genes in the same blood samples. IGF1 and IGF2 levels in patients' plasma were measured by ELISA, and the IGF2 expression levels were determined by real-time PCR and Western blot in PBMCs. The expression of autophagy-related genes was evaluated by real-time PCR. The results show a significant decrease in IGF2 plasma levels in PD patients compared with a healthy control group. We also report a dramatic decrease in IGF2 mRNA and protein levels in PBMCs from PD patients. In addition, we observed a downregulation of key components of the initial stages of the autophagy process. Although IGF2 levels were not directly correlated with disease severity, we found a correlation between its levels and autophagy gene profile expression in a sex-dependent pattern from the same samples. To further explore this correlation, we treated mice macrophages cell culture with α-synuclein and IGF2. While α-synuclein treatment decreased levels Atg5, IGF2 treatment reverted these effects, increasing Atg5 and Beclin1 levels. Our results suggest a relationship between IGF2 levels and the autophagy process in PD and their potential application as multi-biomarkers to determine PD patients' stages of the disease.
Collapse
|
5
|
Bassil F, Delamarre A, Canron MH, Dutheil N, Vital A, Négrier-Leibreich ML, Bezard E, Fernagut PO, Meissner WG. Impaired brain insulin signalling in Parkinson's disease. Neuropathol Appl Neurobiol 2021; 48:e12760. [PMID: 34405431 DOI: 10.1111/nan.12760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/27/2022]
Abstract
AIMS Brain insulin resistance (i.e., decreased insulin/insulin-like growth factor-1 [IGF-1] signalling) may play a role in the pathophysiology of Parkinson's disease (PD), and several anti-diabetic drugs have entred clinical development to evaluate their potential disease-modifying properties in PD. A measure of insulin resistance is the amount of the downstream messenger insulin receptor substrate-1 that is phosphorylated at serine residues 312 (IRS-1pS312) or 616 (IRS-1pS616). We assessed IRS-1pS312 and IRS-1pS616 expression in post-mortem brain tissue of PD patients and a preclinical rat model based on viral-mediated expression of A53T mutated human α-synuclein (AAV2/9-h-α-synA53T). METHODS IRS-1pS312 and IRS-1pS616 staining intensity were determined by immunofluorescence in both neurons and glial cells in the substantia nigra pars compacta (SNc) and putamen of PD patients and controls without known brain disease. We further explored a possible relation between α-synuclein aggregates and brain insulin resistance in PD patients. Both insulin resistance markers were also measured in the SNc and striatum of AAV2/9-h-α-synA53T rats. RESULTS We found higher IRS-1pS312 staining intensity in nigral dopaminergic neurons and a trend for higher IRS-1pS312 staining intensity in putaminal neurons of PD patients. We observed no differences for IRS-1pS616 staining intensity in neurons or IRS-1pS312 staining intensity in glial cells. IRS-1pS312 showed high co-localisation within the core of nigral Lewy bodies. Like PD patients, AAV2/9-h-α-synA53T rats showed higher IRS-1pS312 staining intensity in the SNc and striatum than controls, whereas IRS-1pS616 was not different between groups. CONCLUSIONS Our results provide evidence for brain insulin resistance in PD and support the rationale for repurposing anti-diabetic drugs for PD treatment.
Collapse
Affiliation(s)
- Fares Bassil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Anna Delamarre
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Marie-Hélène Canron
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Nathalie Dutheil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Anne Vital
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Service d'Anatomie Pathologique, CHU de Bordeaux, Bordeaux, France
| | - Marie-Laure Négrier-Leibreich
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Service d'Anatomie Pathologique, CHU de Bordeaux, Bordeaux, France
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Université de Poitiers, INSERM UMR 1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Wassilios G Meissner
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Service de Neurologie - Maladies Neurodégénératives, CHU de Bordeaux, Bordeaux, France.,Department of Medicine, University of Otago, Christchurch, New Zealand.,New Zealand Brain Research Institute, Christchurch, New Zealand
| |
Collapse
|
6
|
Shandilya A, Mehan S. Dysregulation of IGF-1/GLP-1 signaling in the progression of ALS: potential target activators and influences on neurological dysfunctions. Neurol Sci 2021; 42:3145-3166. [PMID: 34018075 DOI: 10.1007/s10072-021-05328-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022]
Abstract
The prominent causes for motor neuron diseases like ALS are demyelination, immune dysregulation, and neuroinflammation. Numerous research studies indicate that the downregulation of IGF-1 and GLP-1 signaling pathways plays a significant role in the progression of ALS pathogenesis and other neurological disorders. In the current review, we discussed the dysregulation of IGF-1/GLP-1 signaling in neurodegenerative manifestations of ALS like a genetic anomaly, oligodendrocyte degradation, demyelination, glial overactivation, immune deregulation, and neuroexcitation. In addition, the current review reveals the IGF-1 and GLP-1 activators based on the premise that the restoration of abnormal IGF-1/GLP-1 signaling could result in neuroprotection and neurotrophic effects for the clinical-pathological presentation of ALS and other brain diseases. Thus, the potential benefits of IGF-1/GLP-1 signal upregulation in the development of disease-modifying therapeutic strategies may prevent ALS and associated neurocomplications.
Collapse
Affiliation(s)
- Ambika Shandilya
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
7
|
Sharma T, Kaur D, Grewal AK, Singh TG. Therapies modulating insulin resistance in Parkinson's disease: A cross talk. Neurosci Lett 2021; 749:135754. [PMID: 33610666 DOI: 10.1016/j.neulet.2021.135754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder linked with aging and primarily involves dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc). The deregulation of genes associated with T2D has been demonstrated by proteomic research on Parkinson's symptoms patients. Various common pathways likely to link neurodegenerative mechanisms of PD include abnormal mitochondrial function, inflammation, apoptosis/autophagy and insulin signalling/glucose metabolism in T2DM. Several pathway components including phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt), glycogen synthase kinase-3 beta (GSK-3β) and nuclear factor kappa B (NF-κB) impairment is observed in PD. Numerous novel targets are being pursued in preclinical and clinical trials that target metabolic dysfunction in PD; that elevate insulin signaling pathways in dopaminergic neurons, and show improvement in motor and cognitive measures and produce significant neuroprotective effects in PD patients.
Collapse
Affiliation(s)
- Tanya Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Darshpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | |
Collapse
|
8
|
Troncoso-Escudero P, Sepulveda D, Pérez-Arancibia R, Parra AV, Arcos J, Grunenwald F, Vidal RL. On the Right Track to Treat Movement Disorders: Promising Therapeutic Approaches for Parkinson's and Huntington's Disease. Front Aging Neurosci 2020; 12:571185. [PMID: 33101007 PMCID: PMC7497570 DOI: 10.3389/fnagi.2020.571185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Movement disorders are neurological conditions in which patients manifest a diverse range of movement impairments. Distinct structures within the basal ganglia of the brain, an area involved in movement regulation, are differentially affected for every disease. Among the most studied movement disorder conditions are Parkinson's (PD) and Huntington's disease (HD), in which the deregulation of the movement circuitry due to the loss of specific neuronal populations in basal ganglia is the underlying cause of motor symptoms. These symptoms are due to the loss principally of dopaminergic neurons of the substantia nigra (SN) par compacta and the GABAergic neurons of the striatum in PD and HD, respectively. Although these diseases were described in the 19th century, no effective treatment can slow down, reverse, or stop disease progression. Available pharmacological therapies have been focused on preventing or alleviating motor symptoms to improve the quality of life of patients, but these drugs are not able to mitigate the progressive neurodegeneration. Currently, considerable therapeutic advances have been achieved seeking a more efficacious and durable therapeutic effect. Here, we will focus on the new advances of several therapeutic approaches for PD and HD, starting with the available pharmacological treatments to alleviate the motor symptoms in both diseases. Then, we describe therapeutic strategies that aim to restore specific neuronal populations or their activity. Among the discussed strategies, the use of Neurotrophic factors (NTFs) and genetic approaches to prevent the neuronal loss in these diseases will be described. We will highlight strategies that have been evaluated in both Parkinson's and Huntington's patients, and also the ones with strong preclinical evidence. These current therapeutic techniques represent the most promising tools for the safe treatment of both diseases, specifically those aimed to avoid neuronal loss during disease progression.
Collapse
Affiliation(s)
- Paulina Troncoso-Escudero
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Denisse Sepulveda
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Rodrigo Pérez-Arancibia
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Alejandra V. Parra
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Javiera Arcos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Felipe Grunenwald
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Rene L. Vidal
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| |
Collapse
|
9
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
10
|
Ghazi Sherbaf F, Mohajer B, Ashraf-Ganjouei A, Mojtahed Zadeh M, Javinani A, Sanjari Moghaddam H, Shirin Shandiz M, Aarabi MH. Serum Insulin-Like Growth Factor-1 in Parkinson's Disease; Study of Cerebrospinal Fluid Biomarkers and White Matter Microstructure. Front Endocrinol (Lausanne) 2018; 9:608. [PMID: 30450079 PMCID: PMC6224341 DOI: 10.3389/fendo.2018.00608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/24/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Growing evidence shows that impaired signaling of Insulin-like Growth Factor-1 (IGF-1) is associated with neurodegenerative disorders, such as Parkinson's disease (PD). However, there is still controversy regarding its proinflammatory or neuroprotective function. In an attempt to elucidate the contribution of IGF-1 in PD, we aimed to discover the relation between serum IGF-1 levels in drug-naïve early PD patients and cerebrospinal fluid (CSF) biomarkers as well as microstructural changes in brain white matter. Methods: The association between quartiles of serum IGF-1 levels and CSF biomarkers (α-synuclein, dopamine, amyloid-β1-42, total tau, and phosphorylated tau) was investigated using adjusted regression models in 404 drug-naïve early PD patients with only mild motor manifestations and 188 age- and sex-matched healthy controls (HC) enrolled in the Parkinson's Progression Markers Initiative (PPMI). By using region of interest analysis and connectometry approach, we tracked the white matter microstructural integrity and diffusivity patterns in a subgroup of study participants with available diffusion MRI data to investigate the association between subcomponents of neural pathways with serum IGF-1 levels. Results: PD patients had higher levels of IGF-1 compared to HC, although not statistically significant (mean difference: 3.60, P = 0.44). However, after adjustment for possible confounders and correction for False Discovery Rate (FDR), IGF-1 was negatively correlated with CSF α-synuclein, total and phosphorylated tau levels only in PD subjects. The imaging analysis proved a significant negative correlation (FDR corrected P-value = 0.013) between continuous levels of serum IGF-1 in patients with PD and the connectivity, but not integrity, in following fibers while controlling for age, sex, body mass index, depressive symptoms, education years, cognitive status and disease duration: middle cerebellar peduncle, cingulum, genu and splenium of the corpus callosum. No significant association was found between brain white matter microstructral measures or CSF markers of healthy controls and levels of IGF-1. Conclusion: Altered connectivity in specific white matter structures, mainly involved in cognitive and motor deterioration, in association with higher serum IGF-1 levels might propose IGF-1 as a potential associate of worse outcome in response to higher burden of α-synucleinopathy and tauopathy in PD.
Collapse
Affiliation(s)
| | - Bahram Mohajer
- Non-communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ali Javinani
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Shirin Shandiz
- Department of Medical Physics, Zahedan University of Medical Sciences, Zahedan, Iran
- *Correspondence: Mehdi Shirin Shandiz
| | - Mohammad Hadi Aarabi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Mohammad Hadi Aarabi
| |
Collapse
|
11
|
Xiao Y, Cen L, Mo M, Chen X, Huang S, Wei L, Li S, Yang X, Qu S, Pei Z, Xu P. Association of IGF1 gene polymorphism with Parkinson's disease in a Han Chinese population. J Gene Med 2017; 19. [PMID: 28221705 DOI: 10.1002/jgm.2949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/09/2017] [Accepted: 02/18/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that insulin-like growth factor 1 (IGF1) plays an important role in Parkinson's disease (PD) pathogenesis. However, it is not clear whether IGF1 polymorphism contributes to PD risk. METHODS We performed a case-control study in a Han Chinese population that included 512 sporadic PD cases and 535 matched controls. All participants were genotyped for rs972936 using the Sequenom MassARRAY iPLEX platform. Serum IGF1 levels of 61 de novo, drug-naïve PD patients and 55 age- and sex-matched controls were also measured using an enzyme-linked immunosorbent assay. RESULTS Genotype frequency of rs972936-CC was significantly associated with an increased PD risk (p = 0.009), especially in males (p = 0.024) and late-onset patients (p = 0.013). Serum IGF1 levels were significantly increased in de novo, drug-naïve PD patients compared to controls (p = 0.036), although they were not correlated with motor dysfunction in PD patients (p = 0.220). CONCLUSIONS The present study shows that rs972936 polymorphism may increase susceptibility to PD, especially in males and late-onset patients. Furthermore, high serum IGF1 levels may be a potential diagnostic biomarker for PD in the Han Chinese population, although they do not correlate with a more severe motor dysfunction.
Collapse
Affiliation(s)
- Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Luan Cen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuxuan Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinling Yang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shaogang Qu
- Department of Blood Transfusion, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Bryan MR, Bowman AB. Manganese and the Insulin-IGF Signaling Network in Huntington's Disease and Other Neurodegenerative Disorders. ADVANCES IN NEUROBIOLOGY 2017; 18:113-142. [PMID: 28889265 PMCID: PMC6559248 DOI: 10.1007/978-3-319-60189-2_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease resulting in motor impairment and death in patients. Recently, several studies have demonstrated insulin or insulin-like growth factor (IGF) treatment in models of HD, resulting in potent amelioration of HD phenotypes via modulation of the PI3K/AKT/mTOR pathways. Administration of IGF and insulin can rescue microtubule transport, metabolic function, and autophagy defects, resulting in clearance of Huntingtin (HTT) aggregates, restoration of mitochondrial function, amelioration of motor abnormalities, and enhanced survival. Manganese (Mn) is an essential metal to all biological systems but, in excess, can be toxic. Interestingly, several studies have revealed the insulin-mimetic effects of Mn-demonstrating Mn can activate several of the same metabolic kinases and increase peripheral and neuronal insulin and IGF-1 levels in rodent models. Separate studies have shown mouse and human striatal neuroprogenitor cell (NPC) models exhibit a deficit in cellular Mn uptake, indicative of a Mn deficiency. Furthermore, evidence from the literature reveals a striking overlap between cellular consequences of Mn deficiency (i.e., impaired function of Mn-dependent enzymes) and known HD endophenotypes including excitotoxicity, increased reactive oxygen species (ROS) accumulation, and decreased mitochondrial function. Here we review published evidence supporting a hypothesis that (1) the potent effect of IGF or insulin treatment on HD models, (2) the insulin-mimetic effects of Mn, and (3) the newly discovered Mn-dependent perturbations in HD may all be functionally related. Together, this review will present the intriguing possibility that intricate regulatory cross-talk exists between Mn biology and/or toxicology and the insulin/IGF signaling pathways which may be deeply connected to HD pathology and, perhaps, other neurodegenerative diseases (NDDs) and other neuropathological conditions.
Collapse
Affiliation(s)
- Miles R Bryan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
13
|
Athauda D, Foltynie T. Insulin resistance and Parkinson's disease: A new target for disease modification? Prog Neurobiol 2016; 145-146:98-120. [PMID: 27713036 DOI: 10.1016/j.pneurobio.2016.10.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
There is growing evidence that patients with Type 2 diabetes have an increased risk of developing Parkinson's disease and share similar dysregulated pathways suggesting common underlying pathological mechanisms. Historically insulin was thought solely to be a peripherally acting hormone responsible for glucose homeostasis and energy metabolism. However accumulating evidence indicates insulin can cross the blood-brain-barrier and influence a multitude of processes in the brain including regulating neuronal survival and growth, dopaminergic transmission, maintenance of synapses and pathways involved in cognition. In conjunction, there is growing evidence that a process analogous to peripheral insulin resistance occurs in the brains of Parkinson's disease patients, even in those without diabetes. This raises the possibility that defective insulin signalling pathways may contribute to the development of the pathological features of Parkinson's disease, and thereby suggests that the insulin signalling pathway may potentially be a novel target for disease modification. Given these growing links between PD and Type 2 diabetes it is perhaps not unsurprising that drugs used the treatment of T2DM are amongst the most promising treatments currently being prioritised for repositioning as possible novel treatments for PD and several clinical trials are under way. In this review, we will examine the underlying cellular links between insulin resistance and the pathogenesis of PD and then we will assess current and future pharmacological strategies being developed to restore neuronal insulin signalling as a potential strategy for slowing neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- D Athauda
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| | - T Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
14
|
Procaccini C, Santopaolo M, Faicchia D, Colamatteo A, Formisano L, de Candia P, Galgani M, De Rosa V, Matarese G. Role of metabolism in neurodegenerative disorders. Metabolism 2016; 65:1376-90. [PMID: 27506744 DOI: 10.1016/j.metabol.2016.05.018] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 01/12/2023]
Abstract
Along with the increase in life expectancy over the last century, the prevalence of age-related disorders, such as neurodegenerative diseases continues to rise. This is the case of Alzheimer's, Parkinson's, Huntington's diseases and Multiple sclerosis, which are chronic disorders characterized by neuronal loss in motor, sensory or cognitive systems. Accumulating evidence has suggested the presence of a strong correlation between metabolic changes and neurodegeneration. Indeed epidemiologic studies have shown strong associations between obesity, metabolic dysfunction, and neurodegeneration, while animal models have provided insights into the complex relationships between these conditions. In this context, hormones such as leptin, ghrelin, insulin and IGF-1 seem to play a key role in the regulation of neuronal damage, toxic insults and several other neurodegenerative processes. This review aims to presenting the most recent evidence supporting the crosstalk linking energy metabolism and neurodegeneration, and will focus on metabolic manipulation as a possible therapeutic tool in the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy
| | - Marianna Santopaolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy
| | - Deriggio Faicchia
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", 80131, Napoli, Italy
| | - Alessandra Colamatteo
- Unità di NeuroImmunologia, IRCCS Fondazione Santa Lucia, 00143, Roma, Italy; Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno, Baronissi Campus, 84081, Baronissi, Salerno, Italy
| | - Luigi Formisano
- Divisione di Farmacologia, Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, 82100, Benevento, Italy
| | | | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy; Unità di NeuroImmunologia, IRCCS Fondazione Santa Lucia, 00143, Roma, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy.
| |
Collapse
|
15
|
Garcia-Huerta P, Troncoso-Escudero P, Jerez C, Hetz C, Vidal RL. The intersection between growth factors, autophagy and ER stress: A new target to treat neurodegenerative diseases? Brain Res 2016; 1649:173-180. [PMID: 26993573 DOI: 10.1016/j.brainres.2016.02.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/25/2016] [Accepted: 02/10/2016] [Indexed: 01/01/2023]
Abstract
One of the salient features of most neurodegenerative diseases is the aggregation of specific proteins in the brain. This proteostasis imbalance is proposed as a key event triggering the neurodegenerative cascade. The unfolded protein response (UPR) and autophagy pathways are emerging as critical processes implicated in handling disease-related misfolded proteins. However, in some conditions, perturbations in the buffering capacity of the proteostasis network may be part of the etiology of the disease. Thus, pharmacological or gene therapy strategies to enhance autophagy or UPR responses are becoming an attractive target for disease intervention. Here, we discuss current evidence depicting the complex involvement of autophagy and ER stress in brain diseases. Novel pathways to modulate protein misfolding are discussed including the relation between aging and growth factor signaling. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
- Paula Garcia-Huerta
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Chile
| | - Paulina Troncoso-Escudero
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Chile
| | - Carolina Jerez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Neurounion Biomedical Foundation, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA.
| | - Rene L Vidal
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Neurounion Biomedical Foundation, Santiago, Chile.
| |
Collapse
|
16
|
Ayadi AE, Zigmond MJ, Smith AD. IGF-1 protects dopamine neurons against oxidative stress: association with changes in phosphokinases. Exp Brain Res 2016; 234:1863-1873. [PMID: 26894890 DOI: 10.1007/s00221-016-4572-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/22/2016] [Indexed: 11/25/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) is an endogenous peptide transported across the blood brain barrier that is protective in several brain injury models, including an acute animal model of Parkinson's disease (PD). Motor deficits in PD are due largely to the progressive loss of nigrostriatal dopaminergic neurons. Thus, we examined the neuroprotective potential of IGF-1 in a progressive model of dopamine deficiency in which 6-hydroxydopamine (6-OHDA) is infused into the striatum. Rats received intrastriatal IGF-1 (5 or 50 µg) 6 h prior to infusion of 4 µg 6-OHDA into the same site and were euthanized 1 or 4 weeks later. Both concentrations of IGF-1 protected tyrosine hydroxylase (TH) immunoreactive terminals in striatum at 4 weeks but not at 1 week, indicating that IGF-induced restoration of the dopaminergic phenotype occurred over several weeks. TH-immunoreactive cell loss was only attenuated with 50 µg IGF-1. We then examined the effect of striatal IGF-1 on the Ras/ERK1/2 and PI3K/Akt pathways to ascertain whether their activation correlated with IGF-1-induced protection. Striatal and nigral levels of phospho-ERK1/2 were maximal 6 h after IGF-1 infusion and, with the exception of an increase in nigral pERK2 at 48 h, returned to basal levels by 7 days. Phospho-Akt (Ser473) was elevated 6-24 h post-IGF-1 infusion in both striatum and substantia nigra concomitant with inhibition of pro-death GSK-3β, a downstream target of Akt. These results suggest that IGF-1 can protect the nigrostriatal pathway in a progressive PD model and that this protection is preceded by activation of key pro-survival signaling cascades.
Collapse
Affiliation(s)
- Amina El Ayadi
- Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh, 3501 Fifth Avenue, 7026 Biomedical Science Tower 3, Pittsburgh, PA, 15261, USA
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Michael J Zigmond
- Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh, 3501 Fifth Avenue, 7026 Biomedical Science Tower 3, Pittsburgh, PA, 15261, USA
| | - Amanda D Smith
- Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh, 3501 Fifth Avenue, 7026 Biomedical Science Tower 3, Pittsburgh, PA, 15261, USA.
- VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Li DH, He YC, Quinn TJ, Liu J. Serum Insulin-Like Growth Factor-1 in Patients with De Novo, Drug Naïve Parkinson's Disease: A Meta-Analysis. PLoS One 2015; 10:e0144755. [PMID: 26657015 PMCID: PMC4684362 DOI: 10.1371/journal.pone.0144755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 11/23/2015] [Indexed: 01/11/2023] Open
Abstract
Objective Insulin-like growth factor-1 (IGF-1) is reported to be neuroprotective in the setting of Parkinson’s disease (PD), and there is increasing interest in the possible association of serum IGF-1 levels with PD patients, but with conflicting results. Therefore, we conducted a meta-analysis to evaluate the association of serum IGF-1 levels in de novo, drug naïve PD patients compared with healthy controls. Methods Pubmed, ISI Web of Science, OVID, EMBASE, and Cochrane library databases from 1966 to October 2014 were utilized to identify candidate studies using Medical Subjective Headings without language restriction. A random-effects model was chosen, with subgroup analysis and sensitivity analysis conducted to reveal underlying heterogeneity among the included studies. Results In this meta-analysis, we found that PD patients had higher serum IGF-1 levels compared with healthy controls (summary mean difference [MD] = 17.75, 95%CI = 6.01, 29.48). Subgroup analysis demonstrated that the source of heterogeneity was population differences within the total group. Sensitivity analysis showed that the combined MD was consistent at any time omitting any one study. Conclusions The results of this meta-analysis demonstrate that serum IGF-1 levels were significantly higher in de novo, drug-naïve PD patients compared with healthy controls. Nevertheless, additional endeavors are required to further explore the association between serum IGF-1 levels and diagnosis, prognosis and early therapy for PD.
Collapse
Affiliation(s)
- Dun-Hui Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ya-Chao He
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Thomas J. Quinn
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan, 48073, United States of America
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- * E-mail:
| |
Collapse
|
18
|
Guan J, Harris P, Brimble M, Lei Y, Lu J, Yang Y, Gunn AJ. The role for IGF-1-derived small neuropeptides as a therapeutic target for neurological disorders. Expert Opin Ther Targets 2015; 19:785-93. [PMID: 25652713 DOI: 10.1517/14728222.2015.1010514] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Exogenous IGF-1 protects the brain from ischemic injury and improves function. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake and mitogenic potential. AREAS COVERED In this review, the authors have discussed the efficacy, pharmacokinetics and mechanisms of IGF-1 derivatives on protecting acute brain injury, preventing memory impairment and improving recovery from neurological degenerative conditions evaluated in various animal models. We have included natural metabolites of IGF-1, glycine-proline-glutamate (GPE), cleaved from N-terminal IGF-1 and cyclic glycine-proline (cGP) as well as the structural analogues of GPE and cGP, glycine-2-methyl-proline-glutamate and cyclo-l-glycyl-l-2-allylproline, respectively. In addition, the regulatory role for cGP in bioavailability of IGF-1 has also been discussed. EXPERT OPINION These small neuropeptides provide effective neuroprotection by offering an improved pharmacokinetic profile and more practical route of administration compared with IGF-1 administration. Developing modified neuropeptides to overcome the limitations of their endogenous counterparts represents a novel strategy of pharmaceutical discovery for neurological disorders. The mechanism of action may involve a regulation of IGF-1 bioavailability.
Collapse
Affiliation(s)
- Jian Guan
- University of Auckland, Liggins Institute , Private Bag 92019, Auckland , New Zealand +64 93 737 599 ext. 86134 ; +64 93 082 385 ;
| | | | | | | | | | | | | |
Collapse
|
19
|
Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 2014; 118:1-18. [PMID: 24582776 DOI: 10.1016/j.pneurobio.2014.02.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/09/2014] [Accepted: 02/20/2014] [Indexed: 12/13/2022]
Abstract
Insulin and Insulin Growth Factor-1 (IGF-1) play a major role in body homeostasis and glucose regulation. They also have paracrine/autocrine functions in the brain. The Insulin/IGF-1 signaling pathway contributes to the control of neuronal excitability, nerve cell metabolism and cell survival. Glucagon like peptide-1 (GLP-1), known as an insulinotropic hormone has similar functions and growth like properties as insulin/IGF-1. Growing evidence suggests that dysfunction of these pathways contribute to the progressive loss of neurons in Alzheimer's disease (AD) and Parkinson's disease (PD), the two most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting insulin/IGF-1 and GLP-1 signaling with currently available anti-diabetics. These studies have shown that administration of insulin, IGF-1 and GLP-1 agonists reverses signaling abnormalities and has positive effects on surrogate markers of neurodegeneration and behavioral outcomes. Several proof-of-concept studies are underway that attempt to translate the encouraging preclinical results to patients suffering from AD and PD. In the first part of this review, we discuss physiological functions of insulin/IGF-1 and GLP-1 signaling pathways including downstream targets and receptors distribution within the brain. In the second part, we undertake a comprehensive overview of preclinical studies targeting insulin/IGF-1 or GLP-1 signaling for treating AD and PD. We then detail the design of clinical trials that have used anti-diabetics for treating AD and PD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into treatments for patients with AD and PD.
Collapse
|
20
|
Maternal exposure to bisphenol A may increase the risks of Parkinson's disease through down-regulation of fetal IGF-1 expression. Med Hypotheses 2013; 82:245-9. [PMID: 24468574 DOI: 10.1016/j.mehy.2013.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/30/2013] [Accepted: 10/20/2013] [Indexed: 12/28/2022]
Abstract
So far, the pathogenesis of Parkinson's disease (PD) remains unclear. Current studies implicate environmental toxins may be potential causes of fetal origin of PD. BPA is a member of the family of estrogenic chemicals existing widely in environment. Significant evidences from animal experimentation have demonstrated that BPA interfere with fetal neurodevelopment. Based on previous reports and our research on EB derived from hESCs, we speculate that maternal exposure to low-dose BPA during gestational period may decrease IGF-1 expression, thus hinder the development of fetal DA neurons, and finally increase the risks of fetal origin of PD. Our hypothesis may shed new light on the pathogenesis of PD and lead to potential preventive treatments.
Collapse
|
21
|
Minelli A, Conte C, Cacciatore I, Cornacchia C, Pinnen F. Molecular mechanism underlying the cerebral effect of Gly-Pro-Glu tripeptide bound to L-dopa in a Parkinson's animal model. Amino Acids 2012; 43:1359-67. [PMID: 22218995 DOI: 10.1007/s00726-011-1210-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/22/2011] [Indexed: 12/30/2022]
Abstract
Oxidative stress is a critical contributing factor to neurodegenerative disorders. Therefore, the inhibition of ROS formation, responsible for chronic detrimental neuroinflammation, is an important strategy for preventing the neurodegenerative disease and for neuroprotective therapy. Gly-Pro-Glu (GPE) is the N-terminal tripeptide of insulin-like growth factor-I, which is naturally cleaved in the plasma and brain tissues. GPE has neuroprotective effects since it crosses the blood-CSF and the functional CSF-brain barriers and binds to glial cells. It has been shown that GPE improves motor behaviour in rats after 6-OHDA lesion, although it does not rescue dopaminergic neurons. Thus, we hypothesized that the GPE therapeutic efficacy in a Parkinson model might be improved by combining GPE to L: -dopa. Here, we used an animal model that represents a progressive chronic Parkinson's disease (PD) model, characterized by high levels of oxidative stress and inflammation. We showed that the co-drug, in which L: -dopa is covalently linked to the GPE tripeptide, by down-regulating the expression of inflammatory genes, decreases the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced inflammatory response and, by up-regulating tyrosine hydroxylase, reduces MPTP-induced neurotoxicity. Furthermore, by determining the nuclear translocation/activation of Nrf2 and NF-κB, we showed that systemic administration of the co-drug activates Nrf2-induced antioxidant response while suppressing NF-κB inflammatory pathway. Data suggest that the binding of L: -dopa to GPE tripeptide might represent a promising strategy to supply L: -dopa to parkinsonian patients.
Collapse
Affiliation(s)
- Alba Minelli
- Dipartimento Medicina Sperimentale Scienze Biochimiche, Sezione Biochimica Cellulare, Università di Perugia, Via del Giochetto, Perugia, Italy.
| | | | | | | | | |
Collapse
|
22
|
Gao QG, Xie JX, Wong MS, Chen WF. IGF-I receptor signaling pathway is involved in the neuroprotective effect of genistein in the neuroblastoma SK-N-SH cells. Eur J Pharmacol 2011; 677:39-46. [PMID: 22227334 DOI: 10.1016/j.ejphar.2011.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 12/11/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Genistein, an isoflavone naturally found in soy products, displays estrogenic properties. Our previous study clearly demonstrated that genistein can activate the insulin-like growth factor-I receptor (IGF-IR) signaling pathway in human breast cancer MCF-7 cells. The present study aims to test the hypothesis that the IGF-I receptor signaling pathway is involved in the neuroprotective effects of genistein in neuroblastoma SK-N-SH cells. Our results revealed that pretreatment with genistein resulted in an enhancement in the survival of human neuroblastoma SK-N-SH cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. 6-OHDA arrested the cells at G(0)G(1) phase and prevented S phase entry. Genistein pretreatment could reverse the cytostatic effect of 6-OHDA on cell cycle. The decreased mitochondrial membrane potential induced by 6-OHDA could be also reversed by genistein pretreatment. These effects could be completely blocked by co-treatment with JB-1, which is the specific antagonist of the IGF-I receptor. Furthermore, genistein pretreatment restored the 6-OHDA-induced up-regulation of Bax and down-regulation of Bcl-2 mRNA and protein expression. Genistein treatment alone could significantly increase the phosphorylation level of MEK and induce ERE luciferase activity. Co-treatment with IGF-I could enhance the effect of genistein on cell proliferation and MEK phosphorylation. This study provides the first evidence that genistein has neuroprotective effects against 6-OHDA-induced neurotoxicity in SK-N-SH cells and activation of the IGF-I receptor signaling pathway might be involved in actions of genistein.
Collapse
Affiliation(s)
- Quan-Gui Gao
- State Key Disciplines: Physiology (in incubation), Department of Physiology, Medical College of Qingdao University, Qingdao, PR China
| | | | | | | |
Collapse
|
23
|
Adamis D, Meagher D. Insulin-like growth factor I and the pathogenesis of delirium: a review of current evidence. J Aging Res 2011; 2011:951403. [PMID: 21766035 PMCID: PMC3134253 DOI: 10.4061/2011/951403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/26/2011] [Accepted: 05/12/2011] [Indexed: 01/28/2023] Open
Abstract
Delirium is a frequent complication in medically ill elderly patients that is associated with serious adverse outcomes including increased mortality. Delirium risk is linked to older age, dementia, and illness that involves activation of inflammatory responses. IGF-I is increasingly postulated as a key link between environmental influences on body metabolism with a range of neuronal activities and has been described as the master regulator of the connection between brain and bodily well-being. The relationships between IGF-I and ageing, cognitive impairment and inflammatory illness further support a possible role in delirium pathogenesis. Five studies of IGF-I in delirium were identified by a systematic review. These conflicting findings, with three of the five studies indicating an association between IGF-1 and delirium occurrence, may relate to the considerable methodological differences in these studies. The relevance of IGF-I and related factors to delirium pathogenesis can be clarified by future studies which account for these issues and other confounding factors. Such work can inform therapeutic trials of IGF-I and/or growth hormone administration.
Collapse
Affiliation(s)
- Dimitrios Adamis
- Research and Academic Institute of Athens, 27 Themistokleous Street and Akadimias, 10677 Athens, Greece
| | | |
Collapse
|
24
|
Synthesis of methyl (±)-3,5-bis(substitutedmethyl)pyrrolidine-2-carboxylates: a convenient approach to proline-mimetics. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.06.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Lu XCM, Chen RW, Yao C, Wei H, Yang X, Liao Z, Dave JR, Tortella FC. NNZ-2566, a glypromate analog, improves functional recovery and attenuates apoptosis and inflammation in a rat model of penetrating ballistic-type brain injury. J Neurotrauma 2009; 26:141-54. [PMID: 19119917 DOI: 10.1089/neu.2008.0629] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycine-proline-glutamate (GPE) is an N-terminal tripeptide endogenously cleaved from insulin-like growth factor-1 in the brain and is neuroprotective against hypoxic-ischemic brain injury and neurodegeneration. NNZ-2566 is an analog of GPE designed to have improved bioavailability. In this study, we tested NNZ-2566 in a rat model of penetrating ballistic-type brain injury (PBBI) and assessed its effects on injury-induced histopathology, behavioral deficits, and molecular and cellular events associated with inflammation and apoptosis. In the initial dose-response experiments, NNZ-2566 (0.01-3 mg/kg/h x 12 h intravenous infusion) was given at 30 min post-injury and the therapeutic time window was established by delaying treatments 2-4 h post-injury, but with the addition of a 10- or 30-mg/kg bolus dose. All animals survived 72 h. Neuroprotection was evaluated by balance beam testing and histopathology. The effects of NNZ-2566 on injury-induced changes in Bax and Bcl-2 proteins, activated microgliosis, neutrophil infiltration, and astrocyte reactivity were also examined. Behavioral results demonstrated that NNZ-2566 dose-dependently reduced foot faults by 19-66% after acute treatments, and 35-55% after delayed treatments. Although gross lesion volume was not affected, NNZ-2566 treatment significantly attenuated neutrophil infiltration and reduced the number of activated microglial cells in the peri-lesion regions of the PBBI. PBBI induced a significant upregulation in Bax expression (36%) and a concomitant downregulation in Bcl-2 expression (33%), both of which were significantly reversed by NNZ-2566. Collectively, these results demonstrated that NNZ-2566 treatment promoted functional recovery following PBBI, an effect related to the modulation of injury-induced neural inflammatory and apoptotic mechanisms.
Collapse
Affiliation(s)
- Xi-Chun May Lu
- Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Xu L, Chen WF, Wong MS. Ginsenoside Rg1 protects dopaminergic neurons in a rat model of Parkinson's disease through the IGF-I receptor signalling pathway. Br J Pharmacol 2009; 158:738-48. [PMID: 19703168 DOI: 10.1111/j.1476-5381.2009.00361.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE We have shown that ginsenoside Rg1 is a novel class of potent phytoestrogen and activates insulin-like growth factor-I receptor (IGF-IR) signalling pathway in human breast cancer MCF-7 cells. The present study tested the hypothesis that the neuroprotective actions of Rg1 involved activation of the IGF-IR signalling pathway in a rat model of Parkinson's disease, induced by 6-hydroxydopamine (6-OHDA). EXPERIMENTAL APPROACH Ovariectomized rats were infused unilaterally with 6-OHDA into the medial forebrain bundle to lesion the nigrostriatal dopamine pathway and treated with Rg1 (1.5 h after 6-OHDA injections) in the absence or presence of the IGF-IR antagonist JB-1 (1 h before Rg1 injections). The rotational behaviour induced by apomorphine and the dopamine content in the striatum were studied. Protein and gene expression of tyrosine hydroxylase, dopamine transporter and Bcl-2 in the substantia nigra were also determined. KEY RESULTS Rg1 treatment ameliorated the rotational behaviour induced by apomorphine in our model of nigrostriatal injury. This effect was partly blocked by JB-1. 6-OHDA significantly decreased the dopamine content of the striatum and treatment with Rg1 reversed this decrease. Treatment with Rg1 of 6-OHDA-lesioned rats reduced neurotoxicity, as measured by tyrosine hydroxylase, dopamine transporter and Bcl-2 protein and gene level in the substantia nigra. These effects were abolished by JB-1. CONCLUSIONS AND IMPLICATIONS These data provide the first evidence that Rg1 has neuroprotective effects on dopaminergic neurons in the 6-OHDA model of nigrostriatal injury and its actions might involve activation of the IGF-IR signalling pathway.
Collapse
Affiliation(s)
- Li Xu
- Department of Physiology, Medical College of Qingdao University, Qingdao, China
| | | | | |
Collapse
|
27
|
Gao QG, Chen WF, Xie JX, Wong MS. Ginsenoside Rg1 protects against 6-OHDA-induced neurotoxicity in neuroblastoma SK-N-SH cells via IGF-I receptor and estrogen receptor pathways. J Neurochem 2009; 109:1338-47. [DOI: 10.1111/j.1471-4159.2009.06051.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Guan J, Gluckman PD. IGF-1 derived small neuropeptides and analogues: a novel strategy for the development of pharmaceuticals for neurological conditions. Br J Pharmacol 2009; 157:881-91. [PMID: 19438508 DOI: 10.1111/j.1476-5381.2009.00256.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is neuroprotective and improves long-term function after brain injury. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake and mitogenic potential. Glycine-proline-glutamate (GPE) is naturally cleaved from the IGF-1 N-terminal and it is also neuroprotective after ischemic injury, which provided a novel strategy of drug discovery for neurological disorders. GPE is not enzymatically stable, thus intravenous infusion of GPE becomes necessary for stable and potent neuroprotection. The broad effective dose range and treatment window of 3-7 h after the lesion suggest its potential for treating acute brain injuries. G-2meth-PE, a GPE analogue designed to be more enzymatic resistant, has a prolonged plasma half-life and is more potent in neuroprotection. Neuroprotection by GPE and its analogue may involve modulation of inflammation, promotion of astrocytosis, inhibition of apoptosis and vascular remodelling. Acute administration of GPE also prevents 6-OHDA-induced nigrostrial dopamine depletion. Delayed treatment with GPE does not prevent dopamine loss, but improves long-term function. Cyclo-glycyl-proline (cyclic Gly-Pro) is an endogenous DKP that may be derived from GPE. Cyclic Gly-Pro and its analogue cyclo-L-glycyl-L-2-allylproline (NNZ 2591) are both neuroprotective after ischaemic injury. NNZ2591 is highly enzymatic resistant and centrally accessible. Its peripheral administration improves somatosensory-motor function and long-term histological outcome after brain injury. Our research suggests that small neuropeptides have advantages over growth factors in the treatment of brain injury, and that modified neuropeptides designed to overcome the limitations of their endogenous counterparts represent a novel strategy of pharmaceutical discovery for neurological disorders.
Collapse
Affiliation(s)
- Jian Guan
- Liggins Institute, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|
29
|
Serum insulin-like growth factor-1 and nitric oxide levels in Parkinson's disease. Mediators Inflamm 2009; 2009:132464. [PMID: 19300521 PMCID: PMC2655363 DOI: 10.1155/2009/132464] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 10/19/2008] [Accepted: 01/05/2009] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to investigate the role of circulating growth hormone (GH), insulin growth factor-1 (IGF-1), IGF binding protein-3 (IGFBP-3), and nitric oxide (NO) concentrations in the patients suffering from Parkinson's disease (PD). The study groups were consisted of 25 patients with PD and 25 matched healthy subjects as a control. The NO level of patients in PD group (2.3 +/- 0.4 micromol/L) was significantly lower than that in the control group (2.8 +/- 0.6 micromol/L) (P:.011). Although there were no statistically significant differences in the GH, IGF-1, and IGF BP-3 levels among the two groups, in this preliminary study, we found low NO and mildly elevated IGF-1 levels in the patients with PD. The results may be associated with adaptation or protective mechanisms in the neurodegenerative disease processes such as seen in the PD. Further studies should be carried out to confirm our results.
Collapse
|
30
|
NNZ-2566: A Gly–Pro–Glu analogue with neuroprotective efficacy in a rat model of acute focal stroke. J Neurol Sci 2009; 278:85-90. [DOI: 10.1016/j.jns.2008.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/26/2008] [Accepted: 12/03/2008] [Indexed: 11/18/2022]
|
31
|
Krishnamurthi RVM, Mathai S, Kim AH, Zhang R, Guan J. A novel diketopiperazine improves functional recovery given after the onset of 6-OHDA-induced motor deficit in rats. Br J Pharmacol 2009; 156:662-72. [PMID: 19154439 DOI: 10.1111/j.1476-5381.2008.00064.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Cyclo-L-glycyl-L-2-allylproline (NNZ-2591), a modified diketopiperazine, is neuroprotective and improves long-term function after hypoxic-ischaemic brain injury in rats. The present studies were designed to examine both the neuroprotective and neurotrophic actions of NNZ-2591 on neurochemical and behavioural changes in a rat model of Parkinson's disease. EXPERIMENTAL APPROACH To examine its protective effect, either NNZ-2591 (20 ng.day(-1)) or saline was given intracerebroventricularly for 3 days starting 2 h after 6-hydroxydopamine (6-OHDA) induced unilateral striatal lesion. In a subsequent experiment either NNZ-2591 (0.2, 1 and 5 mg.day(-1), s.c.) or saline was administered daily for 14 days starting 2 weeks after the lesion. Behavioural and neurochemical outcomes were examined using the adjusting step test and immunohistochemical staining. KEY RESULTS Cyclo-L-glycyl-L-2-allylproline given 2 h after the lesion reduced the degree of motor deficit compared with the saline-treated group. Delayed treatment with NNZ-2591, initiated after the onset of motor deficit, significantly improved motor function from week 7 onwards compared with the saline-treated group. Neither treatment regime altered nigrostriatal dopamine depletion. NNZ-2591 significantly enhanced the expression of doublecortin-positive neuroblasts in the sub-ventricular zone. CONCLUSIONS AND IMPLICATIONS These studies reveal that early treatment with NNZ-2591 protects against the motor deficit induced by 6-OHDA and that treatment initiated after the establishment of motor impairment significantly improves long-term motor function. These effects of NNZ-2591 on functional recovery were independent of dopamine depletion and also appeared not to be symptomatic as the improved motor function was long-lasting. NNZ-2591 has potential as a therapeutic agent for neurodegenerative disorders.
Collapse
|
32
|
Abstract
Trophic factors are proteins that support and protect subpopulations of cells. A number have been reported to act on dopaminergic neurons in vitro and in vivo, making them potential therapeutic candidates for Parkinson's disease. All of these candidate factors protect dopaminergic neurons if given prior to, or with, selective neurotoxins. Fewer trophic factors, primarily glial-derived neurotrophic factor (GDNF) and its relative, neurturin (NRTN; also known as NTN), have been shown to restore function in damaged dopamine neurons after the acute effects of neurotoxins have subsided. A major barrier to clinical translation has been delivery. GDNF delivered by intracerebroventricular injection in patients was ineffective, probably because GDNF did not reach the target, the putamen, and intraputaminal infusion was ineffective, probably because of limited distribution within the putamen. A randomized clinical trial with gene therapy for NRTN is underway, in an attempt to overcome these problems with targeting and distribution. Other strategies are available to induce trophic effects in the CNS, but have not yet been the focus of human research. To date, clinical trials have focused on restoration of function (i.e., improvement of parkinsonism). Protection (i.e., slowing or halting disease progression and functional decline) might be a more robust effect of trophic agents. Laboratory research points to their effectiveness in protecting neurons and even restoring dopaminergic function after a monophasic neurotoxic insult. Utility for such compounds in patients with Parkinson's disease and ongoing loss of dopaminergic neurons remains to be proven.
Collapse
Affiliation(s)
- Amie L. Peterson
- grid.5288.70000000097585690Parkinson’s Disease Research, Educational and Clinical Center (PADRECC), Portland Veteran’s Administration Medical Center, and Department of Neurology, Oregon Health Sciences University, 97239 Portland, Oregon
| | - John G. Nutt
- grid.5288.70000000097585690Parkinson’s Disease Research, Educational and Clinical Center (PADRECC), Portland Veteran’s Administration Medical Center, and Department of Neurology, Oregon Health Sciences University, 97239 Portland, Oregon
| |
Collapse
|
33
|
Jang S, Choi SS, Kim SH, Park JS, Jeong HS. Protective Effects of K6PC-5, A Sphingosine Kinase Activator, Against 1-methyl-4-phenylpyridinium-induced Dopaminergic Neuronal Cell Death. Chonnam Med J 2008. [DOI: 10.4068/cmj.2008.44.3.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Korea
| | - Seung Sik Choi
- Department of Familial Medicine, Yeosu Chonnam Hospital, Yeosu, Korea
| | - Song Hee Kim
- Department of Physiology, Chonnam National University Medical School, Korea
| | - Jong-Seong Park
- Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Han-Seong Jeong
- Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| |
Collapse
|
34
|
Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson's disease. Exp Neurol 2007; 209:213-23. [PMID: 18061591 DOI: 10.1016/j.expneurol.2007.09.022] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 09/14/2007] [Accepted: 09/19/2007] [Indexed: 11/23/2022]
Abstract
Growth factors such as glial cell line-derived neurotrophic factor (GDNF) have been shown to prevent neurodegeneration and promote regeneration in many animal models of Parkinson's disease (PD). Insulin-like growth factor 1 (IGF-1) is also known to have neuroprotective effects in a number of disease models but has not been extensively studied in models of PD. We produced human neural progenitor cells (hNPC) releasing either GDNF or IGF-1 and transplanted them into a rat model of PD. hNPC secreting either GDNF or IGF-1 were shown to significantly reduce amphetamine-induced rotational asymmetry and dopamine neuron loss when transplanted 7 days after a 6-hydroxydopamine (6-OHDA) lesion. Neither untransduced hNPC nor a sham transplant had this effect suggesting GDNF and IGF-1 release was required. Interestingly, GDNF, but not IGF-1, was able to protect or regenerate tyrosine hydroxylase-positive fibers in the striatum. In contrast, IGF-1, but not GDNF, significantly increased the overall survival of hNPC both in vitro and following transplantation. This suggests a dual role of IGF-1 to both increase hNPC survival after transplantation and exert trophic effects on degenerating dopamine neurons in this rat model of PD.
Collapse
|
35
|
Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 2005; 26:916-43. [PMID: 16131630 DOI: 10.1210/er.2004-0024] [Citation(s) in RCA: 355] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, much interest has been devoted to defining the role of the IGF system in the nervous system. The ubiquitous IGFs, their cell membrane receptors, and their carrier binding proteins, the IGFBPs, are expressed early in the development of the nervous system and are therefore considered to play a key role in these processes. In vitro studies have demonstrated that the IGF system promotes differentiation and proliferation and sustains survival, preventing apoptosis of neuronal and brain derived cells. Furthermore, studies of transgenic mice overexpressing components of the IGF system or mice with disruptions of the same genes have clearly shown that the IGF system plays a key role in vivo.
Collapse
Affiliation(s)
- V C Russo
- Centre for Hormone Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
36
|
Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 2005; 14:1709-25. [PMID: 15888489 PMCID: PMC2674782 DOI: 10.1093/hmg/ddi178] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular differences between dopamine (DA) neurons may explain why the mesostriatal DA neurons in the A9 region preferentially degenerate in Parkinson's disease (PD) and toxic models, whereas the adjacent A10 region mesolimbic and mesocortical DA neurons are relatively spared. To characterize innate physiological differences between A9 and A10 DA neurons, we determined gene expression profiles in these neurons in the adult mouse by laser capture microdissection, microarray analysis and real-time PCR. We found 42 genes relatively elevated in A9 DA neurons, whereas 61 genes were elevated in A10 DA neurons [> 2-fold; false discovery rate (FDR) < 1%]. Genes of interest for further functional analysis were selected by criteria of (i) fold differences in gene expression, (ii) real-time PCR validation and (iii) potential roles in neurotoxic or protective biochemical pathways. Three A9-elevated molecules [G-protein coupled inwardly rectifying K channel 2 (GIRK2), adenine nucleotide translocator 2 (ANT-2) and the growth factor IGF-1] and three A10-elevated peptides (GRP, CGRP and PACAP) were further examined in both alpha-synuclein overexpressing PC12 (PC12-alphaSyn) cells and rat primary ventral mesencephalic (VM) cultures exposed to MPP+ neurotoxicity. GIRK2-positive DA neurons were more vulnerable to MPP+ toxicity and overexpression of GIRK2 increased the vulnerability of PC12-alphaSyn cells to the toxin. Blocking of ANT decreased vulnerability to MPP+ in both cell culture systems. Exposing cells to IGF-1, GRP and PACAP decreased vulnerability of both cell types to MPP+, whereas CGRP protected PC12-alphaSyn cells but not primary VM DA neurons. These results indicate that certain differentially expressed molecules in A9 and A10 DA neurons may play key roles in their relative vulnerability to toxins and PD.
Collapse
Affiliation(s)
- Chee Yeun Chung
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Center for Neurodegeneration and Repair, Boston, MA 02114, USA
| | - Hyemyung Seo
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Kai Christian Sonntag
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Andrew Brooks
- Department of Environmental Medicine, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ling Lin
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Ole Isacson
- Neuroregeneration Laboratories, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Center for Neurodegeneration and Repair, Boston, MA 02114, USA
- To whom correspondence should be addressed. Tel: +1 6178553283; Fax: +1 6178553284;
| |
Collapse
|